[go: up one dir, main page]

CN111614960B - Quick coding and decoding method for frame level division according to image content characteristics - Google Patents

Quick coding and decoding method for frame level division according to image content characteristics Download PDF

Info

Publication number
CN111614960B
CN111614960B CN202010446922.0A CN202010446922A CN111614960B CN 111614960 B CN111614960 B CN 111614960B CN 202010446922 A CN202010446922 A CN 202010446922A CN 111614960 B CN111614960 B CN 111614960B
Authority
CN
China
Prior art keywords
prediction mode
frame
string prediction
string
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010446922.0A
Other languages
Chinese (zh)
Other versions
CN111614960A (en
Inventor
赵利平
周青阳
林涛
周开伦
胡珂立
沈士根
屠昂燕
唐剑平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Boya Ruishi Technology Co ltd
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN202010446922.0A priority Critical patent/CN111614960B/en
Publication of CN111614960A publication Critical patent/CN111614960A/en
Application granted granted Critical
Publication of CN111614960B publication Critical patent/CN111614960B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明涉及数据压缩技术领域,具体涉及一种按图像内容特征进行帧级划分的快速编解码方法。编码方法中,通过在帧级层根据图像的不同特征进行类别划分,对符合条件的类别图像可直接跳过串预测模式进行编码,在保证编码效率一致的前提下,可以降低总体编码时间;另外,当所在类别的图像不采用串预测模式编码时,编码端也无需将当前编码单元是否采用串预测模式的编码单元层级标识写入码流,与之对应的,解码时也无需解析该编码单元层级标识,编、解码时间均可缩短,编、解码效率均得以提高。

Figure 202010446922

The invention relates to the technical field of data compression, in particular to a fast encoding and decoding method for frame-level division according to image content characteristics. In the encoding method, by classifying the categories according to the different characteristics of the images at the frame level, the qualified category images can be encoded directly by skipping the string prediction mode, and the overall encoding time can be reduced on the premise of ensuring the same encoding efficiency; , when the image of the category is not encoded in the string prediction mode, the encoding end does not need to write the coding unit level identifier of whether the current coding unit adopts the string prediction mode into the code stream. Correspondingly, there is no need to parse the coding unit during decoding. Level identification, encoding and decoding time can be shortened, and encoding and decoding efficiency can be improved.

Figure 202010446922

Description

按图像内容特征进行帧级划分的快速编解码方法A fast coding and decoding method for frame-level division based on image content features

技术领域:Technical field:

本发明涉及数据压缩技术领域,具体涉及一种按图像内容特征进行帧级划分的快速编解码方法。The invention relates to the technical field of data compression, in particular to a fast encoding and decoding method for frame-level division according to image content characteristics.

背景技术:Background technique:

在全球全社会“抗疫”期间,以大规模远程办公、线上教学、远程会议等为典型代表的远程在线互动活动发挥着不可替代的作用,并对社会活动形态产生了深刻的影响。屏幕内容编码正是这些远程在线互动活动中用于屏幕共享和显示的关键技术。这些屏幕内容无处不在,将成为主要多媒体增量流源之一。屏幕内容编码技术作为解决各种应用中“云-端/边缘”、“端/边缘-端/边缘”之间数据传输瓶颈问题,以及“人-机”交互滞后感问题的决定性技术,将深刻地改变“人-人”交互和“人-机”交互,甚至“机-机”交互的方式。因此,屏幕内容编码技术研究已成为迫切的必然需求。同时,随着移动设备、智能终端/边缘设备不断渗透社会生活的各个角落,各种设备之间的交互日趋重要。除了传统的图像失真和编码效率两个重要因素之外,与图像编解码计算复杂度直接相关的“编解码时间”和“电池续航能力”也日益成为非常重要的因素。目前,最新的国际视频编码VVC(Versatile Video Coding)标准比HEVC(High Efficiency Video Coding)标准的编码效率提高了约25%(AI配置),但编码复杂度却增加了约26倍。如此高的复杂度对移动、智能终端/边缘设备上的屏幕内容编码应用而言是无法承受的。因此,亟需探索“低复杂度兼高编码效率”的屏幕内容编码技术。During the "anti-epidemic" period of the whole world, the remote online interactive activities represented by large-scale telecommuting, online teaching, and remote conferences have played an irreplaceable role and have had a profound impact on the form of social activities. Screen content encoding is the key technology used for screen sharing and display in these remote online interactive activities. These screen contents are ubiquitous and will be one of the main sources of incremental multimedia streaming. As a decisive technology to solve the bottleneck problem of data transmission between "cloud-end/edge", "end/edge-end/edge" in various applications, and "human-computer" interaction lag, the screen content coding technology will be deeply Change the way of "human-human" interaction, "human-machine" interaction, and even "machine-machine" interaction. Therefore, the research on screen content coding technology has become an urgent and inevitable demand. At the same time, with the continuous penetration of mobile devices and smart terminals/edge devices into every corner of social life, the interaction between various devices is becoming more and more important. In addition to the traditional two important factors of image distortion and encoding efficiency, "encoding and decoding time" and "battery endurance", which are directly related to the computational complexity of image encoding and decoding, have increasingly become very important factors. At present, the latest international video coding VVC (Versatile Video Coding) standard has about 25% higher coding efficiency (AI configuration) than HEVC (High Efficiency Video Coding) standard, but the coding complexity is increased by about 26 times. Such a high level of complexity is unbearable for screen content encoding applications on mobile, smart terminals/edge devices. Therefore, it is urgent to explore a screen content encoding technology with "low complexity and high encoding efficiency".

屏幕内容是将屏幕内容看成可含部分自然图像内容区域的,且比自然图像更具普遍性的图像。屏幕内容体现出与自然图像不同的特征,主要包括:具有各种大小和形状的重复图样、非连续色调区域中编码单元内颜色数目比较少和其他若干特征(如具有尖锐、变化剧烈的内容、无噪声等)。在现有的混合编码框架中,对不同特征的图像内容的编码块,采用日益增多的不同预测模式进行编码,即对图像中的各编码单元,依次采用各种预测模式进行预编码,并计算出各模式获得的率失真值,从中选择率失真值最小的模式作为编码单元的最佳模式进行编码。The screen content is regarded as an image that can contain part of the natural image content area and is more general than natural images. Screen content exhibits different characteristics from natural images, mainly including: repeating patterns of various sizes and shapes, relatively small number of colors in coding units in discontinuous tone areas, and several other characteristics (such as sharp, drastic content, no noise, etc.). In the existing hybrid coding framework, the coding blocks of image content with different characteristics are coded using an increasing number of different prediction modes, that is, each coding unit in the image is pre-coded using various prediction modes in turn, and the calculation The rate-distortion value obtained by each mode is obtained, and the mode with the smallest rate-distortion value is selected as the optimal mode of the coding unit for coding.

