CN1116112C - Method of in-situ synthesizing ferrierite on lumpy cordierite honeycomb ceramic carrier - Google Patents
Method of in-situ synthesizing ferrierite on lumpy cordierite honeycomb ceramic carrier Download PDFInfo
- Publication number
- CN1116112C CN1116112C CN 99120818 CN99120818A CN1116112C CN 1116112 C CN1116112 C CN 1116112C CN 99120818 CN99120818 CN 99120818 CN 99120818 A CN99120818 A CN 99120818A CN 1116112 C CN1116112 C CN 1116112C
- Authority
- CN
- China
- Prior art keywords
- carrier
- ferrierite
- situ
- dip
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001657 ferrierite group Inorganic materials 0.000 title claims abstract description 21
- 239000000919 ceramic Substances 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims abstract description 13
- 229910052878 cordierite Inorganic materials 0.000 title claims abstract description 12
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 12
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 10
- 150000001412 amines Chemical class 0.000 claims abstract description 10
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000003618 dip coating Methods 0.000 claims abstract description 10
- 239000010457 zeolite Substances 0.000 claims abstract description 10
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 5
- 125000003916 ethylene diamine group Chemical group 0.000 claims abstract description 3
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 3
- 239000007790 solid phase Substances 0.000 claims abstract description 3
- 230000009466 transformation Effects 0.000 claims abstract description 3
- 238000007598 dipping method Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- 239000003513 alkali Substances 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- 239000000969 carrier Substances 0.000 abstract description 3
- 238000003912 environmental pollution Methods 0.000 abstract description 3
- 239000002808 molecular sieve Substances 0.000 description 14
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- -1 ZSM-5 Chemical compound 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
一种在块状堇青石蜂窝陶瓷载体上原位合成镁碱SiO2沸石的方法,首先在载体表面均匀浸涂一层含有Al2O3,和Na2O的凝胶液,其特征在于:将浸涂后的载体在150~200℃的有机胺和水的混合饱和蒸汽压下晶化3~10天,使镁碱沸石以气固相转化的方式原位生长于载体表面;所述有机胺选自乙二胺,三乙胺,吡咯烷,有机胺与水的摩尔比为1∶(0.5~10)。本发明浸涂均匀牢固,可适用于各种形状的载体,并且不产生环境污染。A method for synthesizing in-situ ferrierite SiO 2 zeolite on a block cordierite honeycomb ceramic carrier, first uniformly dip-coating a layer of gel solution containing Al 2 O 3 and Na 2 O on the surface of the carrier, characterized in that: crystallize the dip-coated support under the mixed saturated vapor pressure of organic amine and water at 150-200°C for 3-10 days, so that ferrierite grows on the surface of the support in situ in the form of gas-solid phase transformation; the organic The amine is selected from ethylenediamine, triethylamine, and pyrrolidine, and the molar ratio of organic amine to water is 1: (0.5-10). The dip coating of the invention is uniform and firm, applicable to carriers of various shapes, and does not cause environmental pollution.
Description
技术领域technical field
本发明提供一种在堇青石块状蜂窝陶瓷载体上原位合成镁碱沸石的方法。The invention provides a method for synthesizing ferrierite in situ on a cordierite block honeycomb ceramic carrier.
