CN111595469A - A Large FOV Multibeam Single Photon Detection System Using Ultra-Narrow Band Filtering - Google Patents
A Large FOV Multibeam Single Photon Detection System Using Ultra-Narrow Band Filtering Download PDFInfo
- Publication number
- CN111595469A CN111595469A CN202010467132.0A CN202010467132A CN111595469A CN 111595469 A CN111595469 A CN 111595469A CN 202010467132 A CN202010467132 A CN 202010467132A CN 111595469 A CN111595469 A CN 111595469A
- Authority
- CN
- China
- Prior art keywords
- ultra
- fiber array
- echo
- optical fiber
- photons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 31
- 238000001914 filtration Methods 0.000 title claims abstract description 11
- 239000013307 optical fiber Substances 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims abstract description 16
- 230000008878 coupling Effects 0.000 claims abstract description 12
- 238000010168 coupling process Methods 0.000 claims abstract description 12
- 238000005859 coupling reaction Methods 0.000 claims abstract description 12
- 239000000835 fiber Substances 0.000 claims description 31
- 230000002411 adverse Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000000098 azimuthal photoelectron diffraction Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J11/00—Measuring the characteristics of individual optical pulses or of optical pulse trains
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
技术领域technical field
本发明属于光学探测系统领域,具体涉及一种使用超窄带滤光的大视场多波束单光子探测系统。The invention belongs to the field of optical detection systems, and in particular relates to a large field of view multi-beam single-photon detection system using ultra-narrow band filtering.
背景技术Background technique
单光子探测系统由于具有非常高的灵敏度,因此在远距离测距有非常重要的应用。随着集成化、规模化的单光子探测系统技术逐渐成熟,使得其应用进一步扩展到机载、星载等远距离、快速移动的高精度测绘遥感领域。多波束单光子探测技术可以将几十路甚至上百路单光子探测集成在一起,利用阵列单光子探测器件或者规模化集成的单元单光子探测器件实现多个通道的回波光子信号同时探测。相对于传统的单光子测绘遥感系统,多波束的单光子探测可以支持更大视场的测绘遥感,提高系统的工作效率,甚至达到快速成像能力。Single-photon detection systems have very important applications in long-distance ranging because of their very high sensitivity. With the gradual maturity of integrated and large-scale single-photon detection system technology, its application has been further extended to the field of long-distance, fast-moving high-precision mapping and remote sensing such as airborne and spaceborne. The multi-beam single-photon detection technology can integrate dozens or even hundreds of single-photon detections together, and use array single-photon detection devices or large-scale integrated unit single-photon detection devices to achieve simultaneous detection of echo photon signals of multiple channels. Compared with the traditional single-photon mapping remote sensing system, multi-beam single-photon detection can support mapping and remote sensing with a larger field of view, improve the work efficiency of the system, and even achieve fast imaging capabilities.
在大视场条件下系统可以接受更大角度范围的回波光子,对应的在望远镜光收集系统的像平面产生更大的成像面积,因此需要阵列器件或者规模化集成的单元器件进行探测。但是实际上两种条件的对比,并不仅仅是成像面积的变化,照射到探测器件的回波光子入射角度也有明显变化。Under the condition of a large field of view, the system can accept echo photons with a larger angular range, which corresponds to a larger imaging area on the image plane of the telescope light collection system. Therefore, an array device or a large-scale integrated unit device is required for detection. But in fact, the comparison of the two conditions is not only the change of the imaging area, but also the incident angle of the echo photons irradiated to the detection device also has a significant change.
相对于普通视场条件,大视场条件下回波光子入射探测器件不能近似的看作是理想状态下的垂直入射,而是从中心区域向外入射角度逐渐加大。如果使用100波束以上的单光子探测系统,位于边缘和中心的光子入射角度差别最大可能接近10度。比如位于边缘的1#和4#回波波束的入射角为80度,位于中心的2#和3#回波波束的入射角为90度。为了解释简便,图2里面只标了1#至4#四波束的情况,实际的波束数量可以达到数百以上,位于中心区域的入射角为90度,随着向边缘扩展(通常是球面)入射角度逐渐变化。这种角度差别在实际应用中带来一个比较严重的问题。Compared with ordinary field of view conditions, the echo photon incident detection device under large field of view conditions cannot be approximately regarded as normal incidence under ideal conditions, but the incident angle gradually increases from the central area to the outside. If a single-photon detection system with more than 100 beams is used, the difference between the incident angles of photons at the edge and the center can be up to close to 10 degrees. For example, the incident angle of the 1# and 4# echo beams located at the edge is 80 degrees, and the incident angle of the 2# and 3# echo beams located in the center is 90 degrees. For the convenience of explanation, only the cases of 1# to 4# four beams are marked in Figure 2. The actual number of beams can reach more than hundreds. The incident angle in the central area is 90 degrees, and as it expands to the edge (usually spherical) The angle of incidence changes gradually. This angle difference brings a serious problem in practical application.