最新的VVC标准和我国AVS3(the third generation of Audio Video CodingStandard)标准及之前的版本或扩展版标准中,各种预测模式主要包括帧内预测模式、帧间预测模式、帧内块复制(Intra Block Copy,IBC)、Palette模式、串匹配(也称为串预测)模式等。如VVC标准除了传统的帧内预测模式,还出现了其他的帧内预测模式。IBC算法是在由当前帧重建区域(当前CTU和左边CTU)一部分构成的搜索范围内,采用有限种固定大小(如4x8,8x4,8x8,16x4等)的块匹配。Palette模式用一个Palette来保存当前CU或者最近CU的代表性颜色。串预测模式以像素为单位,按照某种匹配顺序与规则,搜索最优参考串,最终将CU划分成一个或多个参考串,和/或一个或多个未匹配像素。不同的预测模式对于不同的图像内容具有不可替代的作用,一般而言,帧内预测模式和帧间预测模式对于摄像机产生的连续色调区域,如自然图像非常有效;而IBC算法、Palette模式、串预测模式对于含计算机产生的非连续色调区域,包括文本、图形、图标、图表等的屏幕图像非常有效。事实上,IBC算法和Palette模式是串预测模式的特例。In the latest VVC standard and my country's AVS3 (the third generation of Audio Video Coding Standard) standard and the previous version or the extended version standard, various prediction modes mainly include intra prediction mode, inter prediction mode, Intra Block Copy (Intra Block). Copy, IBC), Palette mode, string matching (also known as string prediction) mode, etc. For example, in addition to the traditional intra-frame prediction mode, other intra-frame prediction modes appear in the VVC standard. The IBC algorithm uses a limited number of fixed-size (such as 4x8, 8x4, 8x8, 16x4, etc.) block matching within a search range formed by a part of the current frame reconstruction area (current CTU and left CTU). Palette mode uses a Palette to save the representative color of the current CU or the most recent CU. The string prediction mode takes pixels as a unit, searches for an optimal reference string according to a certain matching order and rule, and finally divides the CU into one or more reference strings and/or one or more unmatched pixels. Different prediction modes have irreplaceable roles for different image contents. Generally speaking, intra-frame prediction mode and inter-frame prediction mode are very effective for continuous-tone areas generated by cameras, such as natural images; while IBC algorithm, Palette mode, serial prediction mode are very effective. Predictive mode works well for screen images that contain computer-generated non-contone areas, including text, graphics, icons, charts, and more. In fact, the IBC algorithm and Palette mode are special cases of the string prediction mode.

一幅图像也称一帧图像,一帧图像划分为最大编码单元,最大编码单元划分为一个或多个编码单元,由编码树决定。不同的预测模式对于不同特征的图像内容作用不同。串预测模式对非连续区域的屏幕图像非常有效,但是对于含非连续区域成分较少的内容图像几乎没有任何作用。现有的对含串预测模式的编码算法中,一方面,对于所有的图像内容都会尝试串预测模式预编码的方法,这样不仅对提升编码效率没有任何帮助,反而增加了编码的时间;另一方面,无论图像中是否有编码单元选中串预测模式,都需要将当前编码单元是否采用串预测模式的编码单元层级标识写入码流,与之对应的,解码器也需要解析该串预测模式编码单元层级标识。因此,现有的编、解码方式都存在着编、解码时间长和效率有待提升的问题。有鉴于此,本案由此而生。An image is also called a frame of image. A frame of image is divided into maximum coding units, and the maximum coding unit is divided into one or more coding units, which are determined by the coding tree. Different prediction modes have different effects on image content of different features. The string prediction mode is very effective for screen images with discontinuous areas, but has little effect on content images with few discontinuous areas. In the existing coding algorithms with the burst prediction mode, on the one hand, the precoding method of the burst prediction mode is tried for all image contents, which not only does not help to improve the coding efficiency, but increases the coding time; In the aspect, regardless of whether there is a coding unit in the image that selects the string prediction mode, it is necessary to write the coding unit level identifier of whether the current coding unit adopts the string prediction mode into the code stream. Correspondingly, the decoder also needs to parse the string prediction mode code. Unit level identifier. Therefore, the existing encoding and decoding methods have the problems of long encoding and decoding time and efficiency to be improved. In view of this, this case came into being.

发明内容:Invention content:

本发明分别公开一种编码方法和解码方法,在图像(帧级)层次,采用预设的划分规则对不同特征的图像内容进行分类,根据划分的类别自适应地对图像内容进行串预测模式/非串预测模式的编解码,可以提高编解码效率。The invention discloses an encoding method and a decoding method respectively. At the image (frame level) level, preset division rules are used to classify image content with different characteristics, and the image content is adaptively carried out according to the divided categories. The encoding and decoding of the non-string prediction mode can improve the encoding and decoding efficiency.

为了实现上述发明目的,本发明公开的编码方法采用如下技术方案:In order to achieve the above-mentioned purpose of the invention, the coding method disclosed by the present invention adopts the following technical solutions:

按图像内容特征进行帧级划分的快速编码方法,内容包括:A fast coding method for frame-level division according to image content features, including:

步骤1:在图像层次,采用预设划分规则对图像内容特征进行分类,将图像内容分为类别一和类别二;Step 1: at the image level, use preset division rules to classify the image content features, and divide the image content into category 1 and category 2;

步骤2:根据图像内容分类结果,设置当前图像的串预测模式帧级标识信息,并将该串预测模式帧级标识信息写入码流;如果图像被划分为类别一,则将该图像的串预测模式帧级标识设置为“真”,如果图像被划分为类别二,则将该图像的串预测模式帧级标识设置为“假”;Step 2: According to the image content classification result, set the string prediction mode frame-level identification information of the current image, and write the string prediction mode frame-level identification information into the code stream; if the image is classified into category one, then the string of the image is The prediction mode frame-level flag is set to "true", and if the image is divided into category two, the string prediction mode frame-level flag of the image is set to "false";

步骤3:判断当前图像的串预测模式帧级标识的设置结果:Step 3: Determine the setting result of the frame-level flag of the string prediction mode of the current image:

若串预测模式帧级标识设置为“假”,图像中的所有编码单元直接采用非串预测模式进行预编码,而并不采用串预测模式进行预编码,然后将当前编码单元非串预测模式标识以及非串预测模式的编码信息写入码流;If the frame-level flag of the string prediction mode is set to "false", all coding units in the picture are directly pre-coded in the non-string prediction mode instead of the string prediction mode for precoding, and then the current coding unit is marked with the non-string prediction mode for precoding. And the encoding information of the non-string prediction mode is written into the code stream;

若串预测模式帧级标识设置为“真”,则对整幅图像中的每个编码单元重复执行以下操作,直至所有的编码单元编码完毕:采用串预测模式以及非串预测模式进行预编码;然后判断当前编码单元率失真最小的模式是否为串预测模式:如果当前编码单元率失真最小的模式为串预测模式,则将当前编码单元串预测模式标识设置为“真”并写入码流,将当前编码单元串预测模式的编码信息也写入码流;如果当前编码单元率失真最小的模式为非串预测模式,则将当前编码单元串预测模式标识设置为“假”并写入码流,将当前编码单元非串预测模式标识以及非串预测模式的编码信息也写入码流。If the frame-level flag of the string prediction mode is set to "true", the following operations are repeatedly performed on each coding unit in the entire image until all coding units are encoded: use the string prediction mode and the non-string prediction mode to perform precoding; Then judge whether the mode with the least rate distortion of the current coding unit is the string prediction mode: if the mode with the least rate distortion of the current coding unit is the string prediction mode, then set the current coding unit string prediction mode flag to "true" and write the code stream, Write the encoding information of the prediction mode of the current coding unit string into the code stream; if the mode with the least rate distortion of the current coding unit is the non-string prediction mode, set the prediction mode flag of the current coding unit string to "false" and write it into the code stream , and write the non-string prediction mode identifier of the current coding unit and the encoding information of the non-string prediction mode into the code stream.