背景技术Background technique
负载型沸石分子筛以其高机械强度,低压降,优良的传热传质性能在石油化工和环保领域的应用日益广泛。比如用于石油化工分离过程的膜反应器,用于消除汽车尾气的催化转化器,都使用负载于各种不同载体上的沸石分子筛作为催化剂的主要成分。负载沸石分子筛一般有两种方法,一种是浸涂法(washcoat),即将载体浸入含有沸石分子筛的浆液中,从而使载体表面负载一层沸石分子筛。专利JP0418914,JP07132230都是使用浸涂技术在蜂窝陶瓷表面负载一层Cu-ZSM-5分子筛,用于消除汽车尾气。JP0847644使用浸涂技术在蜂窝陶瓷表面负载沸石分子筛和其它氧化物用于消除汽车尾气。浸涂法虽然具有浸涂均匀,操作简单,适应性广的优点,但它的严重缺点是浸涂层与载体表面的结合不牢固,在某些苛刻的反应条件下,比如汽车尾气的高温热冲击,分子筛层很容易从载体表面剥落下来,从而大大降低了它的催化性能。另一种负载分子筛的方法是原位合成技术(insitusynthesis),即在载体表面上进行分子筛的原位合成,从而使载体表面牢固地生长一层分子筛晶体。专利USP4800187使用原位合成技术在蜂窝陶瓷表面合成了多种分子筛,专利USP4904518在硅片表面水热合成了ZSM-5,ZSM-11,ZSM-12,ZSM-20等多种分子筛,但上述专利使用的水热合成技术有个缺点,就是分子筛在载体表面生长得不均匀,尤其是当载体形状复杂时,如孔数大于300cells/inch2的蜂窝陶瓷或泡沫陶瓷,水热合成技术的缺点就更加明显。Loaded zeolite molecular sieves are widely used in petrochemical and environmental protection fields due to their high mechanical strength, low pressure drop, and excellent heat and mass transfer properties. For example, membrane reactors used in petrochemical separation processes and catalytic converters used to eliminate automobile exhaust all use zeolite molecular sieves loaded on various carriers as the main component of the catalyst. There are generally two methods for loading zeolite molecular sieves. One is the washcoat method, that is, the carrier is immersed in a slurry containing zeolite molecular sieve, so that a layer of zeolite molecular sieve is loaded on the surface of the carrier. Patents JP0418914 and JP07132230 both use dip-coating technology to load a layer of Cu-ZSM-5 molecular sieve on the surface of honeycomb ceramics to eliminate automobile exhaust. JP0847644 uses dip-coating technology to load zeolite molecular sieves and other oxides on the surface of honeycomb ceramics to eliminate automobile exhaust. Although the dip coating method has the advantages of uniform dip coating, simple operation and wide adaptability, its serious disadvantage is that the combination of the dip coating and the surface of the carrier is not firm. Impact, the molecular sieve layer is easy to peel off from the surface of the carrier, thus greatly reducing its catalytic performance. Another method for loading molecular sieves is in situ synthesis technology (insitusynthesis), that is, in situ synthesis of molecular sieves is carried out on the surface of the carrier, so that a layer of molecular sieve crystals can be firmly grown on the surface of the carrier. Patent USP4800187 uses in-situ synthesis technology to synthesize a variety of molecular sieves on the surface of honeycomb ceramics. Patent USP4904518 hydrothermally synthesizes various molecular sieves such as ZSM-5, ZSM-11, ZSM-12, and ZSM-20 on the surface of silicon wafers. However, the above patents The disadvantage of the hydrothermal synthesis technology used is that the molecular sieves grow unevenly on the surface of the carrier, especially when the shape of the carrier is complex, such as honeycomb ceramics or foam ceramics with a number of pores greater than 300cells/inch 2 , the disadvantage of the hydrothermal synthesis technology is more obvious.
发明内容Contents of the invention
本发明的目的是提供一种在块状堇青石蜂窝陶瓷载体上原位合成镁碱沸石的方法。该方法浸涂均匀牢固,可适用于各种形状的载体,并且不产生环境污染。The object of the present invention is to provide a method for synthesizing ferrierite in situ on a block cordierite honeycomb ceramic carrier. The dipping method is uniform and firm, is applicable to carriers of various shapes, and does not generate environmental pollution.
本发明提供了一种在块状堇青石蜂窝陶瓷载体上原位合成镁碱SiO2沸石的方法,首先在载体表面均匀浸涂一层含有Al2O3,和Na2O的凝胶液,其特征在于:将浸涂后的载体在150~200℃的有机胺和水的混合饱和蒸汽压下晶化3~10天,使镁碱沸石以气固相转化的方式原位生长于载体表面;所述有机胺选自乙二胺,三乙胺,吡咯烷,有机胺与水的摩尔比为1∶(0.5~10)。The invention provides a method for synthesizing in-situ ferrierite SiO 2 zeolite on a bulky cordierite honeycomb ceramic carrier. First, evenly dip-coat a layer of gel solution containing Al 2 O 3 and Na 2 O on the surface of the carrier, It is characterized in that: the dip-coated carrier is crystallized under the mixed saturated vapor pressure of organic amine and water at 150-200°C for 3-10 days, so that ferrierite grows on the surface of the carrier in situ in the form of gas-solid phase transformation ; The organic amine is selected from ethylenediamine, triethylamine, pyrrolidine, and the molar ratio of the organic amine to water is 1: (0.5-10).