在基于单光子探测的测绘遥感应用中,由于需要在全天候条件下工作,尤其是在强光环境下背景噪声非常高。背景噪声光具有宽光谱分布的特性,而系统使用的光源通常为窄线宽的激光,因此背景噪声光与回波信号光子之间具有明显的波长差异。为了将回波光子信号从高背景噪声中分离出来,通常需要使用超窄带滤光片对背景噪声进行抑制,超窄带滤光片的透射带宽一般要低至0.1 nm以下。然而,这类超窄带滤光片的使用有比较大的限制,首先回波光子需要有窄线宽的波长特性,这需要系统使用超窄线宽的光源;其次,这类超窄带滤光片采用干涉的原理,对入射角度非常敏感,只能以高度近似垂直于其表面的角度入射才能保证透射波长的精确。比如,系统使用的光源为1550.1nm,当回波光子入射角度为90度,超窄带滤光片设计的透射中心波长为1550.1nm,带宽为0.1nm,保证对其他波长的背景噪声光子的强烈抑制,同时对回波光子有较好的透射率。但是,如果在大视场的条件下,位于非中心区域的回波光子的入射滤光片的角度有可能变为85度,此时对应的透射中心波长会平移超过0.2nm以上,比如变为1549.9nm,超出滤光片的设计带宽,导致回波的信号光子无法透射通过滤光片。滤光片的设计加工需要两个表面精确镀膜且要求保证严格平行,因此技术上很难一一对应APD的阵列排布设计成多角度拼接在一起的集成化滤光片阵列。在实际应用条件下,超窄带滤光片的使用几乎是不可避免的。In the mapping and remote sensing applications based on single-photon detection, the background noise is very high, especially in the strong light environment, due to the need to work under all-weather conditions. The background noise light has the characteristics of wide spectral distribution, and the light source used in the system is usually a laser with narrow linewidth, so there is a significant wavelength difference between the background noise light and the echo signal photons. In order to separate the echo photon signal from the high background noise, it is usually necessary to use an ultra-narrowband filter to suppress the background noise. The transmission bandwidth of the ultra-narrowband filter is generally as low as 0.1 nm or less. However, the use of such ultra-narrowband filters is relatively limited. First, the echo photons need to have narrow linewidth wavelength characteristics, which requires the system to use ultra-narrow linewidth light sources; secondly, such ultra-narrowband filters Using the principle of interference, it is very sensitive to the incident angle, and the transmission wavelength can only be guaranteed at an angle that is highly approximately perpendicular to its surface. For example, the light source used in the system is 1550.1nm, when the incident angle of the echo photon is 90 degrees, the transmission center wavelength of the ultra-narrowband filter design is 1550.1nm, and the bandwidth is 0.1nm, which ensures strong suppression of background noise photons of other wavelengths. , while having better transmittance to echo photons. However, under the condition of a large field of view, the angle of the incident filter of the echo photons located in the non-central area may become 85 degrees, and the corresponding transmission center wavelength will be shifted by more than 0.2 nm, for example, it becomes 1549.9nm, which exceeds the design bandwidth of the filter, so that the echoed signal photons cannot be transmitted through the filter. The design and processing of the filter requires precise coating on the two surfaces and requires strict parallelism. Therefore, it is technically difficult to design an integrated filter array that is spliced together at multiple angles in a one-to-one correspondence with the array arrangement of APDs. In practical application conditions, the use of ultra-narrowband filters is almost inevitable.
发明内容SUMMARY OF THE INVENTION
本发明的目的是根据上述现有技术的不足之处,提供一种使用超窄带滤光的大视场多波束单光子探测系统,该探测系统在大视场条件下,通过控制光纤阵列输入端的接收角度朝向,以保证回波光子的中心区域和边缘区域都能以垂直角度入射超窄带滤光片的有效区域,最大限度的利用滤光片抑制背景噪声,提高回波信号的信噪比。The object of the present invention is to provide a large field of view multi-beam single-photon detection system using ultra-narrowband filtering according to the shortcomings of the above-mentioned prior art. The receiving angle is oriented to ensure that the center area and edge area of the echo photon can enter the effective area of the ultra-narrowband filter at a vertical angle, and the filter can be used to the maximum extent to suppress background noise and improve the signal-to-noise ratio of the echo signal.
本发明目的实现由以下技术方案完成:The realization of the object of the present invention is accomplished by the following technical solutions:
一种使用超窄带滤光的大视场多波束单光子探测系统,所述探测系统包括依次设置的望远镜系统、光学耦合装置、光纤阵列、超窄带滤光片以及探测器模块,在大视场条件下,多波束回波光子在所述望远镜系统的像平面上成像,所述回波光子通过所述光学耦合装置耦合入所述光纤阵列的输入端,所述回波光子从所述光纤阵列的输出端以垂直角度入射至所述超窄带滤光片,进入所述探测器模块。A large field of view multi-beam single-photon detection system using ultra-narrow-band filtering, the detection system includes a telescope system, an optical coupling device, an optical fiber array, an ultra-narrow-band filter and a detector module arranged in sequence. Under the conditions, the multi-beam echo photons are imaged on the image plane of the telescope system, the echo photons are coupled into the input end of the optical fiber array through the optical coupling device, and the echo photons are transmitted from the optical fiber array. The output end is incident on the ultra-narrowband filter at a vertical angle and enters the detector module.
所述光纤阵列的输入端由若干单路光纤集合而成,所述光纤阵列的输出端由若干与所述单路光纤一一对应的尾纤组成。The input end of the fiber array is composed of a plurality of single-path fibers, and the output end of the fiber array is composed of a plurality of pigtails corresponding to the single-path fibers one-to-one.
所述光纤阵列输入端的所述单路光纤的接收角度朝向,由中心区域向边缘区域进行渐变处理。The receiving angle direction of the single-channel optical fiber at the input end of the optical fiber array is gradually processed from the central area to the edge area.
所述光纤阵列的输出端为柔性光路以使各个波束对应的输出端匹配所述超窄带滤光片的设计角度。The output end of the optical fiber array is a flexible optical path, so that the output end corresponding to each beam matches the design angle of the ultra-narrowband filter.
所述光纤阵列的输出端集成在一起,通过单个所述超窄滤光片对穿过所述光纤阵列的所述回波光子进行滤波。The output ends of the fiber array are integrated, and the echo photons passing through the fiber array are filtered by the single ultra-narrow filter.
所述回波光子的波长不同,通过所述光纤阵列的输出端对不同波束的所述回波光子进行分类,分类后的所述回波光子分别采用若干个干涉滤光片进行滤波。The wavelengths of the echo photons are different, the echo photons of different beams are classified through the output end of the optical fiber array, and the classified echo photons are filtered by several interference filters respectively.
所述探测器模块为单个探测器或阵列探测器。The detector module is a single detector or an array detector.
本发明的优点是:该探测系统能保证回波光子的中心区域和边缘区域都垂直入射超窄带干涉滤光片的有效区域,解决了入射角度不同带来的不利影响,最大限度的利用滤光片抑制背景噪声,提高回波信号的信噪比,有利于在全天时应用。The advantages of the invention are: the detection system can ensure that the center area and the edge area of the echo photons are perpendicular to the effective area of the ultra-narrow-band interference filter, solve the adverse effects caused by different incident angles, and maximize the use of the filter The chip suppresses background noise and improves the signal-to-noise ratio of the echo signal, which is beneficial for applications throughout the day.
附图说明Description of drawings
图1为本发明的大视场条件下和普通条件下的回波光子收集示意图;Fig. 1 is the echo photon collection schematic diagram under the condition of large field of view of the present invention and under ordinary conditions;
图2为本发明的大视场条件下的回波光子入射角度的变化示意图;Fig. 2 is the change schematic diagram of the incident angle of echo photon under the condition of large field of view of the present invention;
图3为本发明超窄带滤光片抑制背景噪声的示意图;3 is a schematic diagram of an ultra-narrowband filter of the present invention for suppressing background noise;
图4为本发明的光纤阵列耦合配合超窄带干涉滤光片实现大视场高信噪比光子探测的示意图。FIG. 4 is a schematic diagram of photon detection with a large field of view and a high signal-to-noise ratio achieved by coupling an optical fiber array with an ultra-narrowband interference filter according to the present invention.
具体实施方式Detailed ways
以下结合附图通过实施例对本发明的特征及其它相关特征作进一步详细说明,以便于同行业技术人员的理解:Below in conjunction with the accompanying drawings, the features of the present invention and other related features will be described in further detail by embodiments, so as to facilitate the understanding of those skilled in the same industry:
如图1-4,图中各标记分别为: 望远镜系统1、像平面2、光纤阵列3、超窄带滤光片4、APD阵列探测器5。As shown in Figure 1-4, the labels in the figure are:
实施例:如图1-4所示,本实施例具体涉及一种使用超窄带滤光的大视场多波束单光子探测系统,探测系统包括依次设置的望远镜系统1、光学耦合装置、光纤阵列3、超窄带滤光片4以及APD阵列探测器5。其中,光纤阵列3是几百根光纤端面集成在一起形成的一种具有更大有效接收面积的光纤器件。Embodiment: As shown in Figures 1-4, this embodiment specifically relates to a large field of view multi-beam single-photon detection system using ultra-narrowband filtering. The detection system includes a
望远镜系统1为能够将远处物体进行视角放大的光学系统。入射的平行光束通过望远镜系统1后,仍为平行光束。The
光学耦合装置为光子收集和光束空间调控系统,由单个或者多个反射镜或者透镜组合构成,用于将返回的回波光子有效收集后,在空间上汇聚并耦合进入光纤阵列3。The optical coupling device is a photon collection and beam space control system, which is composed of a single or multiple mirrors or lenses, and is used to collect the returned echo photons in space and couple them into the
光纤阵列3的输入端由若干单路光纤集合而成,光纤阵列3的输出端由若干与单路光纤一一对应的尾纤组成。光纤的输入端由于本身具有一定的数值孔径,对于耦合进入的光束具有较大的接收角。The input end of the
为了进一步提高大视场条件下的回波光子进入光纤阵列3的耦合效率,光纤阵列3的输入端可以通过微加工进行进一步加工处理,使光纤阵列3输入端的单路光纤的接收角度朝向,由中心区域向边缘区域进行渐变处理,更好的匹配入射回波多波束光子的入射角度,提高耦合效率。In order to further improve the coupling efficiency of the echo photons entering the
进入光纤阵列3后,利用光纤的波导传输特性,各个波束的回波光子与背景噪声光一起在对应的光纤内传播。光纤阵列3的输出端为柔性光路,可以方便的将各个波束对应的输出端严格匹配超窄带滤光片4的设计角度。After entering the
如图1-4所示,光纤阵列3的输出端具有柔性光路的特性,也可将光纤阵列3的输出端集成在一起,缩小多波束光子信号的空间输出面积,以通过单个超窄带滤光片4对穿过光纤阵列3的回波光子进行滤波。这样既可以有效的抑制背景噪声,也可以节省超窄带干涉滤光片的使用。且超窄带滤光片4是一种高精度的光学元件,有较大概率出现个体差异,即不同的干涉滤光片之间的参数有所差别,如果整体系统中使用多个滤光片,可能会存在误差,导致系统参数受到影响。As shown in Figure 1-4, the output end of the
如图1-4所示,回波光子的波长不同,比如中心区域的回波光子为1550nm,边缘区域的回波光子为1064nm,可以在光纤阵列3的输出端对不同波束的回波光子进行分类,分别采用对应的超窄带滤光片4进行滤波。As shown in Figure 1-4, the wavelengths of the echo photons are different. For example, the echo photons in the central area are 1550 nm and the echo photons in the edge area are 1064 nm. Classification, respectively use the corresponding
如图1-4所示,经过超窄带滤光片4以后,可以根据情况使用多个单个的探测器对不同波束的光子进行探测,也可以使用阵列探测器同时对多波束的回波光子进行探测,在本案实施例中采用APD阵列探测器5。As shown in Figure 1-4, after passing through the
需要说明的是,本实施例中的大视场条件是指回波光子以更大的视场接收角度入射APD阵列探测器5时,仍能够被有效探测。(原视场接收角度主要由超窄带滤光片4的允许角度限制,通常为1度以内;本实施例中视场接收角度主要由望远镜系统1的视场角度限制,跟目标距离有一定关系,通常可以达到10度甚至以上)。It should be noted that, the large field of view condition in this embodiment means that when echo photons enter the
如图1-4所示,该使用超窄带滤光的大视场多波束单光子探测系统的工作方法为:在大视场条件下,多波束回波光子在望远镜系统1的像平面2上成像,回波光子通过光学耦合装置耦合入光纤阵列3的输入端。回波光子进入光纤阵列3以后,在光纤内传输,回波光子从光纤阵列3的输出端以垂直角度入射超窄带滤光片4,进行滤波,随后进入APD阵列探测器5进行探测。As shown in Figure 1-4, the working method of the large-field-of-view multi-beam single-photon detection system using ultra-narrowband filtering is as follows: under the condition of a large field of view, the multi-beam echo photons are on the
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010467132.0A CN111595469A (en) | 2020-05-28 | 2020-05-28 | A Large FOV Multibeam Single Photon Detection System Using Ultra-Narrow Band Filtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010467132.0A CN111595469A (en) | 2020-05-28 | 2020-05-28 | A Large FOV Multibeam Single Photon Detection System Using Ultra-Narrow Band Filtering |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111595469A true CN111595469A (en) | 2020-08-28 |