进一步,所述非串预测模式采用以下模式之一或者多种任意组合使用:帧内预测模式;帧间预测模式;IBC模式;Palette模式。Further, the non-string prediction mode is used in any combination of one or more of the following modes: intra-frame prediction mode; inter-frame prediction mode; IBC mode; Palette mode.

进一步,所述步骤1中的预设划分规则采用以下规则之一或者将其组合使用:(1)具有相同哈希值i的像素总数Numhashvalue=i满足预设条件A划分为类别一,否则划分为类别二;(2)相邻哈希值的像素总数Numhashvalue=i和Numhashvalue=i+1之间满足预设条件B划分为类别一,否则划分为类别二。Further, the preset division rule in the step 1 adopts one of the following rules or a combination thereof: (1) The total number of pixels with the same hash value i, Num hashvalue=i, satisfies the preset condition A and is divided into category one, otherwise It is divided into category two; (2) the total number of pixels of adjacent hash values between Num hashvalue=i and Num hashvalue=i+1 meet the preset condition B, and it is divided into category one, otherwise, it is divided into category two.

进一步,所述预设条件A采用以下方式之一或者多种任意组合使用:大于固定阈值;等于固定阈值;大于非固定阈值;等于非固定阈值;预设条件B采用以下方式之一或者多种任意组合使用:(1)相邻哈希值的像素总数中数值较小者与较大者之间的差值绝对值大于某一固定阈值;(2)相邻哈希值的像素总数中数值较小者与较大者之间的差值绝对值大于某一非固定阈值。Further, the preset condition A is used in any combination of one or more of the following ways: greater than a fixed threshold; equal to a fixed threshold; greater than a non-fixed threshold; equal to a non-fixed threshold; and the preset condition B is used in one or more of the following ways Use in any combination: (1) the absolute value of the difference between the smaller value and the larger value in the total number of pixels of adjacent hash values is greater than a certain fixed threshold; (2) the value in the total number of pixels of adjacent hash values The absolute value of the difference between the smaller and the larger is greater than a certain non-fixed threshold.

进一步,所述哈希值计算时,采用以下方式之一或者多种任意组合使用:(1)对不同采样格式的像素采用不同的哈希值计算方式;(2)对不同采样格式的像素采用相同的哈希值计算方式;(3)对不同比特数的像素采用不同的哈希值计算方式;(4)对不同比特数的像素采用相同的哈希值计算方式。Further, when the hash value is calculated, one or more of the following methods are used in any combination: (1) different hash value calculation methods are used for pixels of different sampling formats; (2) pixels of different sampling formats are used The same hash value calculation method; (3) different hash value calculation methods are used for pixels with different bit numbers; (4) the same hash value calculation method is used for pixels with different bit numbers.

进一步,所述像素的哈希值计算方式采用以下方式之一或者多种任意组合使用:(1)取像素的每个分量的相同数目若干位串联起来组成的哈希值;(2)取像素的每个分量的不同数目若干位串联起来组成的哈希值;(3)取像素的每个分量的相同位置若干位串联起来组成的哈希值;(4)取像素的每个分量的不同位置若干位串联起来组成的哈希值。Further, the calculation method of the hash value of the pixel adopts one or more of the following methods in any combination: (1) take the hash value formed by concatenating several bits of the same number of each component of the pixel; (2) take the pixel (3) Take the hash value formed by concatenating several bits in the same position of each component of the pixel in series; (4) Take the difference of each component of the pixel A hash value formed by concatenating several bits of the position.

本发明还公开了用上述编码方法完成数据编码后的解码方法,其内容包括:The present invention also discloses a decoding method after data encoding is completed by the above encoding method, and the content includes:

步骤1:解析压缩数据码流,获得当前图像的串预测模式帧级标识信息;Step 1: Parse the compressed data stream to obtain the frame-level identification information of the string prediction mode of the current image;

步骤2:判断当前图像的串预测模式帧级标识的设置结果:Step 2: Determine the setting result of the frame-level flag of the string prediction mode of the current image:

若串预测模式帧级标识设置为“假”,解析压缩数据码流,获得当前解码单元非串预测模式标识信息,并对当前解码单元采用非串预测模式进行解码;If the frame-level flag of the serial prediction mode is set to "false", parse the compressed data stream, obtain the identification information of the non-sequential prediction mode of the current decoding unit, and use the non-sequential prediction mode to decode the current decoding unit;

若串预测模式帧级标识设置为“真”,则解析压缩数据码流,获得当前解码单元串预测模式编码单元级标识信息并判断其“真”还是“假”:如果该编码单元级标识信息为“真”,则对当前解码单元采用串预测模式进行解码;如果该编码单元级标识信息为“假”,则解析压缩数据码流,获得当前解码单元非串预测模式标识,并对当前解码单元采用非串预测模式进行解码。If the frame-level flag of the string prediction mode is set to "true", parse the compressed data stream, obtain the coding unit-level flag information of the current decoding unit string prediction mode, and determine whether it is "true" or "false": if the coding unit-level flag information If it is "true", the current decoding unit is decoded using the string prediction mode; if the coding unit level identification information is "false", the compressed data stream is parsed, the current decoding unit non-string prediction mode identifier is obtained, and the current decoding unit is decoded. Units are decoded using a non-string prediction mode.

本发明所公开的编解码方法,通过在帧级层根据图像的不同特征进行类别划分,对符合条件的类别图像可直接跳过串预测模式进行编码,在保证编码效率一致的前提下,可以降低总体编码时间;另外,当所在类别的图像不采用串预测模式编码时,编码端也无需将当前编码单元是否采用串预测模式的编码单元层级标识写入码流,与之对应的,解码时也无需解析该编码单元层级标识,编、解码时间均可缩短,编、解码效率均得以提高。The encoding and decoding method disclosed in the present invention, by classifying the categories according to different characteristics of the image at the frame level, can directly skip the string prediction mode for encoding the qualified category images. The overall encoding time; in addition, when the image of the category is not encoded in the string prediction mode, the encoder does not need to write the coding unit level identifier of whether the current coding unit adopts the string prediction mode into the code stream. There is no need to parse the coding unit level identifier, the encoding and decoding time can be shortened, and the encoding and decoding efficiency can be improved.

以下通过附图和具体实施方式对本发明做进一步阐述。The present invention will be further described below through the accompanying drawings and specific embodiments.

附图说明:Description of drawings:

图1为本发明实施例中所采用编码方法的流程图;Fig. 1 is the flow chart of the coding method adopted in the embodiment of the present invention;

图2为本发明实施例中所采用解码方法的流程图。FIG. 2 is a flowchart of a decoding method adopted in an embodiment of the present invention.

具体实施方式:Detailed ways:

本实施例首先公开一种按图像内容特征进行帧级划分的快速编码方法,如图1所示,内容包括:This embodiment first discloses a fast coding method for frame-level division according to image content characteristics, as shown in FIG. 1 , the content includes:

步骤1:在图像层次,采用预设划分规则对图像内容特征进行分类,将图像内容分为类别一和类别二;Step 1: at the image level, use preset division rules to classify the image content features, and divide the image content into category 1 and category 2;

步骤2:根据图像内容分类结果,设置当前图像的串预测模式帧级标识信息,并将该串预测模式帧级标识信息写入码流,串预测模式帧级标识用“pic_use_sp_flag”表示;如果图像被划分为类别一,则将该图像的“pic_use_sp_flag”设置为“true”,如果图像被划分为类别二,则将该图像的“pic_use_sp_flag”设置为“false”;Step 2: According to the image content classification result, set the string prediction mode frame-level identification information of the current image, and write the string prediction mode frame-level identification information into the code stream, and the string prediction mode frame-level identification is represented by "pic_use_sp_flag"; if the image If the image is classified into category one, set the "pic_use_sp_flag" of the image to "true", and if the image is classified into category two, set the "pic_use_sp_flag" of the image to "false";

步骤3:判断当前图像的串预测模式帧级标识“pic_use_sp_flag”的设置结果:Step 3: Determine the setting result of the string prediction mode frame level flag "pic_use_sp_flag" of the current image:

若“pic_use_sp_flag”设置为“false”,图像中的所有编码单元直接采用非串预测模式进行预编码,而并不采用串预测模式进行预编码,然后将当前编码单元非串预测模式标识以及非串预测模式的编码信息写入码流;If "pic_use_sp_flag" is set to "false", all coding units in the picture are directly pre-coded using the non-string prediction mode instead of the string prediction mode. The encoding information of the prediction mode is written into the code stream;

若“pic_use_sp_flag”设置为“true”,则对整幅图像中的每个编码单元重复执行以下操作,直至所有的编码单元编码完毕:采用串预测模式以及非串预测模式进行预编码;然后判断当前编码单元率失真最小的模式是否为串预测模式:如果当前编码单元率失真最小的模式为串预测模式,则将当前编码单元串预测模式标识cu_sp_flag设置为“真”并写入码流,将当前编码单元串预测模式的编码信息也写入码流;如果当前编码单元率失真最小的模式为非串预测模式,则将当前编码单元串预测模式标识cu_sp_flag设置为“假”并写入码流,将当前编码单元非串预测模式标识以及非串预测模式的编码信息也写入码流。If "pic_use_sp_flag" is set to "true", repeat the following operations for each coding unit in the entire image until all coding units are coded: use string prediction mode and non-string prediction mode for precoding; then determine the current Whether the mode with the least rate distortion of the coding unit is the string prediction mode: If the mode with the least rate distortion of the current coding unit is the string prediction mode, set the string prediction mode flag cu_sp_flag of the current coding unit to "true" and write it into the code stream. The coding information of the coding unit string prediction mode is also written into the code stream; if the mode with the least rate distortion of the current coding unit is the non-string prediction mode, then the current coding unit string prediction mode flag cu_sp_flag is set to "false" and written into the code stream, Also write the non-string prediction mode identifier of the current coding unit and the encoding information of the non-string prediction mode into the code stream.

其中,非串预测模式可以采用以下模式之一或者多种任意组合使用:帧内预测模式;帧间预测模式;IBC模式;Palette模式。The non-string prediction mode can be used in any combination of one or more of the following modes: intra-frame prediction mode; inter-frame prediction mode; IBC mode; Palette mode.

上述步骤1中的预设划分规则可以采用以下规则之一或者将其组合使用:规则一:具有相同哈希值i的像素总数Numhashvalue=i满足预设条件A划分为类别一,否则划分为类别二;此处预设条件A采用以下方式之一或者多种任意组合使用:大于固定阈值;等于固定阈值;大于非固定阈值;等于非固定阈值。规则二:相邻哈希值的像素总数Numhashvalue=i和Numhashvalue=i+1之间满足预设条件B划分为类别一,否则划分为类别二;此处预设条件B采用以下方式之一或者多种任意组合使用:(1)相邻哈希值的像素总数中数值较小者与较大者之间的差值绝对值大于某一固定阈值;(2)相邻哈希值的像素总数中数值较小者与较大者之间的差值绝对值大于某一非固定阈值。The preset division rule in the above step 1 can be one of the following rules or a combination of them: Rule 1: The total number of pixels with the same hash value i Num hashvalue=i satisfies the preset condition A to be divided into category 1, otherwise divided into Category 2: Here, the preset condition A is used in one or more of the following ways: greater than the fixed threshold; equal to the fixed threshold; greater than the non-fixed threshold; equal to the non-fixed threshold. Rule 2: The total number of pixels of adjacent hash values between Num hashvalue=i and Num hashvalue=i+1 satisfy the preset condition B, and it is divided into category 1, otherwise it is divided into category 2; here, the preset condition B adopts one of the following methods One or more arbitrary combinations are used: (1) the absolute value of the difference between the smaller value and the larger one in the total number of pixels of adjacent hash values is greater than a certain fixed threshold; (2) the difference between adjacent hash values The absolute value of the difference between the smaller value and the larger value in the total number of pixels is greater than a certain non-fixed threshold.

预设划分规则中的哈希值计算方式,可以采用以下方式之一或者多种任意组合使用:(1)对不同采样格式的像素采用不同的哈希值计算方式;(2)对不同采样格式的像素采用相同的哈希值计算方式;(3)对不同比特数的像素采用不同的哈希值计算方式;(4)对不同比特数的像素采用相同的哈希值计算方式。The hash value calculation method in the preset division rule can be used in one of the following ways or in any combination: (1) different hash value calculation methods are used for pixels of different sampling formats; (2) different sampling formats are used for calculating the hash value. The same hash value calculation method is used for the pixels of different bit numbers; (3) different hash value calculation methods are used for pixels with different bit numbers; (4) the same hash value calculation method is used for pixels with different bit numbers.

像素的哈希值计算方式可以采用以下方式之一或者多种任意组合使用:(1)取像素的每个分量的相同数目若干位串联起来组成的哈希值;(2)取像素的每个分量的不同数目若干位串联起来组成的哈希值;(3)取像素的每个分量的相同位置若干位串联起来组成的哈希值;(4)取像素的每个分量的不同位置若干位串联起来组成的哈希值。The calculation method of the hash value of the pixel can be used in one of the following ways or in any combination: (1) Take the hash value formed by concatenating several bits of the same number of each component of the pixel; (2) Take each pixel of the pixel. Hash value formed by concatenating several bits of different numbers of components; (3) Take the hash value formed by concatenating several bits in the same position of each component of the pixel; (4) Take several bits in different positions of each component of the pixel Concatenated hash values.

举例来说,对于三分量的像素在计算哈希值时,以设定总位数12位为例:选择取每个分量的相同位置相同数目若干位串联起来组成哈希值的方式时,可以取每个分量的中间4位,一共取12位;或者取每个分量的低4位,一共取12位;选择取每个分量的相同位置不同数目若干位串联起来组成哈希值的方式时,可以取像素分量一的中间6位,取分量二的中间3位,取分量三的中间3位。For example, when calculating the hash value of a three-component pixel, the total number of bits is set to 12 bits as an example: when choosing the method of taking the same number of bits in the same position of each component and concatenating them to form a hash value, you can Take the middle 4 bits of each component, take a total of 12 bits; or take the lower 4 bits of each component, take a total of 12 bits; choose the same position of each component with different numbers of bits in series to form a hash value. , you can take the middle 6 bits of pixel component 1, the middle 3 bits of component 2, and the middle 3 bits of component 3.

关于编码方法中的预设划分规则以下给出一个具体实施例,该实施例以三分量像素YUV图像为例,说明如下:Regarding the preset division rules in the encoding method, a specific embodiment is given below. This embodiment takes a three-component pixel YUV image as an example, and the description is as follows:

1)对图像中的每个像素,按照以下方式计算12位的哈希值(范围为0~4095),分别取Y、U、V分量的中间4位串联起来组成的哈希值,公式表示如下:hashValue=((Y&0x3c<<6)|((U&0x3c)<<2)|((V&0x3c)>>2);(公式中“&”表示二进制按位与运算;“0x”表示16进制表示法;“<<”和“>>”分别表示二进制左移和右移运算,“|”表示二进制按位或运算)。1) For each pixel in the image, calculate a 12-bit hash value (range 0 to 4095) in the following way, and take the hash value formed by concatenating the middle 4 bits of the Y, U, and V components respectively. The formula expresses As follows: hashValue=((Y&0x3c<<6)|((U&0x3c)<<2)|((V&0x3c)>>2); ("&" in the formula means binary bitwise AND operation; "0x" means hexadecimal Notation; "<<" and ">>" represent binary left shift and right shift operations, respectively, and "|" represent binary bitwise OR operation).

2)统计具有相同哈希值i(0≤i≤4095)的像素总数,记为Numhashvalue=0、Numhashvalue=1、......Numhashvalue=40952) Count the total number of pixels with the same hash value i (0≤i≤4095), denoted as Num hashvalue=0 , Num hashvalue=1 ,...Num hashvalue=4095 ;

3)统计具有相同哈希值的像素总数满足以下条件的总数,该总数记为RColorNO(初始化为0):3) Count the total number of pixels with the same hash value that meet the following conditions, and the total number is recorded as RColorNO (initialized to 0):

遍历Numhashvalue=0、Numhashvalue=1、......Numhashvalue=4095Traverse Num hashvalue=0 , Num hashvalue=1 ,...Num hashvalue=4095 ;

如果Numhashvalue=i大于等于某个阈值A(如阈值A为固定值1000,或者为不固定值,如(图像的高*图像的宽)>>11),则RColorNO加1;If Num hashvalue=i is greater than or equal to a certain threshold A (such as threshold A is a fixed value of 1000, or a non-fixed value, such as (image height * image width) >> 11), then RColorNO increases by 1;

4)统计相邻哈希值的像素总数Numhashvalue=i和Numhashvalue=i+1之间满足以下条件的总数,该总数记为DColorNO(初始化为0):4) Count the total number of pixels of adjacent hash values between Num hashvalue=i and Num hashvalue=i+1 that satisfy the following conditions, and the total number is recorded as DColorNO (initialized to 0):

遍历Numhashvalue=0、Numhashvalue=1、......Numhashvalue=4094Traverse Num hashvalue=0 , Num hashvalue=1 ,...Num hashvalue=4094 :

令long_chain=Numhashvalue=i和Numhashvalue=i+1之间的较大值;Let long_chain=Num hashvalue=the larger value between i and Num hashvalue=i+1 ;

令short_chain=Numhashvalue=i和Numhashvalue=i+1之间的较小值;Let short_chain=Num hashvalue=the smaller value between i and Num hashvalue=i+1 ;

如果(((short_chain+1)<<阈值B)小于long_chain),则DColorNO加1;(此处阈值B举例为7)If (((short_chain+1)<<threshold B) is less than long_chain), add 1 to DColorNO; (here, the threshold B is 7)

5)根据RColorNO和DColorNO的值,将图像划分为两类:5) According to the values of RColorNO and DColorNO, the image is divided into two categories:

如果(DColorNO/(RColorNO+1)>阈值C),则将该图像归为类别一,否则将该图像归为类别二(此处阈值C举例为0.2)。If (DColorNO/(RColorNO+1)>threshold C), the image is classified as class one, otherwise the image is classified as class two (here, the threshold C is 0.2 for example).

为了完整说明本发明编码方法的具体应用,给出以下完整实施例:In order to fully illustrate the specific application of the encoding method of the present invention, the following complete examples are provided:

编码方法实施例:仍然以三分量图像为例说明,编码方法如下:Encoding method embodiment: still take the three-component image as an example to illustrate, the encoding method is as follows:

步骤1:在图像(帧级)层次,采用以下划分规则对不同特征的图像内容进行划分,将图像内容划分成预设的两个类别:Step 1: At the image (frame level) level, use the following division rules to divide image content with different characteristics, and divide the image content into two preset categories:

子步骤1:对图像中的每个像素,按照以下方式计算12位的哈希值(范围为0~4095),分别取Y、U、V分量的中间4位串联起来组成的哈希值;Sub-step 1: For each pixel in the image, calculate a 12-bit hash value (ranging from 0 to 4095) in the following manner, and take the hash value formed by concatenating the middle 4 bits of the Y, U, and V components respectively;

hashValue=((Y&0x3c<<6)|((U&0x3c)<<2)|((V&0x3c)>>2)hashValue=((Y&0x3c<<6)|((U&0x3c)<<2)|((V&0x3c)>>2)

子步骤2:统计具有相同哈希值i(0≤i≤4095)的像素总数,记为Numhashvalue=0、Numhashvalue=1、......Numhashvalue=4095Sub-step 2: Count the total number of pixels with the same hash value i (0≤i≤4095), denoted as Num hashvalue=0 , Num hashvalue =1,...Num hashvalue=4095 ;

子步骤3:统计具有相同哈希值像素总数满足以下条件的总数,记为RColorNO(初始化为0):Sub-step 3: Count the total number of pixels with the same hash value that meet the following conditions, denoted as RColorNO (initialized to 0):

遍历Numhashvalue=0、Numhashvalue=1、......Numhashvalue=4095Traverse Num hashvalue=0 , Num hashvalue=1 ,...Num hashvalue=4095 :

如果Numhashvalue=i大于等于阈值A,则RColorNO加1;If Num hashvalue=i is greater than or equal to the threshold A, then add 1 to RColorNO;

子步骤4:统计相邻哈希值的像素总数Numhashvalue=i和Numhashvalue=i+1之间满足以下条件的总数,记为DColorNO(初始化为0):Sub-step 4: Count the total number of pixels of adjacent hash values between Num hashvalue=i and Num hashvalue=i+1 that satisfy the following conditions, denoted as DColorNO (initialized to 0):

遍历Numhashvalue=0、Numhashvalue=1、......Numhashvalue=4094Traverse Num hashvalue=0 , Num hashvalue=1 ,...Num hashvalue=4094 :

令long_chain=Numhashvalue=i和Numhashvalue=i+1之间的较大值;Let long_chain=Num hashvalue=the larger value between i and Num hashvalue=i+1 ;

令short_chain=Numhashvalue=i和Numhashvalue=i+1之间的较小值;Let short_chain=Num hashvalue=the smaller value between i and Num hashvalue=i+1 ;

如果(((short_chain+1)<<阈值B)小于long_chain),则DColorNO加1;If (((short_chain+1)<<threshold B) is less than long_chain), add 1 to DColorNO;

子步骤5:根据RColorNO和DColorNO的值,将图像划分为两类:Sub-step 5: According to the values of RColorNO and DColorNO, the image is divided into two categories:

如果(DColorNO/(RColorNO+1)>阈值C),则将该图像归为类别一;否则将该图像归为类别二。If (DColorNO/(RColorNO+1)>threshold C), the image is classified as class one; otherwise, the image is classified as class two.

步骤2:根据图像内容划分结果,设置标识位pic_use_sp_flag用来表示当前图像串预测模式帧级标识信息,并写入码流:Step 2: According to the image content division result, set the flag bit pic_use_sp_flag to indicate the frame-level flag information of the current image string prediction mode, and write the code stream:

如果图像归为类别一,则If the image falls into category one, then

pic_use_sp_flag设置为true。pic_use_sp_flag is set to true.

否则otherwise

pic_use_sp_flag设置为false。pic_use_sp_flag is set to false.

步骤3:根据串预测模式帧级标识信息,当串预测模式帧级标识为false时,跳过串预测模式预编码,也无需将串预测模式编码单元级标识写入码流,而是直接对图像中所有编码单元采用非串预测模式进行预编码,并将当前编码单元非串预测模式标识和非串预测模式的编码信息写入码流。Step 3: According to the frame-level identification information of the string prediction mode, when the frame-level identification of the string prediction mode is false, skip the precoding of the string prediction mode, and do not need to write the encoding unit-level identification of the string prediction mode into the code stream, but directly All coding units in the picture are pre-coded using the non-string prediction mode, and the non-string prediction mode identifier of the current coding unit and the encoding information of the non-string prediction mode are written into the code stream.

对整幅图像中的每个编码单元,重复做以下操作,直至所有的编码单元编码完毕:For each coding unit in the entire image, repeat the following operations until all coding units are encoded:

如果pic_use_sp_flag为true,则If pic_use_sp_flag is true, then

采用串预测模式进行预编码;Precoding using a string prediction mode;

采用非串预测模式进行预编码;Precoding using non-string prediction mode;

再判断当前编码单元率失真最小的模式是否为串预测模式:Then judge whether the mode with the smallest rate distortion of the current coding unit is the string prediction mode:

如果当前编码单元率失真最小的模式是串预测模式,则将当前编码单元串预测模式标识cu_sp_flag为true写入码流,将串预测模式的编码信息写入码流;If the mode with the least rate distortion of the current coding unit is the string prediction mode, write the current coding unit string prediction mode flag cu_sp_flag as true into the code stream, and write the encoding information of the string prediction mode into the code stream;

如果当前编码单元率失真最小的模式是非串预测模式,则将当前编码单元串预测模式标识cu_sp_flag为false写入码流,将当前编码单元非串预测模式标识和非串预测模式的编码信息写入码流。If the mode with the least rate distortion of the current coding unit is the non-string prediction mode, write the current coding unit string prediction mode flag cu_sp_flag as false into the code stream, and write the current coding unit non-string prediction mode flag and the encoding information of the non-string prediction mode into the code stream code stream.

上述给出的具体实施例中的步骤3中,在判断出pic_use_sp_flag为true时,预编码的顺序也可以为:先进行非串预测模式预编码,然后进行串预测模式预编码。或者预编码的顺序也可以为:先采用部分非串预测模式进行预编码,然后采用串预测模式进行预编码,再采用部分非串预测模式进行预编码。预编码顺序设置的不同,对编码效率有一定的影响,如:当非串预测模式之一与串预测模式取得的率失真相同时,当前编码单元会选择非串预测模式;另一方面,当非串预测模式预编码有提前终止算法时,并且满足提前终止算法条件时,可能就不会进行后续的步骤了,对提高编码效率还是有帮助的。但无论上述预编码的顺序如何设置,但都适用于本发明所提供的编码方法。In step 3 in the specific embodiment given above, when it is determined that pic_use_sp_flag is true, the precoding sequence may also be: first perform non-string prediction mode precoding, and then perform string prediction mode precoding. Alternatively, the order of precoding may also be as follows: firstly, the partial non-string prediction mode is used for precoding, then the string prediction mode is used for precoding, and then the partial non-string prediction mode is used for precoding. Different precoding order settings have a certain impact on coding efficiency. For example, when one of the non-string prediction modes and the string prediction mode have the same rate-distortion, the current coding unit will select the non-string prediction mode; When the non-string prediction mode precoding has an early termination algorithm, and the conditions for the early termination algorithm are satisfied, subsequent steps may not be performed, which is helpful for improving coding efficiency. However, no matter how the above-mentioned precoding order is set, it is applicable to the coding method provided by the present invention.

与上述编码方法相对应地,其解码方法内容包括:Corresponding to the above encoding method, the content of the decoding method includes:

步骤1:解析压缩数据码流,获得当前图像的串预测模式帧级标识pic_use_sp_flag信息;Step 1: parse the compressed data stream to obtain the information of the string prediction mode frame level flag pic_use_sp_flag of the current image;

步骤2:判断当前图像的串预测模式帧级标识pic_use_sp_flag的设置结果:Step 2: Determine the setting result of the string prediction mode frame-level flag pic_use_sp_flag of the current image:

若pic_use_sp_flag为false,解析压缩数据码流,获得当前解码单元非串预测模式标识信息,并对当前解码单元采用非串预测模式进行解码;If pic_use_sp_flag is false, parse the compressed data stream, obtain the non-string prediction mode identification information of the current decoding unit, and use the non-string prediction mode to decode the current decoding unit;

若pic_use_sp_flag为true,则解析压缩数据码流,获得当前解码单元串预测模式编码单元级标识cu_sp_flag信息,并判断其“true”还是“false”:如果cu_sp_flag为true,则对当前解码单元采用串预测模式进行解码;如果cu_sp_flag为false,则解析压缩数据码流,获得当前解码单元非串预测模式标识,并对当前解码单元采用非串预测模式进行解码。其中,cu_sp_flag信息以单独方式(即单独标识位)存在于数据码流中;也可以与其他信息以组合方式,用其中一位标识位表示cu_sp_flag。If pic_use_sp_flag is true, parse the compressed data stream, obtain the coding unit-level flag cu_sp_flag information of the current decoding unit string prediction mode, and determine whether it is "true" or "false": if cu_sp_flag is true, use string prediction for the current decoding unit mode for decoding; if cu_sp_flag is false, parse the compressed data stream, obtain the non-string prediction mode flag of the current decoding unit, and use the non-string prediction mode to decode the current decoding unit. Among them, the cu_sp_flag information exists in the data stream in a separate manner (ie, a separate identification bit); it can also be combined with other information, and one of the identification bits is used to represent the cu_sp_flag.

以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围中。The above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Other modifications or equivalent replacements made by those of ordinary skill in the art to the technical solutions of the present invention should be covered as long as they do not depart from the spirit and scope of the technical solutions of the present invention. within the scope of the claims of the present invention.

Claims (7)

1.按图像内容特征进行帧级划分的快速编码方法,其特征在于:内容包括:1. carry out the fast coding method of frame-level division by image content feature, it is characterized in that: content comprises: 步骤1:在图像层次,采用预设划分规则对图像内容特征进行分类,将图像内容分为类别一和类别二;Step 1: at the image level, use preset division rules to classify the image content features, and divide the image content into category 1 and category 2; 步骤2:根据图像内容分类结果,设置当前图像的串预测模式帧级标识信息,并将该串预测模式帧级标识信息写入码流;如果图像被划分为类别一,则将该图像的串预测模式帧级标识设置为“真”,如果图像被划分为类别二,则将该图像的串预测模式帧级标识设置为“假”;Step 2: According to the image content classification result, set the string prediction mode frame-level identification information of the current image, and write the string prediction mode frame-level identification information into the code stream; if the image is classified into category one, then the string of the image is The prediction mode frame-level flag is set to "true", and if the image is divided into category two, the string prediction mode frame-level flag of the image is set to "false"; 步骤3:判断当前图像的串预测模式帧级标识的设置结果:Step 3: Determine the setting result of the frame-level flag of the string prediction mode of the current image: 若串预测模式帧级标识设置为“假”,图像中的所有编码单元直接采用非串预测模式进行预编码,而并不采用串预测模式进行预编码,然后将当前编码单元非串预测模式标识以及非串预测模式的编码信息写入码流;If the frame-level flag of the string prediction mode is set to "false", all coding units in the picture are directly pre-coded in the non-string prediction mode instead of the string prediction mode for precoding, and then the current coding unit is marked with the non-string prediction mode for precoding. And the encoding information of the non-string prediction mode is written into the code stream; 若串预测模式帧级标识设置为“真”,则对整幅图像中的每个编码单元重复执行以下操作,直至所有的编码单元编码完毕:采用串预测模式以及非串预测模式进行预编码;然后判断当前编码单元率失真最小的模式是否为串预测模式:如果当前编码单元率失真最小的模式为串预测模式,则将当前编码单元串预测模式标识设置为“真”并写入码流,将当前编码单元串预测模式的编码信息也写入码流;如果当前编码单元率失真最小的模式为非串预测模式,则将当前编码单元串预测模式标识设置为“假”并写入码流,将当前编码单元非串预测模式标识以及非串预测模式的编码信息也写入码流。If the frame-level flag of the string prediction mode is set to "true", the following operations are repeatedly performed on each coding unit in the entire image until all coding units are encoded: use the string prediction mode and the non-string prediction mode to perform precoding; Then judge whether the mode with the least rate distortion of the current coding unit is the string prediction mode: if the mode with the least rate distortion of the current coding unit is the string prediction mode, then set the current coding unit string prediction mode flag to "true" and write the code stream, Write the encoding information of the prediction mode of the current coding unit string into the code stream; if the mode with the least rate distortion of the current coding unit is the non-string prediction mode, set the prediction mode flag of the current coding unit string to "false" and write it into the code stream , and write the non-string prediction mode identifier of the current coding unit and the encoding information of the non-string prediction mode into the code stream. 2.根据权利要求1所述的按图像内容特征进行帧级划分的快速编码方法,其特征在于:所述非串预测模式采用以下模式之一或者多种任意组合使用:帧内预测模式;帧间预测模式;IBC模式;Palette模式。2. The fast coding method for frame-level division according to image content features according to claim 1, wherein the non-string prediction mode adopts one or more of the following modes in any combination: intra-frame prediction mode; frame Inter prediction mode; IBC mode; Palette mode. 3.根据权利要求1所述的按图像内容特征进行帧级划分的快速编码方法,其特征在于:所述步骤1中的预设划分规则采用以下规则之一或者将其组合使用:(1)具有相同哈希值i的像素总数Numhashvalue=i满足预设条件A划分为类别一,否则划分为类别二;(2)相邻哈希值的像素总数Numhashvalue=i和Numhashvalue=i+1之间满足预设条件B划分为类别一,否则划分为类别二。3. The fast coding method for frame-level division by image content feature according to claim 1, wherein the preset division rule in the step 1 adopts one of the following rules or a combination thereof: (1) The total number of pixels with the same hash value i Num hashvalue=i satisfies the preset condition A is divided into category 1, otherwise it is divided into category 2; (2) The total number of pixels with adjacent hash values Num hashvalue=i and Num hashvalue=i+ Between 1 and 1, if the preset condition is met, B is divided into category 1, otherwise, it is divided into category 2. 4.根据权利要求3所述的按图像内容特征进行帧级划分的快速编码方法,其特征在于:所述预设条件A采用以下方式之一或者多种任意组合使用:大于固定阈值;等于固定阈值;大于非固定阈值;等于非固定阈值;预设条件B采用以下方式:相邻哈希值的像素总数中数值较小者与较大者之间的差值绝对值大于某一固定阈值。4. The fast coding method for frame-level division according to image content characteristics according to claim 3, wherein the preset condition A is used in any combination of one or more of the following methods: greater than a fixed threshold; equal to a fixed Threshold; greater than the non-fixed threshold; equal to the non-fixed threshold; the preset condition B adopts the following method: the absolute value of the difference between the smaller and the larger of the total number of pixels of adjacent hash values is greater than a certain fixed threshold. 5.根据权利要求3所述的按图像内容特征进行帧级划分的快速编码方法,其特征在于:所述哈希值计算时,采用以下方式之一或者多种任意组合使用:(1)对不同采样格式的像素采用不同的哈希值计算方式;(2)对不同采样格式的像素采用相同的哈希值计算方式;(3)对不同比特数的像素采用不同的哈希值计算方式;(4)对不同比特数的像素采用相同的哈希值计算方式。5. The fast coding method for frame-level division according to image content features according to claim 3, wherein: when the hash value is calculated, one or more of the following methods are used in any combination: (1) to Pixels with different sampling formats use different hash value calculation methods; (2) use the same hash value calculation method for pixels with different sampling formats; (3) use different hash value calculation methods for pixels with different bit numbers; (4) The same hash value calculation method is used for pixels with different bit numbers. 6.根据权利要求5所述的按图像内容特征进行帧级划分的快速编码方法,其特征在于:所述像素的哈希值计算方式采用以下方式之一或者多种任意组合使用:(1)取像素的每个分量的相同数目若干位串联起来组成的哈希值;(2)取像素的每个分量的不同数目若干位串联起来组成的哈希值;(3)取像素的每个分量的相同位置若干位串联起来组成的哈希值;(4)取像素的每个分量的不同位置若干位串联起来组成的哈希值。6. The fast coding method for frame-level division according to image content features according to claim 5, wherein: the hash value calculation method of the pixel adopts one of the following methods or any combination of them: (1) Take the hash value formed by concatenating several bits of the same number of each component of the pixel; (2) Take the hash value formed by concatenating several bits of different numbers of each component of the pixel; (3) Take each component of the pixel (4) Take the hash value formed by concatenating several bits in different positions of each component of the pixel. 7.按权利要求1至6任一所述编码方法完成数据编码后的解码方法,其特征在于:其内容包括:7. according to the decoding method after the arbitrary described encoding method of claim 1 to 6 completes data encoding, it is characterized in that: its content comprises: 步骤1:解析压缩数据码流,获得当前图像的串预测模式帧级标识信息;Step 1: Parse the compressed data stream to obtain the frame-level identification information of the string prediction mode of the current image; 步骤2:判断当前图像的串预测模式帧级标识的设置结果:Step 2: Determine the setting result of the frame-level flag of the string prediction mode of the current image: 若串预测模式帧级标识设置为“假”,解析压缩数据码流,获得当前解码单元非串预测模式标识信息,并对当前解码单元采用非串预测模式进行解码;If the frame-level flag of the serial prediction mode is set to "false", parse the compressed data stream, obtain the identification information of the non-sequential prediction mode of the current decoding unit, and use the non-sequential prediction mode to decode the current decoding unit; 若串预测模式帧级标识设置为“真”,则解析压缩数据码流,获得当前解码单元串预测模式编码单元级标识信息并判断其“真”还是“假”:如果该编码单元级标识信息为“真”,则对当前解码单元采用串预测模式进行解码;如果该编码单元级标识信息为“假”,则解析压缩数据码流,获得当前解码单元非串预测模式标识,并对当前解码单元采用非串预测模式进行解码。If the frame-level flag of the string prediction mode is set to "true", parse the compressed data stream, obtain the coding unit-level flag information of the current decoding unit string prediction mode, and determine whether it is "true" or "false": if the coding unit-level flag information If it is "true", the current decoding unit is decoded using the string prediction mode; if the coding unit level identification information is "false", the compressed data stream is parsed, the current decoding unit non-string prediction mode identifier is obtained, and the current decoding unit is decoded. Units are decoded using a non-string prediction mode.
CN202010446922.0A 2020-05-25 2020-05-25 Quick coding and decoding method for frame level division according to image content characteristics Active CN111614960B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010446922.0A CN111614960B (en) 2020-05-25 2020-05-25 Quick coding and decoding method for frame level division according to image content characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010446922.0A CN111614960B (en) 2020-05-25 2020-05-25 Quick coding and decoding method for frame level division according to image content characteristics

Publications (2)

Publication Number Publication Date
CN111614960A CN111614960A (en) 2020-09-01
CN111614960B true CN111614960B (en) 2022-09-02

Family

ID=72202058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010446922.0A Active CN111614960B (en) 2020-05-25 2020-05-25 Quick coding and decoding method for frame level division according to image content characteristics

Country Status (1)

Country Link
CN (1) CN111614960B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112073721B (en) * 2020-10-10 2024-02-27 绍兴文理学院 Efficient non-I frame image coding and decoding method
CN113542750B (en) * 2021-05-27 2024-06-25 绍兴市北大信息技术科创中心 Data coding method for searching by adopting more than two sets of hash tables
CN115119046B (en) * 2022-06-02 2024-04-16 绍兴市北大信息技术科创中心 Image coding and decoding method, device and system for reference pixel set
CN116248862B (en) * 2022-12-14 2023-12-08 同济大学 Data encoding method and device for skipping and re-precoding same-position size block

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3053555A1 (en) * 2016-06-29 2018-01-05 B<>Com METHOD FOR ENCODING A DIGITAL IMAGE, DECODING METHOD, DEVICES, TERMINAL AND COMPUTER PROGRAMS
CN107277509B (en) * 2017-08-03 2019-10-25 重庆邮电大学 A Fast Intra Prediction Method Based on Screen Content
CN108174201A (en) * 2018-03-07 2018-06-15 绍兴文理学院 Video compression method for early termination coding block coding mode search according to video content
CN117499671A (en) * 2018-08-27 2024-02-02 华为技术有限公司 Video image prediction method and device
CN110087087B (en) * 2019-04-09 2023-05-12 同济大学 VVC inter-frame coding unit prediction mode early decision and block division early termination method

Also Published As

Publication number Publication date
CN111614960A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
CN111614960B (en) Quick coding and decoding method for frame level division according to image content characteristics
CN102098519B (en) Video encoding method and decoding method as well as encoding and decoding device
CN102223541B (en) Method for coding hybrid image
US20130114687A1 (en) Fixed intra run-level mode for cavlc in hevc
CN108769677B (en) A Perceptual-based Scalable Coding Method for High Dynamic Range Video Dynamic Range
CN102859884B (en) Adaptive entropy encodes
WO2020244324A1 (en) Image transmission method and device
CN112308754B (en) Multi-decoding-end parallel extraction method for high-capacity robust watermark application
CN102685500B (en) H.264 large-capacity information hiding method based on information variable-length packet structure
WO2020233179A1 (en) Bitrate estimation core unit, bitrate estimation device and bitrate estimation method
CN112422989A (en) Video coding method
CN106101714A (en) One and the tightly coupled H.264 video information hiding method of compression encoding process
US20130114684A1 (en) Electronic devices for selective run-level coding and decoding
CN107333139A (en) A kind of H.265 half invertible video steganography information approach based on intra prediction mode
CN111614961A (en) A coding method that uses different ways to calculate the hash value to establish a hash table for searching
CN104902281B (en) A kind of information concealing method of the HEVC videos based on Hamming code+1
CN110191341B (en) Depth data coding method and decoding method
CN107734331A (en) A kind of video transcoding method based on HEVC standard
CN114827609B (en) Video image encoding and decoding method, apparatus and medium
CN116320446A (en) Video coding method and device, electronic equipment and computer medium
CN105791825B (en) A kind of screen picture coding method based on H.264 with hsv color quantization
CN112449186B (en) Encoding method, decoding method, corresponding devices, electronic equipment and storage medium
CN108833920A (en) A DVC Side Information Fusion Method Based on Optical Flow and Block Matching
CN104144347B (en) A kind of H.264/AVC video I frame error recovery methods based on hiding reversible data
CN105554504B (en) Index map coding and decoding methods based on lifting sequence tuple

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221207

Address after: 100193 303C, 304C, Floor 3, Building 2, East District, Yard 10, Northwest Wangdong Road, Haidian District, Beijing

Patentee after: Beijing Boya Ruishi Technology Co.,Ltd.

Address before: 312000 508 Yuecheng West Road, Yuecheng District, Shaoxing, Zhejiang

Patentee before: SHAOXING University

TR01 Transfer of patent right