本发明中用作浸涂液的凝胶组成可以为摩尔比Al2O3∶(3~15)SiO2∶(1~10)Na2O∶(500~6000)H2O。The composition of the gel used as the dipping solution in the present invention may be a molar ratio of Al 2 O 3 :(3-15)SiO 2 :(1-10)Na 2 O:(500-6000)H 2 O.
由于在本发明的晶化过程中发生了一系列的化学变化,载体表面与镁碱沸石层结合得非常牢固,同时又保留了浸涂法的均匀性。有机胺和水组成的母液可重复使用,既节省原料,又避免了废母液造成的环境污染。Due to a series of chemical changes in the crystallization process of the present invention, the surface of the carrier is very firmly combined with the ferrierite layer, while maintaining the uniformity of the dip coating method. The mother liquor composed of organic amine and water can be reused, which not only saves raw materials, but also avoids environmental pollution caused by waste mother liquor.
具体实施方式Detailed ways
下面通过实例对本发明的方法给予进一步的说明。Below by example the method of the present invention is given further description.
实施例1Example 1
将体积为5ml,400cells/inch2的块状蜂窝陶瓷载体在80℃下用1N的HNO3溶液处理1h,然后用去离子水洗涤至中性。120℃干燥6h,500℃焙烧3h。The bulk honeycomb ceramic carrier with a volume of 5ml, 400cells/inch 2 was treated with 1N HNO 3 solution at 80°C for 1h, and then washed with deionized water until neutral. Dry at 120°C for 6h, and bake at 500°C for 3h.
将1.8801gAl2(SO4)3,18H2O溶于15ml水中得溶液1。6.4320g硅溶胶溶于15ml水中得溶液2。将溶液2缓慢滴入溶液1中得凝胶液。另将1.1280g NaOH溶于5ml水中,滴入上述凝胶液中。Dissolve 1.8801g of Al 2 (SO 4 ) 3 , 18H 2 O in 15ml of water to obtain solution 1. Dissolve 6.4320g of silica sol in 15ml of water to obtain solution 2. Slowly drop solution 2 into solution 1 to obtain a gel solution. Another 1.1280g of NaOH was dissolved in 5ml of water and dropped into the above gel solution.
将表面经过处理的块状蜂窝陶瓷载体浸入上述配制好的凝胶中,约5min.后,取出,用不锈钢丝悬挂于125ml釜中。在釜的底部装有6ml乙二胺和6ml水。将釜密封后,放入160℃的烘箱中,晶化8天。冷却后,取出载体,用去离子水洗至中性。干燥后,做XRD表征。结果如下:Immerse the surface-treated bulk honeycomb ceramic carrier in the prepared gel for about 5 minutes, take it out, and hang it in a 125ml kettle with a stainless steel wire. 6 ml of ethylenediamine and 6 ml of water were placed at the bottom of the kettle. After the kettle was sealed, it was placed in an oven at 160°C for crystallization for 8 days. After cooling, the carrier was taken out and washed with deionized water until neutral. After drying, do XRD characterization. The result is as follows:
2θ dspacing 100×I/I0 2θ dspacing 100×I/I 0
7.8 11.325 67.8 11.325 6
9.6 9.205 69.6 9.205 6
10.4 8.499 10010.4 8.499 100
18.08 4.902 2718.08 4.902 27
18.96 4.676 1518.96 4.676 15
20.8 4.267 420.8 4.267 4
21.68 4.095 5621.68 4.095 56
22.2 4.001 722.2 4.001 7
23 3.863 1223 3.863 12
23.68 3.754 823.68 3.754 8
25.52 3.487 1025.52 3.487 10
26.36 3.378 5826.36 3.378 58
27.76 3.211 227.76 3.211 2
28.4 3.14 6728.4 3.14 67
29.44 3.031 7429.44 3.031 74
32.8 2.728 432.8 2.728 4
33.88 2.643 2233.88 2.643 22
36.76 2.442 636.76 2.442 6
37.16 2.417 437.16 2.417 4
38.52 2.335 1138.52 2.335 11
39.52 2.278 439.52 2.278 4
上述结果证明载体由堇青石和纯的镁碱沸石组成。The above results prove that the support consists of cordierite and pure ferrierite.