Family
ID=72186062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010467132.0A Pending CN111595469A (en) | 2020-05-28 | 2020-05-28 | A Large FOV Multibeam Single Photon Detection System Using Ultra-Narrow Band Filtering |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111595469A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5288992A (en) * | 1992-12-15 | 1994-02-22 | Gte Laboratories Incorporated | Wide angle, narrow band optical filter |
-
2020
- 2020-05-28 CN CN202010467132.0A patent/CN111595469A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5288992A (en) * | 1992-12-15 | 1994-02-22 | Gte Laboratories Incorporated | Wide angle, narrow band optical filter |
Non-Patent Citations (1)
Title |
---|
冯百成: ""多光束光子计数激光测距"", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6181418B1 (en) | Concentric spectrometer | |
US9372250B2 (en) | Chip-scale star tracker | |
CN104729708B (en) | Anastigmatic broadband spectrum detection grating spectrometer | |
CN106872038B (en) | High-flux high-stability coherent dispersion spectral imaging device | |
CN101806625A (en) | Static Fourier transform interference imaging spectrum full-polarization detector | |
US9995882B2 (en) | Photonic synthesis of large aperture telescopes from multi-telescope arrays | |
CN105675615B (en) | A kind of high speed large range high resolution rate imaging system | |
CN108169847A (en) | A kind of large field of view scan imaging optical system | |
JP5666496B2 (en) | Measuring device | |
US9696212B2 (en) | High efficiency coherent imager | |
CN106840008B (en) | Optical fiber spacing measurement system and measurement method | |
CN111595469A (en) | A Large FOV Multibeam Single Photon Detection System Using Ultra-Narrow Band Filtering | |
RU2616875C2 (en) | Optoelectronic system for determining spectral-energy parameters and coordinates of infrared laser radiation source | |
CN115046637B (en) | Front-end optical system of Doppler differential interferometer for satellite-borne atmospheric wind field measurement | |
CN112097923A (en) | Simple wavefront measurement method for optical element | |
CN207937636U (en) | A large field of view scanning imaging optical system | |
US11788829B2 (en) | Simultaneous phase-shift point diffraction interferometer and method for detecting wave aberration | |
CN207472424U (en) | Multispectral imaging system | |
US20230408727A1 (en) | Folded optical paths incorporating metasurfaces | |
CN103234629A (en) | Device for simultaneously measuring positions and angles of two optical beams on same incident plane | |
CN108844629B (en) | A spectral imaging system | |
JP5809674B2 (en) | Light incident device and reflected light measuring device | |
CN105865626A (en) | Hyperspectral imager based on rotary filter monochromator | |
CN118032126B (en) | Stereo spectrometer | |
CN101963528A (en) | Method for realizing super-large vieing-field static polarization Fourier transform imaging spectrum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200828 |
|
RJ01 | Rejection of invention patent application after publication |