经扫描电镜(SEM)分析,证明载体表面生长了一层厚度约为20μ的镁碱沸石。用锐器作破坏实验,结果表明镁碱沸石与载体表面结合非常牢固,即使载体本身被破坏,其上生长的沸石层也不能脱落下来。Analysis by scanning electron microscope (SEM) proved that a layer of ferrierite with a thickness of about 20 μ was grown on the surface of the carrier. The destruction experiment with a sharp instrument shows that the combination of ferrierite and the surface of the carrier is very firm, even if the carrier itself is destroyed, the zeolite layer grown on it cannot fall off.
实施例2Example 2
载体表面的处理和凝胶的制备同实施例1完全一样,不同之处是合成釜的底部装入2ml乙胺,4ml乙二胺,6ml水。其XRD结果证明载体由堇青石,镁碱沸石和少量杂质组成。扫描电镜结果表明,在堇青石表面生长的镁碱沸石层的厚度约为10μ。The treatment of the surface of the carrier and the preparation of the gel were exactly the same as in Example 1, except that 2ml of ethylamine, 4ml of ethylenediamine and 6ml of water were charged at the bottom of the synthesis kettle. Its XRD results prove that the carrier is composed of cordierite, ferrierite and a small amount of impurities. Scanning electron microscope results showed that the thickness of the ferrierite layer grown on the cordierite surface was about 10μ.
实施例3Example 3
载体表面的处理和凝胶的制备同实施例1完全一样,不同之处是合成釜的底部装入6ml吡咯烷,6ml水。其XRD结果证明载体由堇青石和镁碱沸石组成,没有其它杂质生成。The treatment of the surface of the carrier and the preparation of the gel are exactly the same as in Example 1, except that 6 ml of pyrrolidine and 6 ml of water are charged at the bottom of the synthesis kettle. Its XRD results prove that the carrier is composed of cordierite and ferrierite, and no other impurities are formed.
实施例4Example 4
其它条件同实施例1完全一样,只是釜内的液相部分重复使用实施例1用过的液相。其XRD结果表明,载体表面生长了一层镁碱沸石。Other conditions are exactly the same with embodiment 1, just the liquid phase part in the kettle reuses the used liquid phase of embodiment 1. The XRD results showed that a layer of ferrierite grew on the surface of the carrier.
实施例5Example 5
其它条件同实施例2完全一样,只是釜内的液相部分重复使用实施例2用过的液相。其XRD结果表明,载体表面生长了一层镁碱沸石。Other conditions are exactly the same with embodiment 2, just the liquid phase part in the still reuses the used liquid phase of embodiment 2. The XRD results showed that a layer of ferrierite grew on the surface of the carrier.
实施例6Example 6
其它条件与实施例3完全相同,只是釜内的液相部分重复使用实施例3用过的液相。得到的载体经XRD表征,证明载体表面生长了一层镁碱沸石。Other conditions are identical with embodiment 3, just the liquid phase part in the still reuses the used liquid phase of embodiment 3. The obtained carrier was characterized by XRD, which proved that a layer of ferrierite grew on the surface of the carrier.
实施例7Example 7
将体积为5ml,400cel1s/inch2的块状蜂窝陶瓷载体在80℃下用10%的H2O2溶液处理1h,接着用10%NH4Cl溶液处理1h,然后用去离子水洗涤至中性。120℃干燥6h,500℃焙烧3h。凝胶的制备与浸涂同实施例1完全相同。其XRD结果表明,堇青石表面生长了一层镁碱沸石。扫描电镜照片显示,镁碱沸石层的厚度约为30μ。The bulk honeycomb ceramic carrier with a volume of 5ml and 400cel1s / inch was treated with 10% H 2 O 2 solution at 80°C for 1 h, followed by 10% NH 4 Cl solution for 1 h, and then washed with deionized water to medium sex. Dry at 120°C for 6h, and bake at 500°C for 3h. The preparation and dip coating of the gel are exactly the same as in Example 1. The XRD results showed that a layer of ferrierite grew on the surface of cordierite. Scanning electron micrographs show that the thickness of the ferrierite layer is about 30μ.
实施例8Example 8
其它条件同实施例3完全一样,只是晶化温度为150℃,XRD结果证明堇青石表面生长了一层镁碱沸石。Other conditions are exactly the same as in Example 3, except that the crystallization temperature is 150° C., and the XRD result proves that a layer of ferrierite grows on the surface of the cordierite.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 99120818 CN1116112C (en) | 1999-09-22 | 1999-09-22 | Method of in-situ synthesizing ferrierite on lumpy cordierite honeycomb ceramic carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 99120818 CN1116112C (en) | 1999-09-22 | 1999-09-22 | Method of in-situ synthesizing ferrierite on lumpy cordierite honeycomb ceramic carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1288781A CN1288781A (en) | 2001-03-28 |
CN1116112C true CN1116112C (en) | 2003-07-30 |
Family
ID=5281688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 99120818 Expired - Fee Related CN1116112C (en) | 1999-09-22 | 1999-09-22 | Method of in-situ synthesizing ferrierite on lumpy cordierite honeycomb ceramic carrier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1116112C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101905145B (en) * | 2010-09-15 | 2012-11-07 | 上海纳米技术及应用国家工程研究中心有限公司 | Molecular sieve cellular material and preparation method thereof |
CN105457667B (en) * | 2015-11-12 | 2018-04-13 | 复榆(张家港)新材料科技有限公司 | Zeolite molecular sieve catalyst of n-butene skeletal isomerization and preparation method thereof |
CN106809850A (en) * | 2015-11-30 | 2017-06-09 | 中国科学院大连化学物理研究所 | A kind of synthetic method of little crystal grain FER molecular sieve |
-
1999
- 1999-09-22 CN CN 99120818 patent/CN1116112C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1288781A (en) | 2001-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2629813C (en) | Process for production of zeolite film | |
EP0599117B1 (en) | Method of growing mixed zeolites on a substrate | |
Bonaccorsi et al. | Synthesis of thick zeolite 4A coatings on stainless steel | |
CN1850606A (en) | Method for preparing AlPO4 or SAPO molecular sieve | |
CN109704365B (en) | Rapid synthesis method and application of small-grain molecular sieve | |
AU2022203499A1 (en) | Ammonia separation method and zeolite | |
US6692640B2 (en) | Mordenite zeolite membrane and method for producing the same | |
JPS58213698A (en) | Preparation of silicon carbide | |
CN101934231B (en) | Synthesis method of ZSM-5 molecular sieve on stainless steel wire mesh porous anodic oxide membrane | |
CN1116112C (en) | Method of in-situ synthesizing ferrierite on lumpy cordierite honeycomb ceramic carrier | |
CN1215351A (en) | improved membrane | |
CN101003001A (en) | Method for preparing aluminium carrier supported molecular-sieve film catalytic rectification packing | |
CN1349929A (en) | Mesoporous molecular sieve material with strong acidity and high hydrothermal stability and its prepn | |
JP2005522318A (en) | Monolithic catalyst support coated with in situ theta alumina | |
CA2494990C (en) | Production method for zeolite shaped body and production method for zeolite layered composite | |
CN1269262A (en) | In-site molecular sieve synthesizing process on lumpy honeycomb cordierite ceramic carrier | |
CN101574664B (en) | Method for synthesizing zeolite on cordierite carrier | |
CN1843629A (en) | Catalyst preparation method for coating micron-sized zeolite molecular sieve on carrier surface | |
EP0591463B1 (en) | A method of applying molecular sieve crystals to a support, and a loaded support thus obtained | |
JP4348431B2 (en) | High silica type CDS-1 zeolite membrane and method for producing the same | |
JP3530807B2 (en) | Manufacturing method of mixture separation membrane device and mixture separation membrane device | |
CN1346795A (en) | Process for preparing zeolite material with multi-class pore canal by zeolitizing diatomite | |
CN114307689A (en) | A kind of preparation method of wet gel conversion synthesis A-type zeolite membrane | |
Valtchev et al. | Zeolite crystallization on mullite fibers | |
JP2022521509A (en) | Molecular Sheaves SSZ-115, its synthesis and use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |