CN111586323A - Image sensor, control method, camera assembly, and mobile terminal - Google Patents
Image sensor, control method, camera assembly, and mobile terminal Download PDFInfo
- Publication number
- CN111586323A CN111586323A CN202010377218.4A CN202010377218A CN111586323A CN 111586323 A CN111586323 A CN 111586323A CN 202010377218 A CN202010377218 A CN 202010377218A CN 111586323 A CN111586323 A CN 111586323A
- Authority
- CN
- China
- Prior art keywords
- sub
- pixels
- pixel
- color
- panchromatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000004044 response Effects 0.000 claims abstract description 23
- 230000003595 spectral effect Effects 0.000 claims abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims description 36
- 238000012545 processing Methods 0.000 claims description 34
- 238000012546 transfer Methods 0.000 claims description 30
- 239000011159 matrix material Substances 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 31
- 230000008569 process Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 8
- 230000003321 amplification Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 239000003086 colorant Substances 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
- H04N25/13—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
- H04N25/133—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/67—Focus control based on electronic image sensor signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
- H04N25/44—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
- H04N25/46—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/703—SSIS architectures incorporating pixels for producing signals other than image signals
- H04N25/704—Pixels specially adapted for focusing, e.g. phase difference pixel sets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/802—Geometry or disposition of elements in pixels, e.g. address-lines or gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/806—Optical elements or arrangements associated with the image sensors
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Color Television Image Signal Generators (AREA)
Abstract
本申请公开了一种图像传感器、控制方法、摄像头组件和移动终端。图像传感器包括二维像素阵列及透镜阵列。二维像素阵列包括多个彩色像素和多个全色像素。彩色像素具有比全色像素更窄的光谱响应。二维像素阵列包括最小重复单元。在最小重复单元中,全色像素设置在第一对角线方向,彩色像素设置在第二对角线方向。每个像素包括至少两个子像素。透镜阵列包括多个透镜,每个透镜覆盖一个像素。本申请实施方式中,二维像素阵列包括多个彩色像素和多个全色像素,相较于一般的彩色传感器增加了通光量,具有更好的信噪比,在暗光下对焦性能更好,子像素的灵敏度也会更高。每个像素包括至少两个子像素,可以在实现相位对焦的同时,提高图像传感器的分辨率。
The present application discloses an image sensor, a control method, a camera assembly and a mobile terminal. The image sensor includes a two-dimensional pixel array and a lens array. The two-dimensional pixel array includes a plurality of color pixels and a plurality of full-color pixels. The color pixels have a narrower spectral response than the full-color pixels. The two-dimensional pixel array includes a minimum repeating unit. In the minimum repeating unit, the full-color pixels are arranged in a first diagonal direction, and the color pixels are arranged in a second diagonal direction. Each pixel includes at least two sub-pixels. The lens array includes a plurality of lenses, each lens covering a pixel. In an embodiment of the present application, the two-dimensional pixel array includes a plurality of color pixels and a plurality of full-color pixels, which increases the amount of light transmitted compared to a general color sensor, has a better signal-to-noise ratio, has a better focusing performance in dim light, and has a higher sensitivity of the sub-pixels. Each pixel includes at least two sub-pixels, which can improve the resolution of the image sensor while achieving phase focusing.
Description
技术领域technical field
本申请涉及成像技术领域,更具体而言,涉及一种图像传感器、控制方法、摄像头组件和移动终端。The present application relates to the field of imaging technologies, and more particularly, to an image sensor, a control method, a camera assembly, and a mobile terminal.
背景技术Background technique
随着电子技术的发展,具有照相功能的终端在人们的生活中已经得到了普及。目前手机拍摄采用的对焦方法主要有反差对焦和相位对焦(Phase Detection Auto Focus,PDAF)。反差对焦比较精准,但速度太慢。相位对焦速度快,目前市场上的相位对焦都是在彩色传感器(Bayer Sensor)上实现的,在暗光环境下对焦性能也不够好。With the development of electronic technology, terminals with a camera function have been popularized in people's lives. At present, the focusing methods used in mobile phone photography mainly include contrast focusing and phase detection auto focus (PDAF). Contrast focus is more accurate, but too slow. The phase focusing speed is fast. At present, the phase focusing on the market is realized on the color sensor (Bayer Sensor), and the focusing performance is not good enough in the dark light environment.
发明内容SUMMARY OF THE INVENTION
本申请实施方式提供一种图像传感器、控制方法、摄像头组件和移动终端。Embodiments of the present application provide an image sensor, a control method, a camera assembly, and a mobile terminal.
本申请实施方式的图像传感器包括二维像素阵列及透镜阵列。所述二维像素阵列包括多个彩色像素和多个全色像素,所述彩色像素具有比所述全色像素更窄的光谱响应。所述二维像素阵列包括最小重复单元,在所述最小重复单元中,所述全色像素设置在第一对角线方向,所述彩色像素设置在第二对角线方向。所述第一对角线方向与所述第二对角线方向不同。其中,每个像素包括至少两个子像素。所述透镜阵列包括多个透镜,每个所述透镜覆盖一个所述像素。The image sensor of the embodiment of the present application includes a two-dimensional pixel array and a lens array. The two-dimensional pixel array includes a plurality of color pixels and a plurality of panchromatic pixels, the color pixels having a narrower spectral response than the panchromatic pixels. The two-dimensional pixel array includes a minimum repeating unit, in which the panchromatic pixels are arranged in a first diagonal direction, and the color pixels are arranged in a second diagonal direction. The first diagonal direction is different from the second diagonal direction. Wherein, each pixel includes at least two sub-pixels. The lens array includes a plurality of lenses, each of the lenses covering one of the pixels.
本申请实施方式的控制方法用于图像传感器。所述图像传感器包括二维像素阵列及透镜阵列。所述二维像素阵列包括多个彩色像素和多个全色像素,所述彩色像素具有比所述全色像素更窄的光谱响应。所述二维像素阵列包括最小重复单元,在所述最小重复单元中,所述全色像素设置在第一对角线方向,所述彩色像素设置在第二对角线方向。所述第一对角线方向与所述第二对角线方向不同。其中,每个像素包括至少两个子像素。所述透镜阵列包括多个透镜,每个所述透镜覆盖一个所述像素。所述控制方法包括:控制所述至少两个子像素曝光以输出至少两个子像素信息;根据所述至少两个子像素信息确定相位信息以进行对焦;在合焦状态下,控制所述二维像素阵列曝光以获取目标图像。The control method of the embodiment of the present application is applied to an image sensor. The image sensor includes a two-dimensional pixel array and a lens array. The two-dimensional pixel array includes a plurality of color pixels and a plurality of panchromatic pixels, the color pixels having a narrower spectral response than the panchromatic pixels. The two-dimensional pixel array includes a minimum repeating unit, in which the panchromatic pixels are arranged in a first diagonal direction, and the color pixels are arranged in a second diagonal direction. The first diagonal direction is different from the second diagonal direction. Wherein, each pixel includes at least two sub-pixels. The lens array includes a plurality of lenses, each of the lenses covering one of the pixels. The control method includes: controlling the exposure of the at least two sub-pixels to output at least two sub-pixel information; determining phase information according to the at least two sub-pixel information to perform focusing; and controlling the two-dimensional pixel array in a focus state Exposure to acquire the target image.
本申请实施方式的摄像头组件包括镜头及图像传感器。所述图像传感器能够接收穿过所述镜头的光线。所述图像传感器包括二维像素阵列及透镜阵列。所述二维像素阵列包括多个彩色像素和多个全色像素,所述彩色像素具有比所述全色像素更窄的光谱响应。所述二维像素阵列包括最小重复单元,在所述最小重复单元中,所述全色像素设置在第一对角线方向,所述彩色像素设置在第二对角线方向。所述第一对角线方向与所述第二对角线方向不同。其中,每个像素包括至少两个子像素。所述透镜阵列包括多个透镜,每个所述透镜覆盖一个所述像素。The camera assembly of the embodiment of the present application includes a lens and an image sensor. The image sensor is capable of receiving light passing through the lens. The image sensor includes a two-dimensional pixel array and a lens array. The two-dimensional pixel array includes a plurality of color pixels and a plurality of panchromatic pixels, the color pixels having a narrower spectral response than the panchromatic pixels. The two-dimensional pixel array includes a minimum repeating unit, in which the panchromatic pixels are arranged in a first diagonal direction, and the color pixels are arranged in a second diagonal direction. The first diagonal direction is different from the second diagonal direction. Wherein, each pixel includes at least two sub-pixels. The lens array includes a plurality of lenses, each of the lenses covering one of the pixels.
本申请实施方式的移动终端包括机壳及摄像头组件。所述摄像头组件安装在所述机壳上。所述摄像头组件包括镜头及图像传感器。所述图像传感器能够接收穿过所述镜头的光线。所述图像传感器包括二维像素阵列及透镜阵列。所述二维像素阵列包括多个彩色像素和多个全色像素,所述彩色像素具有比所述全色像素更窄的光谱响应。所述二维像素阵列包括最小重复单元,在所述最小重复单元中,所述全色像素设置在第一对角线方向,所述彩色像素设置在第二对角线方向。所述第一对角线方向与所述第二对角线方向不同。其中,每个像素包括至少两个子像素。所述透镜阵列包括多个透镜,每个所述透镜覆盖一个所述像素。The mobile terminal according to the embodiment of the present application includes a casing and a camera assembly. The camera assembly is mounted on the casing. The camera assembly includes a lens and an image sensor. The image sensor is capable of receiving light passing through the lens. The image sensor includes a two-dimensional pixel array and a lens array. The two-dimensional pixel array includes a plurality of color pixels and a plurality of panchromatic pixels, the color pixels having a narrower spectral response than the panchromatic pixels. The two-dimensional pixel array includes a minimum repeating unit, in which the panchromatic pixels are arranged in a first diagonal direction, and the color pixels are arranged in a second diagonal direction. The first diagonal direction is different from the second diagonal direction. Wherein, each pixel includes at least two sub-pixels. The lens array includes a plurality of lenses, each of the lenses covering one of the pixels.
本申请实施方式的移动终端包括机壳及摄像头组件。所述摄像头组件安装在所述机壳上。所述摄像头组件包括镜头及图像传感器。所述图像传感器能够接收穿过所述镜头的光线。所述图像传感器包括二维像素阵列及透镜阵列。所述二维像素阵列包括多个彩色像素和多个全色像素,所述彩色像素具有比所述全色像素更窄的光谱响应。所述二维像素阵列包括最小重复单元,在所述最小重复单元中,所述全色像素设置在第一对角线方向,所述彩色像素设置在第二对角线方向。所述第一对角线方向与所述第二对角线方向不同。其中,每个像素包括至少两个子像素。所述透镜阵列包括多个透镜,每个所述透镜覆盖一个所述像素。所述移动终端还包括处理器,所述处理器用于实现控制方法:控制所述至少两个子像素曝光以输出至少两个子像素信息;根据所述至少两个子像素信息确定相位信息以进行对焦;在合焦状态下,控制所述二维像素阵列曝光以获取目标图像。The mobile terminal according to the embodiment of the present application includes a casing and a camera assembly. The camera assembly is mounted on the casing. The camera assembly includes a lens and an image sensor. The image sensor is capable of receiving light passing through the lens. The image sensor includes a two-dimensional pixel array and a lens array. The two-dimensional pixel array includes a plurality of color pixels and a plurality of panchromatic pixels, the color pixels having a narrower spectral response than the panchromatic pixels. The two-dimensional pixel array includes a minimum repeating unit, in which the panchromatic pixels are arranged in a first diagonal direction, and the color pixels are arranged in a second diagonal direction. The first diagonal direction is different from the second diagonal direction. Wherein, each pixel includes at least two sub-pixels. The lens array includes a plurality of lenses, each of the lenses covering one of the pixels. The mobile terminal further includes a processor for implementing a control method: controlling the exposure of the at least two sub-pixels to output at least two sub-pixel information; determining phase information according to the at least two sub-pixel information to perform focusing; In the in-focus state, the exposure of the two-dimensional pixel array is controlled to obtain a target image.
本申请实施方式的图像传感器、控制方法、摄像头组件和移动终端中,二维像素阵列包括多个彩色像素和多个全色像素,相较于一般的彩色传感器而言,增加了通光量,具有更好的信噪比,在暗光下对焦性能更好,子像素的灵敏度也会更高。此外,每个像素包括至少两个子像素,可以在实现相位对焦的同时,提高图像传感器的分辨率。In the image sensor, control method, camera assembly, and mobile terminal according to the embodiments of the present application, the two-dimensional pixel array includes a plurality of color pixels and a plurality of panchromatic pixels. Better signal-to-noise ratio, better focusing performance in low light, and higher sub-pixel sensitivity. In addition, each pixel includes at least two sub-pixels, which can improve the resolution of the image sensor while realizing phase focusing.
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。Additional aspects and advantages of embodiments of the present application will be set forth, in part, in the following description, and in part will be apparent from the following description, or learned by practice of embodiments of the present application.
附图说明Description of drawings
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present application will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1是本申请某些实施方式的图像传感器的示意图;FIG. 1 is a schematic diagram of an image sensor according to some embodiments of the present application;
图2至图8是本申请某些实施方式的子像素的分布示意图;2 to 8 are schematic diagrams of the distribution of sub-pixels according to some embodiments of the present application;
图9是本申请某些实施方式的一种像素电路的示意图;9 is a schematic diagram of a pixel circuit according to some embodiments of the present application;
图10是不同色彩通道曝光饱和时间的示意图;10 is a schematic diagram of exposure saturation time for different color channels;
图11至图20是本申请某些实施方式的最小重复单元的像素排布及透镜覆盖方式的示意图;11 to 20 are schematic diagrams of pixel arrangement and lens coverage of the minimum repeating unit according to some embodiments of the present application;
图21是本申请某些实施方式的控制方法的流程示意图;21 is a schematic flowchart of a control method according to some embodiments of the present application;
图22是本申请某些实施方式的摄像头组件的示意图;22 is a schematic diagram of a camera assembly of some embodiments of the present application;
图23是本申请某些实施方式的控制方法的原理示意图;FIG. 23 is a schematic diagram of the control method of some embodiments of the present application;
图24是本申请某些实施方式的控制方法的流程示意图;24 is a schematic flowchart of a control method according to some embodiments of the present application;
图25至图27是本申请某些实施方式的控制方法的原理示意图;25 to 27 are schematic schematic diagrams of the control method of some embodiments of the present application;
图28是本申请某些实施方式的移动终端的示意图。FIG. 28 is a schematic diagram of a mobile terminal according to some embodiments of the present application.
具体实施方式Detailed ways
下面详细描述本申请的实施方式,实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。Embodiments of the present application are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present application, and should not be construed as a limitation on the present application.
请参阅图1,本申请提供一种图像传感器10。图像传感器10包括二维像素阵列11及透镜阵列17。二维像素阵列11包括多个彩色像素和多个全色像素,彩色像素具有比全色像素更窄的光谱响应。二维像素阵列11包括最小重复单元,在最小重复单元中,全色像素设置在第一对角线方向,彩色像素设置在第二对角线方向。第一对角线方向与第二对角线方向不同。其中,每个像素101包括至少两个子像素102。透镜阵列17包括多个透镜170,每个透镜170覆盖一个像素101。Referring to FIG. 1 , the present application provides an
请参阅图1和图21,本申请还提供一种控制方法。控制方法用于图像传感器10。图像传感器10包括二维像素阵列11及透镜阵列17。二维像素阵列11包括多个彩色像素和多个全色像素,彩色像素具有比全色像素更窄的光谱响应。二维像素阵列11包括最小重复单元,在最小重复单元中,全色像素设置在第一对角线方向,彩色像素设置在第二对角线方向。第一对角线方向与第二对角线方向不同。其中,每个像素101包括至少两个子像素102。透镜阵列17包括多个透镜170,每个透镜170覆盖一个像素101。控制方法包括:Please refer to FIG. 1 and FIG. 21 , the present application also provides a control method. The control method is used for the
01:控制至少两个子像素102曝光以输出至少两个子像素信息;01: controlling the exposure of at least two sub-pixels 102 to output at least two sub-pixel information;
02:根据至少两个子像素信息确定相位信息以进行对焦;02: Determine phase information according to at least two sub-pixel information for focusing;
03:在合焦状态下,控制二维像素阵列11曝光以获取目标图像。03: In the in-focus state, control the exposure of the two-
请参阅图1和图22,本申请还提供一种摄像头组件40。摄像头组件40包括镜头30及图像传感器10。图像传感器10能够接收穿过镜头30的光线。图像传感器10包括二维像素阵列11及透镜阵列17。二维像素阵列11包括多个彩色像素和多个全色像素,彩色像素具有比全色像素更窄的光谱响应。二维像素阵列11包括最小重复单元,在最小重复单元中,全色像素设置在第一对角线方向,彩色像素设置在第二对角线方向。第一对角线方向与第二对角线方向不同。其中,每个像素101包括至少两个子像素102。透镜阵列17包括多个透镜170,每个透镜170覆盖一个像素101。Please refer to FIG. 1 and FIG. 22 , the present application further provides a
请参阅图1、图22和图28,本申请还提供一种移动终端90。移动终端90包括机壳80及摄像头组件40。摄像头组件40安装在机壳80上。摄像头组件40包括镜头30及图像传感器10。图像传感器10能够接收穿过镜头30的光线。图像传感器10包括二维像素阵列11及透镜阵列17。二维像素阵列11包括多个彩色像素和多个全色像素,彩色像素具有比全色像素更窄的光谱响应。二维像素阵列11包括最小重复单元,在最小重复单元中,全色像素设置在第一对角线方向,彩色像素设置在第二对角线方向。第一对角线方向与第二对角线方向不同。其中,每个像素101包括至少两个子像素102。透镜阵列17包括多个透镜170,每个透镜170覆盖一个像素101。Please refer to FIG. 1 , FIG. 22 and FIG. 28 , the present application further provides a
请参阅图1、图21、图22和图28,本申请还提供一种移动终端90。移动终端90包括机壳80及摄像头组件40。摄像头组件40安装在机壳80上。摄像头组件40包括镜头30及图像传感器10。图像传感器10能够接收穿过镜头30的光线。图像传感器10包括二维像素阵列11及透镜阵列17。二维像素阵列11包括多个彩色像素和多个全色像素,彩色像素具有比全色像素更窄的光谱响应。二维像素阵列11包括最小重复单元,在最小重复单元中,全色像素设置在第一对角线方向,彩色像素设置在第二对角线方向。第一对角线方向与第二对角线方向不同。其中,每个像素101包括至少两个子像素102。透镜阵列17包括多个透镜170,每个透镜170覆盖一个像素101。移动终端90还包括处理器60,处理器60用于实现控制方法:Please refer to FIG. 1 , FIG. 21 , FIG. 22 and FIG. 28 , the present application further provides a
01:控制至少两个子像素102曝光以输出至少两个子像素信息;01: controlling the exposure of at least two sub-pixels 102 to output at least two sub-pixel information;
02:根据至少两个子像素信息确定相位信息以进行对焦;02: Determine phase information according to at least two sub-pixel information for focusing;
03:在合焦状态下,控制二维像素阵列11曝光以获取目标图像。03: In the in-focus state, control the exposure of the two-
随着电子技术的发展,具有照相功能的终端在人们的生活中已经得到了普及。目前手机拍摄采用的对焦方法主要有反差对焦和相位对焦(Phase Detection Auto Focus,PDAF)。反差对焦比较精准,但速度太慢。相位对焦速度快,目前市场上的相位对焦都是在彩色传感器(Bayer Sensor)上实现的,在暗光环境下对焦性能也不够好。With the development of electronic technology, terminals with a camera function have been popularized in people's lives. At present, the focusing methods used in mobile phone photography mainly include contrast focusing and phase detection auto focus (PDAF). Contrast focus is more accurate, but too slow. The phase focusing speed is fast. At present, the phase focusing on the market is realized on the color sensor (Bayer Sensor), and the focusing performance is not good enough in the dark light environment.
基于上述原因,本申请提供一种图像传感器10(图1所示)。本申请实施方式的图像传感器10中,二维像素阵列11包括多个彩色像素和多个全色像素,相较于一般的彩色传感器而言,增加了通光量,具有更好的信噪比,在暗光下对焦性能更好,子像素102的灵敏度也会更高。此外,每个像素101包括至少两个子像素102,可以在实现相位对焦的同时,提高图像传感器10的分辨率。For the above reasons, the present application provides an image sensor 10 (shown in FIG. 1 ). In the
接下来介绍一下图像传感器10的基本结构。请参阅图1,图1是本申请实施方式的图像传感器10的示意图及像素101的示意图。图像传感器10包括二维像素阵列11、滤光片阵列16、及透镜阵列17。沿图像传感器10的收光方向,透镜阵列17、滤光片16、及二维像素阵列11依次设置。Next, the basic structure of the
图像传感器10可以采用互补金属氧化物半导体(CMOS,Complementary MetalOxide Semiconductor)感光元件或者电荷耦合元件(CCD,Charge-coupled Device)感光元件。The
二维像素阵列11包括以阵列形式二维排列的多个像素101。每个像素101包括至少两个子像素102。例如,每个像素101包括两个子像素102、三个子像素102、四个子像素102或更多个子像素102。The two-
滤光片阵列16包括多个滤光片160,每个滤光片160覆盖对应的一个像素101。每个像素101的光谱响应(即像素101能够接收的光线的颜色)由对应该像素102的滤光片160的颜色决定。The
透镜阵列17包括多个透镜170,每个透镜170覆盖对应的一个像素101。The
图2至图8示出了多种图像传感器10中子像素102的分布示意图。图2至图8所示的子像素102的分布方式中,每个像素101包括至少两个子像素102,可以在实现相位对焦的同时,提高图像传感器10的分辨率。2 to 8 show schematic diagrams of the distribution of
例如,图2是本申请实施方式的一种子像素102的分布示意图。每个像素101均包括两个子像素102。两个子像素102之间的分界线与二维像素阵列11的长度方向X平行。每个子像素102的横截面的形状均为矩形,且每个像素101中的两个子像素102的横截面的面积相等。其中,横截面指的是沿垂直于图像传感器10的收光方向截取到的截面(后同)。每个像素101中的两个子像素102均关于该像素101的中心点呈中心对称分布。根据每个像素101中的两个子像素102曝光以输出的两个子像素信息可以确定相位信息,从而实现相位对焦,同时,每个像素101包括分界线与二维像素阵列11的长度方向X平行的两个子像素102,可以提高图像传感器10的纵向分辨率。For example, FIG. 2 is a schematic diagram of the distribution of
例如,图3是本申请实施方式的另一种子像素102的分布示意图。每个像素101均包括两个子像素102。两个子像素102之间的分界线与二维像素阵列11的宽度方向Y平行。每个子像素102的横截面的形状均为矩形,且每个像素101中的两个子像素102的横截面的面积相等。每个像素101中的两个子像素102均关于该像素101的中心点呈中心对称分布。根据每个像素101中的两个子像素102曝光以输出的两个子像素信息可以确定相位信息,从而实现相位对焦,同时,每个像素101包括分界线与二维像素阵列11的宽度方向Y平行的两个子像素102,可以提高图像传感器10的横向分辨率。For example, FIG. 3 is a schematic diagram of the distribution of another sub-pixel 102 according to an embodiment of the present application. Each
例如,图4是本申请实施方式的又一种子像素102的分布示意图。每个像素101均包括两个子像素102。两个子像素102之间的分界线相对于二维像素阵列11的长度方向X倾斜。每个子像素102的横截面的形状均为梯形,同一像素101中的一个子像素102的横截面为上窄下宽的梯形,另一个子像素102的横截面的形状为上宽下窄的梯形。每个像素101中的两个子像素102均关于该像素101的中心点呈中心对称分布。以每个像素101的中心点为原点,平行于二维像素阵列11的长度方向为横轴,宽度方向为纵轴,建立直角坐标系,两个子像素102在横轴的正半轴及负半轴均有分布,且两个子像素102在纵轴的正半轴及负半轴均有分布。每个像素101中的一个子像素102同时分布在第一象限、第二象限、及第四象限,另一个像素102同时分布在第二象限、第三象限、及第四象限。两个子像素102既能获取到水平方向上的相位信息,又能获取到垂直方向上的相位信息,如此使得图像传感器10既可以应用在包含大量纯色横条纹的场景中,也可以应用在包含大量纯色竖条纹的场景中,图像传感器10的场景适应性较好,相位对焦的准确度较高。同时,每个像素101包括分界线相对于二维像素阵列11的长度方向X倾斜的两个子像素102,可以提高图像传感器10的横向分辨率或纵向分辨率。For example, FIG. 4 is a schematic diagram of the distribution of still another sub-pixel 102 according to an embodiment of the present application. Each
例如,图5是本申请实施方式的又一种子像素102的分布示意图。每个像素101均包括两个子像素102。两个子像素102之间的分界线相对于二维像素阵列11的宽度方向Y倾斜。每个子像素102的横截面的形状均为梯形,同一像素101中的一个子像素102的横截面为上宽下窄的梯形,另一个子像素102的横截面的形状为上窄下宽的梯形。每个像素101中的两个子像素102均关于该像素101的中心点呈中心对称分布。以每个像素101的中心点为原点,平行于二维像素阵列11的长度方向为横轴,宽度方向为纵轴,建立直角坐标系,两个子像素102在横轴的正半轴及负半轴均有分布,且两个子像素102在纵轴的正半轴及负半轴均有分布。每个像素101中的一个子像素102同时分布在第一象限、第二象限、及第三象限,另一个像素102同时分布在第一象限、第三象限、及第四象限。两个子像素102既能获取到水平方向上的相位信息,又能获取到垂直方向上的相位信息,如此使得图像传感器10既可以应用在包含大量纯色横条纹的场景中,也可以应用在包含大量纯色竖条纹的场景中,图像传感器10的场景适应性较好,相位对焦的准确度较高。同时,每个像素101包括分界线相对于二维像素阵列11的宽度方向Y倾斜的两个子像素102,可以提高图像传感器10的横向分辨率或纵向分辨率。For example, FIG. 5 is a schematic diagram of the distribution of another sub-pixel 102 according to an embodiment of the present application. Each
例如,图6是本申请实施方式的又一种子像素102的分布示意图。每个像素101包括两个子像素102,部分像素101中,两个子像素102之间的分界线与二维像素阵列11的长度方向X平行;部分像素101中,两个子像素102之间的分界线与二维像素阵列11的宽度方向Y平行。进一步地,两个子像素102之间的分界线与二维像素阵列11的长度方向X平行的像素101与两个子像素102之间的分界线与二维像素阵列11的宽度方向Y平行的像素101隔行分布或隔列分布。部分像素101中,两个子像素102可以获取到垂直方向上的相位信息;部分像素101中,两个子像素102可以获取到水平方向上的相位信息,如此使得图像传感器10既可以应用在包含大量纯色横条纹的场景中,也可以应用在包含大量纯色竖条纹的场景中,图像传感器10的场景适应性较好,相位对焦的准确度较高。同时,部分像素101包括分界线与二维像素阵列11的长度方向X平行的两个子像素102,部分像素101包括分界线与二维像素阵列11的宽度方向Y平行的两个子像素102,可以在一定程度上提高图像传感器10的横向分辨率和纵向分辨率。此外,两个子像素102之间的分界线与二维像素阵列11的长度方向X平行的像素101与两个子像素102之间的分界线与二维像素阵列11的宽度方向Y平行的像素101隔行分布或隔列分布,不会过多增加二维像素阵列11的走线难度。For example, FIG. 6 is a schematic diagram of the distribution of another sub-pixel 102 according to an embodiment of the present application. Each
例如,图7是本申请实施方式的又一种子像素102的分布示意图。每个像素101包括两个子像素102,部分像素101中,两个子像素102之间的分界线与二维像素阵列11的长度方向X平行;部分像素101中,两个子像素102之间的分界线与二维像素阵列11的宽度方向Y平行。进一步地,两个子像素102之间的分界线与二维像素阵列11的长度方向X平行的像素101与两个子像素102之间的分界线与二维像素阵列11的宽度方向Y平行的像素101交错分布。部分像素101中,两个子像素102可以获取到垂直方向上的相位信息;部分像素101中,两个子像素102可以获取到水平方向上的相位信息,如此使得图像传感器10既可以应用在包含大量纯色横条纹的场景中,也可以应用在包含大量纯色竖条纹的场景中,图像传感器10的场景适应性较好,相位对焦的准确度较高。同时,部分像素101包括分界线与二维像素阵列11的长度方向X平行的两个子像素102,部分像素101包括分界线与二维像素阵列11的宽度方向Y平行的两个子像素102,可以在一定程度上提高图像传感器10的横向分辨率和纵向分辨率。此外,两个子像素102之间的分界线与二维像素阵列11的长度方向X平行的像素101与两个子像素102之间的分界线与二维像素阵列11的宽度方向Y平行的像素101交错分布,可以最大程度提高相位对焦效果。For example, FIG. 7 is a schematic diagram of the distribution of another sub-pixel 102 according to an embodiment of the present application. Each
例如,图8是本申请实施方式的又一种子像素102的分布示意图。每个像素101包括四个子像素102,四个子像素102呈2*2矩阵分布。根据每个像素101中的任意至少两个子像素102曝光以输出的至少两个子像素信息可以准确地确定相位信息,从而实现相位对焦,同时,每个像素101包括呈2*2矩阵分布的四个子像素102,可以同时提高图像传感器10的横向分辨率和纵向分辨率。在其他例子中,当每个像素101包括四个子像素102时,四个子像素102还可以沿二维像素阵列11的宽度方向Y分布,相邻的两个子像素102之间的分界线与二维像素阵列11的长度方向X平行;或者,四个子像素102可以沿二维像素阵列11的长度方向X分布,相邻的两个子像素102之间的分界线与二维像素阵列11的宽度方向Y平行等,或者还可以是相邻的两个子像素102之间的分界线相对于二维像素阵列11的长度方向X或宽度方向Y倾斜的情况等,在此不作限制。For example, FIG. 8 is a schematic diagram of the distribution of another sub-pixel 102 according to an embodiment of the present application. Each
需要说明的是,除了图2至图8所示的子像素102的横截面的形状示例,子像素102的横截面的形状还可以是其他规则或不规则的形状,在此不作限制。It should be noted that, in addition to the cross-sectional shapes of the sub-pixels 102 shown in FIGS. 2 to 8 , the cross-sectional shapes of the sub-pixels 102 may also be other regular or irregular shapes, which are not limited herein.
此外,除了每个像素101均包括两个子像素102与每个像素101均包括四个子像素102的情况外,还可以是:部分像素101包括两个子像素102、部分像素101包括四个子像素102,或者是包括其他任意数量的至少两个子像素102,在此不作限制。In addition, in addition to the case where each
图9是本申请实施方式中一种像素电路110的示意图。本申请实施方式以每个像素101包括两个子像素102为例进行说明,每个像素101包括多于两个子像素102的情况将在后续进行说明。下面结合图1和图9对像素电路110的工作原理进行说明。FIG. 9 is a schematic diagram of a pixel circuit 110 in an embodiment of the present application. The embodiments of the present application are described by taking each
如图1和图9所示,像素电路110包括第一光电转换元件1171(例如,光电二极管PD)、第二光电转换元件1172(例如,光电二极管PD)、第一曝光控制电路1161(例如,转移晶体管112)、第二曝光控制电路1162(例如,转移晶体管112)、复位电路(例如,复位晶体管113)、放大电路(例如,放大晶体管114)和选择电路(例如,选择晶体管115)。此时,其中一个子像素102包括上述第一光电转换元件1171,另外一个子像素102包括上述第二光电转换元件1172。在本申请的实施例中,转移晶体管112、复位晶体管113、放大晶体管114和选择晶体管115例如是MOS管,但不限于此。As shown in FIGS. 1 and 9 , the pixel circuit 110 includes a first photoelectric conversion element 1171 (eg, a photodiode PD), a second photoelectric conversion element 1172 (eg, a photodiode PD), a first exposure control circuit 1161 (eg, a photodiode PD) transfer transistor 112), a second exposure control circuit 1162 (eg, transfer transistor 112), a reset circuit (eg, reset transistor 113), an amplifier circuit (eg, amplifier transistor 114), and a selection circuit (eg, selection transistor 115). At this time, one of the sub-pixels 102 includes the above-mentioned first
例如,参见图1和图9,转移晶体管112的栅极TG通过曝光控制线(图中未示出)连接图像传感器10的垂直驱动单元(图中未示出);复位晶体管113的栅极RG通过复位控制线(图中未示出)连接垂直驱动单元;选择晶体管115的栅极SEL通过选择线(图中未示出)连接垂直驱动单元。每个像素电路110中的第一曝光控制电路1161与第一光电转换元件1171电连接,用于转移第一光电转换元件1171经光照后积累的电势;每个像素电路110中的第二曝光控制电路1162与第二光电转换元件1172电连接,用于转移第二光电转换元件1172经光照后积累的电势。例如,第一光电转换元件1171和第二光电转换元件1172均包括光电二极管PD,光电二极管PD的阳极例如连接到地。光电二极管PD将所接收的光转换为电荷。光电二极管PD的阴极经由第一曝光控制电路1161或第二曝光控制电路1162(例如,转移晶体管112)连接到浮动扩散单元FD。浮动扩散单元FD与放大晶体管114的栅极、复位晶体管113的源极连接。For example, referring to FIGS. 1 and 9 , the gate TG of the transfer transistor 112 is connected to the vertical driving unit (not shown in the figure) of the
例如,第一曝光控制电路1161和第二曝光控制电路1162均可以为转移晶体管112,第一曝光控制电路1161和第二曝光控制电路1162的控制端TG为转移晶体管112的栅极。当有效电平(例如,VPIX电平)的脉冲通过曝光控制线传输到转移晶体管112的栅极时,转移晶体管112导通。转移晶体管112将光电二极管PD光电转换的电荷传输到浮动扩散单元FD。For example, both the first exposure control circuit 1161 and the second exposure control circuit 1162 may be the transfer transistor 112 , and the control terminal TG of the first exposure control circuit 1161 and the second exposure control circuit 1162 is the gate of the transfer transistor 112 . When a pulse of an active level (eg, VPIX level) is transmitted to the gate of the transfer transistor 112 through the exposure control line, the transfer transistor 112 is turned on. The transfer transistor 112 transfers the charges photoelectrically converted by the photodiode PD to the floating diffusion unit FD.
例如,复位电路同时与第一曝光控制电路1161和第二曝光控制电路1162连接。复位电路可以为复位晶体管113。复位晶体管113的漏极连接到像素电源VPIX。复位晶体管113的源极连接到浮动扩散单元FD。在电荷被从光电二极管PD转移到浮动扩散单元FD之前,有效复位电平的脉冲经由复位线传输到复位晶体管113的栅极,复位晶体管113导通。复位晶体管113将浮动扩散单元FD复位到像素电源VPIX。For example, the reset circuit is connected to the first exposure control circuit 1161 and the second exposure control circuit 1162 at the same time. The reset circuit may be the
例如,放大晶体管114的栅极连接到浮动扩散单元FD。放大晶体管114的漏极连接到像素电源VPIX。在浮动扩散单元FD被复位晶体管113复位之后,放大晶体管114经由选择晶体管115通过输出端OUT输出复位电平。在光电二极管PD的电荷被转移晶体管112转移之后,放大晶体管114经由选择晶体管115通过输出端OUT输出信号电平。For example, the gate of the
例如,选择晶体管115的漏极连接到放大晶体管114的源极。选择晶体管115的源极通过输出端OUT连接到图像传感器10中的列处理单元(图中未示出)。当有效电平的脉冲通过选择线被传输到选择晶体管115的栅极时,选择晶体管115导通。放大晶体管114输出的信号通过选择晶体管115传输到列处理单元。For example, the drain of the
当两个子像素102曝光以分别输出像素信息、或分别输出像素信息并输出相位信息时,第一曝光控制电路1161先转移第一光电转换元件1171接收光线后生成的电荷以输出第一子像素信息,复位电路复位后,第二曝光控制电路1162再转移第二光电转换元件1172接收光线后生成的电荷以输出第二子像素信息。When the two sub-pixels 102 are exposed to output pixel information respectively, or output pixel information and output phase information respectively, the first exposure control circuit 1161 first transfers the charge generated by the first
当两个子像素102曝光以合并输出像素信息时(不包括相位信息),第一曝光控制电路1161转移第一光电转换元件1171接收光线后生成的电荷的同时,第二曝光控制电路1162能够转移第二光电转换元件1172接收光线后生成的电荷,以输出合并像素信息。也即是说,第一曝光控制电路1161转移第一光电转换元件1171接收光线后生成的电荷的同时,第二曝光控制电路1162也转移第二光电转换元件1172接收光线后生成的电荷,或者也可以是,第一曝光控制电路1161先转移第一光电转换元件1171接收光线后生成的电荷,第二曝光控制电路1162再转移第二光电转换元件1172接收光线后生成的电荷。When the two sub-pixels 102 are exposed to combine and output pixel information (excluding phase information), the first exposure control circuit 1161 transfers the charge generated by the first
当两个子像素102曝光以合并输出像素信息并输出相位信息时,第一曝光控制电路1161先转移第一光电转换元件1171接收光线后生成的电荷以输出第一子像素信息,复位电路复位后,第二曝光控制电路1162再转移第二光电转换元件1172接收光线后生成的电荷以输出第二子像素信息,第一子像素信息和第二子像素信息用于合并为合并像素信息。此时,图像传感器10还可以包括缓存器(图未示),缓存器用于存储第一子像素信息和第二子像素信息以输出相位信息。When the two sub-pixels 102 are exposed to combine the output pixel information and output the phase information, the first exposure control circuit 1161 first transfers the charge generated by the first
在信号传输中,像素信息和相位信息可以通过移动产业处理器接口(MobileIndustry Processor Interface,MIPI)分别单独输出,由于相位信息的需求量较小,因此可以采取像素电路110每输出四行像素信息时,再输出一行相位信息。当然,在实际应用中也可以根据需要像素电路110每输出一行像素信息时,再输出一行相位信息,在此不作限制。In signal transmission, pixel information and phase information can be separately output through the Mobile Industry Processor Interface (MIPI). Since the demand for phase information is small, the pixel circuit 110 can output four lines of pixel information when the pixel circuit 110 outputs four lines of pixel information. , and then output one line of phase information. Of course, in practical applications, each time the pixel circuit 110 outputs one line of pixel information, another line of phase information may be output, which is not limited here.
需要说明的是,本申请实施例中像素电路110的像素结构并不限于图9所示的结构。例如,像素电路110可以具有三晶体管像素结构,其中放大晶体管114和选择晶体管115的功能由一个晶体管完成。例如,第一曝光控制电路1161和第二曝光控制电路1162也不局限于单个转移晶体管112的方式,其它具有控制端控制导通功能的电子器件或结构均可以作为本申请实施例中的曝光控制电路,单个转移晶体管112的实施方式简单、成本低、易于控制。It should be noted that the pixel structure of the pixel circuit 110 in the embodiment of the present application is not limited to the structure shown in FIG. 9 . For example, the pixel circuit 110 may have a three-transistor pixel structure in which the functions of the
此外,当每个像素101包括多于两个子像素102时(即每个像素101包括多于两个光电转换元件),只需要对应增加曝光控制电路的数量即可,每个曝光控制电路与对应的光电转换元件连接,所有的曝光控制电路均与复位电路连接。In addition, when each
本申请实施例中,每个像素101中的多个子像素102共用复位电路、放大电路和选择电路,有利于减小像素电路110占用空间,且成本较低。在其他实施例中,每个像素101中的每个子像素102都可以具有对应的复位电路、放大电路和选择电路等,在此不作限制。In the embodiment of the present application, the
在包含多种色彩的像素的图像传感器中,不同色彩的像素单位时间内接收的曝光量不同。在某些色彩饱和后,某些色彩还未曝光到理想的状态。例如,曝光到饱和曝光量的60%-90%可以具有比较好的信噪比和精确度,但本申请的实施例不限于此。In an image sensor that includes pixels of multiple colors, the pixels of different colors receive different amounts of exposure per unit time. After some colors are saturated, some colors are not exposed to the desired state. For example, exposure to 60%-90% of the saturated exposure may have better signal-to-noise ratio and accuracy, but the embodiments of the present application are not limited thereto.
图10中以RGBW(红、绿、蓝、全色)为例说明。参见图10,图10中横轴为曝光时间、纵轴为曝光量,Q为饱和的曝光量,LW为全色像素W的曝光曲线,LG为绿色像素G的曝光曲线,LR为红色像素R的曝光曲线,LB为蓝色像素的曝光曲线。In FIG. 10, RGBW (red, green, blue, full color) is used as an example for illustration. Referring to Figure 10, in Figure 10, the horizontal axis is the exposure time, the vertical axis is the exposure amount, Q is the saturated exposure amount, LW is the exposure curve of the panchromatic pixel W, LG is the exposure curve of the green pixel G, and LR is the red pixel R. , and LB is the exposure curve of the blue pixel.
从图10可以看出,全色像素W的曝光曲线LW的斜率最大,也就是说在单位时间内全色像素W可以获得更多的曝光量,在t1时刻即达到饱和。绿色像素G的曝光曲线LG的斜率次之,绿色像素在t2时刻饱和。红色像素R的曝光曲线LR的斜率再次之,红色像素在t3时刻饱和。蓝色像素B的曝光曲线LB的斜率最小,蓝色像素在t4时刻饱和。由图10可知,全色像素W单位时间内接收的曝光量是大于彩色像素单位时间内接收的曝光量的,也即全色像素W的灵敏度要高于彩色像素的灵敏度。It can be seen from FIG. 10 that the exposure curve LW of the panchromatic pixel W has the largest slope, that is to say, the panchromatic pixel W can obtain more exposure per unit time, and reaches saturation at time t1. The slope of the exposure curve LG of the green pixel G is second, and the green pixel is saturated at time t2. The slope of the exposure curve LR of the red pixel R is again the same, and the red pixel is saturated at time t3. The slope of the exposure curve LB of the blue pixel B is the smallest, and the blue pixel is saturated at time t4. It can be seen from FIG. 10 that the exposure amount received by the panchromatic pixel W per unit time is greater than the exposure amount received by the color pixel per unit time, that is, the sensitivity of the panchromatic pixel W is higher than that of the color pixel.
如果采用仅包括彩色像素的图像传感器来实现相位对焦,那么在亮度较高的环境下,R、G、B三种彩色像素可以接收到的较多的光线,能够输出信噪比较高的像素信息,此时相位对焦的准确度较高;但是在亮度较低的环境下,R、G、B三种像素能够接收到的光线较少,输出的像素信息的信噪比较低,此时相位对焦的准确度也较低。If an image sensor that only includes color pixels is used to achieve phase focus, then in a high-brightness environment, the three color pixels of R, G, and B can receive more light, and can output pixels with a high signal-to-noise ratio. At this time, the accuracy of phase focusing is high; but in a low-brightness environment, the three pixels R, G, and B can receive less light, and the signal-to-noise ratio of the output pixel information is low. At this time Phase focus is also less accurate.
基于上述原因,本申请实施方式的图像传感器10在二维像素阵列11中可以同时布置全色像素和彩色像素,相较于一般的彩色传感器而言,增加了通光量,具有更好的信噪比,在暗光下对焦性能更好,子像素102的灵敏度也会更高。如此,本申请实施方式的图像传感器10可以在环境亮度不同的场景下实现准确的对焦,提升了图像传感器10的场景适应性。Based on the above reasons, the
需要说明的是,每个像素101的光谱响应(即像素101能够接收的光线的颜色)由对应该像素101的滤光片160的颜色决定。本申请全文的彩色像素和全色像素指的是能够响应颜色与对应的滤光片160颜色相同的光线的像素101。It should be noted that the spectral response of each pixel 101 (ie, the color of light that the
图11至图20示出了多种图像传感器10(图1所示)中像素101排布的示例。请参见图11至图20,二维像素阵列11中的多个像素101可以同时包括多个全色像素W及多个彩色像素(例如多个第一颜色像素A、多个第二颜色像素B和多个第三颜色像素C),其中,彩色像素和全色像素通过其上覆盖的滤光片160(图1所示)能够通过的光线的波段来区分,彩色像素具有比全色像素更窄的光谱响应,彩色像素的响应光谱例如为全色像素W响应光谱中的部分。每个全色像素包含至少两个子像素102,每个彩色像素包含至少两个子像素102。二维像素阵列11由多个最小重复单元组成(图11至图20示出了多种图像传感器10中的最小重复单元的示例),最小重复单元在行和列上复制并排列。每个最小重复单元均包括多个子单元,每个子单元包括多个单颜色像素及多个全色像素。例如,每个最小重复单元包括四个子单元,其中,一个子单元包括多个单颜色像素A(即第一颜色像素A)和多个全色像素W,两个子单元包括多个单颜色像素B(即第二颜色像素B)和多个全色像素W,剩余一个子单元包括多个单颜色像素C(即第三颜色像素C)和多个全色像素W。11 to 20 show examples of the arrangement of
例如,最小重复单元的行和列的像素101的数量相等。例如最小重复单元包括但不限于,4行4列、6行6列、8行8列、10行10列的最小重复单元。例如,子单元的行和列的像素101的数量相等。例如子单元包括但不限于,2行2列、3行3列、4行4列、5行5列的子单元。这种设置有助于均衡行和列方向图像的分辨率和均衡色彩表现,提高显示效果。For example, the number of
在一个例子中,在最小重复单元中,全色像素W设置在第一对角线方向D1,彩色像素设置在第二对角线方向D2,第一对角线方向D1与第二对角线方向D2不同。In an example, in the smallest repeating unit, the panchromatic pixels W are arranged in the first diagonal direction D1, the color pixels are arranged in the second diagonal direction D2, the first diagonal direction D1 and the second diagonal direction The direction D2 is different.
例如,图11是本申请实施方式中一种最小重复单元的像素101排布及透镜170覆盖方式示意图;最小重复单元为4行4列16个像素,子单元为2行2列4个像素,排布方式为:For example, FIG. 11 is a schematic diagram of the arrangement of
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。W represents a full-color pixel; A represents a first color pixel in a plurality of color pixels; B represents a second color pixel in a plurality of color pixels; C represents a third color pixel in the plurality of color pixels.
如图11所示,全色像素W设置在第一对角线方向D1(即图11中左上角和右下角连接的方向),彩色像素设置在第二对角线方向D2(例如图11中左下角和右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同。例如,第一对角线和第二对角线垂直。As shown in FIG. 11 , the panchromatic pixels W are arranged in the first diagonal direction D1 (that is, the direction connecting the upper left corner and the lower right corner in FIG. 11 ), and the color pixels are arranged in the second diagonal direction D2 (for example, in FIG. 11 ) The direction in which the lower left corner and the upper right corner are connected), the first diagonal direction D1 is different from the second diagonal direction D2. For example, the first diagonal and the second diagonal are perpendicular.
需要说明的是,第一对角线方向D1和第二对角线方向D2并不局限于对角线,还包括平行于对角线的方向。这里的“方向”并非单一指向,可以理解为指示排布的“直线”的概念,可以有直线两端的双向指向。It should be noted that the first diagonal direction D1 and the second diagonal direction D2 are not limited to diagonals, but also include directions parallel to the diagonals. The "direction" here is not a single direction, but can be understood as the concept of a "straight line" indicating the arrangement, and there can be bidirectional directions at both ends of the straight line.
如图11所示,一个透镜170覆盖一个像素101。每个全色像素及每个彩色像素均包括两个子像素102。As shown in FIG. 11 , one
例如,图12是本申请实施方式中又一种最小重复单元的像素101排布及透镜170覆盖方式示意图的示意图。最小重复单元为4行4列16个像素101,子单元为2行2列4个像素101,排布方式为:For example, FIG. 12 is a schematic diagram illustrating a schematic diagram of another arrangement of
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。W represents a full-color pixel; A represents a first color pixel in a plurality of color pixels; B represents a second color pixel in a plurality of color pixels; C represents a third color pixel in the plurality of color pixels.
如图12所示,全色像素W设置在第一对角线方向D1(即图12中右上角和左下角连接的方向),彩色像素设置在第二对角线方向D2(例如图12中左上角和右下角连接的方向)。第一对角线方向D1与第二对角线方向D2不同。例如,第一对角线和第二对角线垂直。As shown in FIG. 12 , the panchromatic pixels W are arranged in the first diagonal direction D1 (that is, the direction connecting the upper right corner and the lower left corner in FIG. 12 ), and the color pixels are arranged in the second diagonal direction D2 (for example, in FIG. 12 ) the direction in which the upper-left and lower-right corners are connected). The first diagonal direction D1 is different from the second diagonal direction D2. For example, the first diagonal and the second diagonal are perpendicular.
如图12所示,一个透镜170覆盖一个像素101。每个全色像素及每个彩色像素均包括两个子像素102。As shown in FIG. 12 , one
例如,图13是本申请实施方式中又一种最小重复单元的像素101排布及透镜170覆盖方式的示意图。图14是本申请实施方式中又一种最小重复单元的像素101排布及透镜170覆盖方式的示意图。在图13和图14的实施例中,分别对应图11和图12的排布及覆盖方式,第一颜色像素A为红色像素R;第二颜色像素B为绿色像素G;第三颜色像素C为蓝色像素Bu。For example, FIG. 13 is a schematic diagram of the arrangement of the
需要说明的是,在一些实施例中,全色像素W的响应波段为可见光波段(例如,400nm-760nm)。例如,全色像素W上设置有红外滤光片,以实现红外光的滤除。在一些实施例中,全色像素W的响应波段为可见光波段和近红外波段(例如,400nm-1000nm),与图像传感器10中的光电转换元件(例如光电二极管PD)响应波段相匹配。例如,全色像素W可以不设置滤光片,全色像素W的响应波段由光电二极管的响应波段确定,即两者相匹配。本申请的实施例包括但不局限于上述波段范围。It should be noted that, in some embodiments, the response band of the panchromatic pixel W is the visible light band (for example, 400 nm-760 nm). For example, the panchromatic pixel W is provided with an infrared filter to filter out infrared light. In some embodiments, the response bands of the panchromatic pixels W are visible light band and near-infrared band (eg, 400nm-1000nm), which match the response band of the photoelectric conversion element (eg, photodiode PD) in the
在一些实施例中,图11及图12所示的最小重复单元中,第一颜色像素A也可以为红色像素R,第二颜色像素B也可以为黄色像素Y;第三颜色像素C可以为蓝色像素Bu。In some embodiments, in the minimum repeating unit shown in FIG. 11 and FIG. 12 , the first color pixel A may also be a red pixel R, the second color pixel B may also be a yellow pixel Y; the third color pixel C may be Blue pixel Bu.
在一些实施例中,图11及图12所示的最小重复单元中,第一颜色像素A也可以为品红色像素M,第二颜色像素B也可以为青色像素Cy,第三颜色像素C也可以为黄色像素Y。In some embodiments, in the minimum repeating unit shown in FIG. 11 and FIG. 12 , the first color pixel A may also be a magenta pixel M, the second color pixel B may also be a cyan pixel Cy, and the third color pixel C may also be Can be yellow pixel Y.
例如,图15是本申请实施方式中又一种最小重复单元的像素101排布及透镜170覆盖方式的示意图。最小重复单元为6行6列36个像素101,子单元为3行3列9个像素101,排布方式为:For example, FIG. 15 is a schematic diagram illustrating the arrangement of
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。W represents a full-color pixel; A represents a first color pixel in a plurality of color pixels; B represents a second color pixel in a plurality of color pixels; C represents a third color pixel in the plurality of color pixels.
如图15所示,全色像素W设置在第一对角线方向D1(即图15中左上角和右下角连接的方向),彩色像素设置在第二对角线方向D2(例如图15中左下角和右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同。例如,第一对角线和第二对角线垂直。As shown in FIG. 15 , the panchromatic pixels W are arranged in the first diagonal direction D1 (that is, the direction connecting the upper left corner and the lower right corner in FIG. 15 ), and the color pixels are arranged in the second diagonal direction D2 (for example, in FIG. 15 ) The direction in which the lower left corner and the upper right corner are connected), the first diagonal direction D1 is different from the second diagonal direction D2. For example, the first diagonal and the second diagonal are perpendicular.
如图15所示,一个透镜170覆盖一个像素101。每个全色像素及每个彩色像素均包括两个子像素102。As shown in FIG. 15 , one
例如,图16是本申请实施方式中又一种最小重复单元的像素101排布及透镜170覆盖方式的示意图。最小重复单元为6行6列36个像素101,子单元为3行3列9个像素101,排布方式为:For example, FIG. 16 is a schematic diagram of the arrangement of the
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。W represents a full-color pixel; A represents a first color pixel in a plurality of color pixels; B represents a second color pixel in a plurality of color pixels; C represents a third color pixel in the plurality of color pixels.
如图16所示,全色像素W设置在第一对角线方向D1(即图16中右上角和左下角连接的方向),彩色像素设置在第二对角线方向D2(例如图16中左上角和右下角连接的方向)。第一对角线方向D1与第二对角线方向D2不同。例如,第一对角线和第二对角线垂直。As shown in FIG. 16 , the panchromatic pixels W are arranged in the first diagonal direction D1 (that is, the direction connecting the upper right corner and the lower left corner in FIG. 16 ), and the color pixels are arranged in the second diagonal direction D2 (for example, in FIG. 16 ) the direction in which the upper-left and lower-right corners are connected). The first diagonal direction D1 is different from the second diagonal direction D2. For example, the first diagonal and the second diagonal are perpendicular.
如图16所示,一个透镜170覆盖一个像素101。每个全色像素及每个彩色像素均包括两个子像素102。As shown in FIG. 16 , one
示例地,图15及图16所示的最小重复单元中的第一颜色像素A可以为红色像素R,第二颜色像素B可以为绿色像素G,第三颜色像素C可以为蓝色像素Bu。或者;图15及图16所示的最小重复单元中的第一颜色像素A可以为红色像素R,第二颜色像素B可以为黄色像素Y,第三颜色像素C可以为蓝色像素Bu。或者;图15及图16所示的最小重复单元中的第一颜色像素A可以为品红色像素M,第二颜色像素B可以为青色像素Cy,第三颜色像素C可以为黄色像素Y。For example, the first color pixel A in the minimum repeating unit shown in FIG. 15 and FIG. 16 may be a red pixel R, the second color pixel B may be a green pixel G, and the third color pixel C may be a blue pixel Bu. Alternatively, the first color pixel A in the minimum repeating unit shown in FIG. 15 and FIG. 16 may be a red pixel R, the second color pixel B may be a yellow pixel Y, and the third color pixel C may be a blue pixel Bu. Alternatively, the first color pixel A in the minimum repeating unit shown in FIG. 15 and FIG. 16 may be a magenta pixel M, the second color pixel B may be a cyan pixel Cy, and the third color pixel C may be a yellow pixel Y.
例如,图17是本申请实施方式中又一种最小重复单元的像素101排布及透镜170覆盖方式的示意图。最小重复单元为8行8列64个像素101,子单元为4行4列16个像素101,排布方式为:For example, FIG. 17 is a schematic diagram of the arrangement of the
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。W represents a full-color pixel; A represents a first color pixel in a plurality of color pixels; B represents a second color pixel in a plurality of color pixels; C represents a third color pixel in the plurality of color pixels.
如图17所示,全色像素W设置在第一对角线方向D1(即图17中左上角和右下角连接的方向),彩色像素设置在第二对角线方向D2(例如图17中左下角和右上角连接的方向),第一对角线方向D1与第二对角线方向D2不同。例如,第一对角线和第二对角线垂直。As shown in FIG. 17 , the panchromatic pixels W are arranged in the first diagonal direction D1 (that is, the direction connecting the upper left corner and the lower right corner in FIG. 17 ), and the color pixels are arranged in the second diagonal direction D2 (for example, in FIG. 17 ) The direction in which the lower left corner and the upper right corner are connected), the first diagonal direction D1 is different from the second diagonal direction D2. For example, the first diagonal and the second diagonal are perpendicular.
如图17所示,一个透镜170覆盖一个像素101。每个全色像素及每个彩色像素均包括两个子像素102。As shown in FIG. 17 , one
例如,图18是本申请实施方式中又一种最小重复单元的像素101排布及透镜170覆盖方式的示意图。最小重复单元为8行8列64个像素101,子单元为4行4列16个像素101,排布方式为:For example, FIG. 18 is a schematic diagram of the arrangement of the
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。W represents a full-color pixel; A represents a first color pixel in a plurality of color pixels; B represents a second color pixel in a plurality of color pixels; C represents a third color pixel in the plurality of color pixels.
如图18所示,全色像素W设置在第一对角线方向D1(即图18中右上角和左下角连接的方向),彩色像素设置在第二对角线方向D2(例如图18中左上角和右下角连接的方向)。第一对角线方向D1与第二对角线方向D2不同。例如,第一对角线和第二对角线垂直。As shown in FIG. 18 , the panchromatic pixels W are arranged in the first diagonal direction D1 (that is, the direction connecting the upper right corner and the lower left corner in FIG. 18 ), and the color pixels are arranged in the second diagonal direction D2 (for example, in FIG. 18 ) the direction in which the upper-left and lower-right corners are connected). The first diagonal direction D1 is different from the second diagonal direction D2. For example, the first diagonal and the second diagonal are perpendicular.
如图18所示,一个透镜170覆盖一个像素101。每个全色像素及每个彩色像素均包括两个子像素102。As shown in FIG. 18 , one
图11至图18所示例子中,每一个子单元内,相邻的全色像素W呈对角线设置,相邻的彩色像素也呈对角线设置。在另一个例子中,每一个子单元内,相邻的全色像素沿水平方向设置,相邻的彩色像素也沿水平方向设置;或者,相邻的全色像素沿垂直方向设置,相邻的彩色像素也沿垂直方向设置。相邻子单元中的全色像素可以呈水平方向设置或呈垂直方向设置,相邻子单元的中的彩色像素也可以呈水平方向设置或呈垂直方向设置。In the examples shown in FIGS. 11 to 18 , in each subunit, adjacent panchromatic pixels W are arranged diagonally, and adjacent color pixels are also arranged diagonally. In another example, in each subunit, adjacent panchromatic pixels are arranged in the horizontal direction, and adjacent color pixels are also arranged in the horizontal direction; or, adjacent panchromatic pixels are arranged in the vertical direction, and adjacent Color pixels are also arranged in the vertical direction. Panchromatic pixels in adjacent subunits may be arranged in a horizontal direction or in a vertical direction, and color pixels in adjacent subunits may also be arranged in a horizontal direction or a vertical direction.
例如,图19是本申请实施方式中又一种最小重复单元的像素101排布及透镜170覆盖方式的示意图。最小重复单元为4行4列16个像素101,子单元为2行2列4个像素101,排布方式为:For example, FIG. 19 is a schematic diagram of an arrangement of
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。W represents a full-color pixel; A represents a first color pixel in a plurality of color pixels; B represents a second color pixel in a plurality of color pixels; C represents a third color pixel in the plurality of color pixels.
如图19所示,在每一个子单元内,相邻的全色像素W沿垂直方向设置,相邻的彩色像素也沿垂直方向设置。一个透镜170覆盖一个像素101。每个全色像素及每个彩色像素均包括两个子像素102。As shown in FIG. 19 , in each subunit, adjacent panchromatic pixels W are arranged in the vertical direction, and adjacent color pixels are also arranged in the vertical direction. One
例如,图20是本申请实施方式中又一种最小重复单元的像素101排布及透镜170覆盖方式的示意图。最小重复单元为4行4列16个像素101,子单元为2行2列4个像素101,排布方式为:For example, FIG. 20 is a schematic diagram of the arrangement of the
W表示全色像素;A表示多个彩色像素中的第一颜色像素;B表示多个彩色像素中的第二颜色像素;C表示多个彩色像素中的第三颜色像素。W represents a full-color pixel; A represents a first color pixel in a plurality of color pixels; B represents a second color pixel in a plurality of color pixels; C represents a third color pixel in the plurality of color pixels.
如图20所示,在每一个子单元内,相邻的全色像素W沿水平方向设置,相邻的彩色像素也沿水平方向设置。一个透镜170覆盖一个像素101。每个全色像素及每个彩色像素均包括两个子像素102。As shown in FIG. 20 , in each subunit, adjacent panchromatic pixels W are arranged in the horizontal direction, and adjacent color pixels are also arranged in the horizontal direction. One
图19和图20所示的最小重复单元中,第一颜色像素A可以为红色像素R,第二颜色像素B可以为绿色像素G,第三颜色像素C可以为蓝色像素Bu。或者;图19和图20所示的最小重复单元中,第一颜色像素A可以为红色像素R,第二颜色像素B可以为黄色像素Y,第三颜色像素C可以为蓝色像素Bu。或者;图19和图20所示的最小重复单元中,第一颜色像素A可以为品红色像素M,第二颜色像素B可以为青色像素Cy,第三颜色像素C可以为黄色像素Y。19 and 20, the first color pixel A may be a red pixel R, the second color pixel B may be a green pixel G, and the third color pixel C may be a blue pixel Bu. 19 and 20, the first color pixel A may be a red pixel R, the second color pixel B may be a yellow pixel Y, and the third color pixel C may be a blue pixel Bu. 19 and 20, the first color pixel A may be a magenta pixel M, the second color pixel B may be a cyan pixel Cy, and the third color pixel C may be a yellow pixel Y.
图11至图20所示的最小重复单元中,每个全色像素及每个彩色像素均包括两个子像素102。在其他实施例中,还可以是每个全色像素包括四个子像素102,每个彩色像素包括四个子像素102;或者每个全色像素包括四个子像素102,每个彩色像素包括两个子像素102等,在此不作限制。In the minimum repeating unit shown in FIGS. 11 to 20 , each full-color pixel and each color pixel includes two sub-pixels 102 . In other embodiments, each panchromatic pixel may include four
图11至图20所示的最小重复单元中,两个子像素102之间的分界线与二维像素阵列11的宽度方向Y平行。在其他实施例中,还可以是两个子像素102之间的分界线与二维像素阵列11的长度方向X平行,或者前述任意分界线形式或其组合等。In the minimum repeating unit shown in FIGS. 11 to 20 , the boundary between the two sub-pixels 102 is parallel to the width direction Y of the two-
图11至图20所示的任意一种排布的二维像素阵列11中的多个全色像素和多个彩色像素均可以分别由不同的曝光控制线控制,从而实现全色像素的曝光时间和彩色像素的曝光时间的独立控制。其中,对于图11至图18所示的任意一种排布的二维像素阵列11,第一对角线方向相邻的至少两个全色像素的曝光控制电路的控制端与第一曝光控制线电连接,第二对角线方向相邻的至少两个彩色像素的曝光控制电路的控制端与第二曝光控制线电连接。对于图19和图20所示的二维像素阵列11,同一行或同一列的全色像素的曝光控制电路的控制端与第一曝光控制线电连接,同一行或同一列的彩色像素的曝光控制电路的控制端与第二曝光控制线电连接。第一曝光控制线可以传输第一曝光信号以控制全色像素的第一曝光时间,第二曝光控制线可以传输第二曝光信号以控制彩色像素的第二曝光时间。其中,当全色像素包括两个子像素102时,则该全色像素中的两个子像素102均由同一第一曝光控制线电连接。当彩色像素包括两个子像素102时,则该彩色像素中的两个子像素102均由同一第二曝光控制线电连接。A plurality of panchromatic pixels and a plurality of color pixels in the two-
全色像素的曝光时间与彩色像素的曝光时间独立控制时,全色像素的第一曝光时间可以小于彩色像素的第二曝光时间。例如,第一曝光时间与第二曝光时间的比例可以为1:2、1:3或1:4中的一种。例如,在光线比较暗的环境下,彩色像素更容易曝光不足,可以根据环境亮度调整第一曝光时间与第二曝光时间的比例为1:2,1:3或1:4。其中,曝光比例为上述整数比或接近整数比的情况下,有利于时序的设置信号的设置和控制。When the exposure time of the panchromatic pixels and the exposure time of the color pixels are independently controlled, the first exposure time of the panchromatic pixels may be shorter than the second exposure time of the color pixels. For example, the ratio of the first exposure time to the second exposure time may be one of 1:2, 1:3, or 1:4. For example, in a dark environment, color pixels are more likely to be underexposed, and the ratio of the first exposure time to the second exposure time can be adjusted to 1:2, 1:3 or 1:4 according to the ambient brightness. Wherein, when the exposure ratio is the above integer ratio or close to the integer ratio, it is beneficial to the setting and control of the timing setting signal.
在某些实施方式中,可以根据环境亮度来确定第一曝光时间与第二曝光时间的相对关系。例如,在环境亮度小于或等于亮度阈值时,全色像素以等于第二曝光时间的第一曝光时间来曝光;在环境亮度大于亮度阈值时,全色像素以小于第二曝光时间的第一曝光时间来曝光。在环境亮度大于亮度阈值时,可以根据环境亮度与亮度阈值之间的亮度差值来确定第一曝光时间与第二曝光时间的相对关系,例如,亮度差值越大,第一曝光时间与第二曝光时间的比例越小。示例地,在亮度差值位于第一范围[a,b)内时,第一曝光时间与第二曝光时间的比例为1:2;在亮度差值位于第二范围[b,c)内时,第一曝光时间与第二曝光时间的比例为1:3;在亮度差值大于或等于c时,第一曝光时间与第二曝光时间的比例为1:4。In some embodiments, the relative relationship between the first exposure time and the second exposure time may be determined according to ambient brightness. For example, when the ambient brightness is less than or equal to the brightness threshold, the panchromatic pixels are exposed at a first exposure time equal to the second exposure time; when the ambient brightness is greater than the brightness threshold, the panchromatic pixels are exposed at a first exposure time less than the second exposure time time to expose. When the ambient brightness is greater than the brightness threshold, the relative relationship between the first exposure time and the second exposure time can be determined according to the brightness difference between the ambient brightness and the brightness threshold. The ratio of the two exposure times is smaller. For example, when the luminance difference is within the first range [a, b), the ratio of the first exposure time to the second exposure time is 1:2; when the luminance difference is within the second range [b, c) , the ratio of the first exposure time to the second exposure time is 1:3; when the luminance difference is greater than or equal to c, the ratio of the first exposure time to the second exposure time is 1:4.
请参阅图1和图21,本申请还提供一种控制方法。本申请实施方式的控制方法可以用于上述任意一项实施方式所述的图像传感器10。控制方法包括:Please refer to FIG. 1 and FIG. 21 , the present application also provides a control method. The control method of the embodiment of the present application can be used for the
01:控制至少两个子像素102曝光以输出至少两个子像素信息;01: controlling the exposure of at least two sub-pixels 102 to output at least two sub-pixel information;
02:根据至少两个子像素信息确定相位信息以进行对焦;02: Determine phase information according to at least two sub-pixel information for focusing;
03:在合焦状态下,控制二维像素阵列11曝光以获取目标图像。03: In the in-focus state, control the exposure of the two-
请参阅图1及图22,本申请实施方式的控制方法可以由本申请实施方式的摄像头组件40实现。摄像头组件40包括镜头30、上述任意一项实施方式所述的图像传感器10、及处理芯片20。图像传感器10可以接收穿过镜头30入射的光线并生成电信号。图像传感器10与处理芯片20电连接。处理芯片20可以与图像传感器10、镜头30封装在摄像头组件40的壳体内;或者,图像传感器10和镜头30封装在摄像头组件40的壳体内,处理芯片20设置在壳体外。步骤01、步骤02和步骤03均可以由处理芯片20实现。也即是说,处理芯片20可以用于:控制至少两个子像素102曝光以输出至少两个子像素信息;根据至少两个子像素信息确定相位信息以进行对焦;在合焦状态下,控制二维像素阵列11曝光以获取目标图像。Referring to FIG. 1 and FIG. 22 , the control method of the embodiment of the present application may be implemented by the
本申请实施方式的控制方法及摄像头组件40中,二维像素阵列11包括多个彩色像素和多个全色像素,相较于一般的彩色传感器而言,增加了通光量,具有更好的信噪比,在暗光下对焦性能更好,子像素102的灵敏度也会更高。此外,每个像素101包括至少两个子像素102,可以在实现相位对焦的同时,提高图像传感器10的分辨率。In the control method and the
此外,本申请实施方式的控制方法及摄像头组件40不需要对图像传感器10中的像素101进行遮挡设计,所有像素101都可以用于成像,不需要进行坏点补偿,有利于提升摄像头组件40获取的目标图像的质量。In addition, the control method and the
另外,本申请实施方式的控制方法及摄像头组件40中的所有包含至少两个子像素102的像素101都可以用于相位对焦,相位对焦的准确度更高。In addition, all the
具体地,相位信息可以是相位差。根据至少两个子像素信息确定相位信息以进行对焦包括:(1)仅根据全色子像素信息计算相位差以进行对焦;(2)仅根据彩色子像素信息计算相位差以进行对焦;(3)同时根据全色子像素信息及彩色子像素信息计算相位差以进行对焦。Specifically, the phase information may be a phase difference. Determining the phase information for focusing according to the at least two sub-pixel information includes: (1) calculating the phase difference according to only the panchromatic sub-pixel information for focusing; (2) calculating the phase difference according to only the color sub-pixel information for focusing; (3) At the same time, the phase difference is calculated according to the panchromatic sub-pixel information and the color sub-pixel information for focusing.
本申请实施方式的控制方法及摄像头组件40采用包括全色像素和彩色像素的图像传感器10来实现相位对焦,从而可以在亮度较低(例如亮度小于或等于第一预设亮度)的环境下采用灵敏度较高的全色像素来进行相位对焦,在亮度较高(例如亮度大于或等于第二预设亮度)的环境下采用灵敏度较低的彩色像素来进行相位对焦,而在亮度适中(例如大于第一预设亮度且小于第二预设亮度)的环境下采用全色像素和彩色像素中的至少一种来进行相位对焦。如此,可以避免在环境亮度较低时采用彩色像素进行相位对焦,因彩色像素中的子像素102输出的彩色子像素信息信噪比过低导致对焦不准确的问题,也可以避免在环境亮度较高时采用全色像素进行对焦,因全色像素中的子像素102过饱和导致对焦不准确的问题,由此使得相位对焦在多类应用场景下的准确度均较高,相位对焦的场景适应性较好。The control method and
请参阅图1和图11,在某些实施方式中,全色像素包括两个全色子像素。全色子像素信息包括第一全子色像素信息及第二全色子像素信息。第一全色子像素信息及第二全色子像素信息分别由位于透镜170的第一方位的全色子像素及位于透镜170的第二方位的全色子像素输出。一个第一全色子像素信息与对应的一个第二全色子像素信息作为一对全色子像素信息对。根据全色子像素信息计算相位差以进行对焦的步骤包括:根据多对全色子像素信息对中的第一全色子像素信息形成第一曲线;根据多对全色子像素信息对中的第二全色子像素信息形成第二曲线;及根据第一曲线及第二曲线计算相位差以进行对焦。Referring to Figures 1 and 11, in some embodiments, a panchromatic pixel includes two panchromatic sub-pixels. The panchromatic subpixel information includes first panchromatic subpixel information and second panchromatic subpixel information. The first panchromatic sub-pixel information and the second panchromatic sub-pixel information are respectively output by the panchromatic sub-pixels located at the first orientation of the
具体地,请结合图23,在一个例子中,每个透镜170的第一方位P1为透镜170的左半部分对应的位置,第二方位P2为透镜170的右半部分对应的位置。需要说明的是,图23所示的第一方位P1及第二方位P2是根据图23所示的子像素102的分布示例所确定出来的,对于其他类型的分布的子像素102,第一方位P1与第二方位P2会对应地发生变化。对应到图23的像素阵列11的每一个全色像素W中,一个子像素102(即全色子像素W)位于透镜170的第一方位P1,另一个子像素102(即全色子像素W)位于透镜170的第二方位P2。第一全色子像素信息由位于透镜170的第一方位P1的全色子像素W输出,第二全色子像素信息由位于透镜170的第二方位P2的全色子像素W输出。例如,全色子像素W11,P1、W13,P1、W15,P1、W17,P1、W22,P1、W24,P1、W26,P1、W28,P1等位于第一方位P1,全色子像素W11,P2、W13,P2、W15,P2、W17,P2、W22,P2、W24,P2、W26,P2、W28,P2等位于第二方位P2。同一个全色像素中的两个全色子像素W组成一对全色子像素对,相应的,同一个全色像素W中的两个全色子像素的全色子像素信息组成一对全色子像素信息对,例如,全色子像素W11,P1的全色子像素信息与全色子像素W11,P2的全色子像素信息组成一对全色子像素信息对,全色子像素W13,P1的全色子像素信息与全色子像素W13,P2的全色子像素信息组成一对全色子像素信息对,全色子像素W15,P1的全色子像素信息与全色子像素W15,P2的全色子像素信息组成一对全色子像素信息对,全色子像素W17,P1的全色子像素信息与全色子像素W17,P2的全色子像素信息组成一对全色子像素信息对等,依此类推。Specifically, referring to FIG. 23 , in an example, the first orientation P1 of each
在获取到多对全色子像素信息对之后,处理芯片20根据多对全色子像素信息对中的第一全色子像素信息形成第一曲线,并根据多对全色子像素对中的第二全色子像素信息形成第二曲线,再根据第一曲线和第二曲线计算出相位差。示例地,多个第一全色子像素信息可以描绘出一条直方图曲线(即第一曲线),多个第二全色子像素信息可以描绘出另一条直方图曲线(即第二曲线)。随后,处理芯片20可以根据两条直方图曲线的峰值所处的位置来计算出两条直方图曲线之间的相位差。随后,处理芯片20即可根据相位差及事先标定好的参数来确定出镜头30需要移动的距离。随后,处理芯片20可以控制镜头30移动需要移动的距离以使得镜头30处于合焦状态。After acquiring multiple pairs of panchromatic sub-pixel information pairs, the
请参阅图1和图11,在某些实施方式中,全色像素包括两个全色子像素。全色子像素信息包括第一全色子像素信息及第二全色子像素信息。第一全色子像素信息及第二全色子像素信息分别由位于透镜170的第一方位的全色子像及位于透镜170的第二方位的全色子像输出。多个第一全色子像素信息与对应的多个第二全色子像素信息作为一对全色子像素信息对。根据全色子像素信息计算相位差以进行对焦,包括:根据每对全色子像素信息对中的多个第一全色子像素信息计算第三全色子像素信息;根据每对全色子像素信息对中的多个第二全色子像素信息计算第四全色子像素信息;根据多个第三全色子像素信息形成第一曲线;根据多个第四全色子像素信息形成第二曲线;及根据第一曲线及第二曲线计算相位差以进行对焦。Referring to Figures 1 and 11, in some embodiments, a panchromatic pixel includes two panchromatic sub-pixels. The panchromatic sub-pixel information includes first panchromatic sub-pixel information and second panchromatic sub-pixel information. The first panchromatic sub-pixel information and the second panchromatic sub-pixel information are respectively output by the panchromatic sub-image located at the first orientation of the
具体地,请再结合图23,在一个例子中,每个透镜170的第一方位P1为透镜170的左半部分对应的位置,第二方位P2为透镜170的右半部分对应的位置。需要说明的是,图23所示的第一方位P1及第二方位P2是根据图23所示的子像素102的分布示例所确定出来的,对于其他类型的分布的子像素102,第一方位P1与第二方位P2会对应地发生变化。对应到图23的像素阵列11的每一个全色像素中,一个子像素102(即全色子像素W)位于透镜170的第一方位P1,另一个子像素102(即全色子像素W)位于透镜170的第二方位P2。第一全色子像素信息由位于透镜170的第一方位P1的全色子像素W输出,第二全色子像素信息由位于透镜170的第二方位P2的全色子像素W输出。例如,全色子像素W11,P1、W13,P1、W15,P1、W17,P1、W22,P1、W24,P1、W26,P1、W28,P1等位于第一方位P1,全色子像素W11,P2、W13,P2、W15,P2、W17,P2、W22,P2、W24,P2、W26,P2、W28,P2等位于第二方位P2。多个位于第一方位P1的全色子像素W与多个位于第二方位P2的全色子像素W组成一对全色子像素对,相应的,多个第一全色子像素信息与对应的多个第二全色子像素信息作为一对全色子像素信息对。例如,同一子单元中的多个第一全色子像素信息与该子单元中的多个第二全色子像素信息作为一对全色子像素信息对,也即,全色子像素W11,P1、W22,P1的全色子像素信息与全色像素W11,P2、W22,P2的全色子像素信息组成一对全色子像素信息对,全色子像素W13,P1、W24,P1的全色子像素信息与全色子像素W13,P2、W24,P2的全色子像素信息组成一对全色子像素信息对,全色子像素W15,P1、W26,P1的全色子像素信息与全色子像素W15,P2、W26,P2的全色子像素信息组成一对全色子像素信息对,全色子像素W17,P1、W28,P1的全色子像素信息与全色子像素W17,P2、W28,P2的全色子像素信息组成一对全色子像素信息对,依此类推。再例如,同一个最小重复单元中的多个第一全色子像素信息与该最小重复单元中的多个第二全色子像素信息作为一对全色子像素信息对,即全色子像素W11,P1、W13,P1、W22,P1、W24,P1、W31,P1、W33,P1、W42,P1、W44,P1的全色子像素信息与全色像素W11,P2、W13,P2、W22,P2、W24,P2、W31,P2、W33,P12、W42,P2、W44,P2的全色子像素信息组成一对全色子像素信息对等,以此类推。Specifically, referring to FIG. 23 , in an example, the first orientation P1 of each
在获取多对全色子像素信息对之后,处理芯片20根据每对全色子像素信息对中的多个第一全色子像素信息计算第三全色子像素信息,并根据每对全色子像素信息对中的多个第二全色子像素信息计算第四全色子像素信息。示例地,对于全色子像素W11,P1、W22,P1的全色像素信息与全色子像素W11,P2、W22,P2的全色子像素信息组成的全色子像素信息对,第三全色子像素信息的计算方式可为:LT1=W11,P1+W22,P1,第四全色子像素信息的计算方式可为:RB1=W11,P2+W22,P2。对于全色子像素W11,P1、W13,P1、W22,P1、W24,P1、W31,P1、W33,P1、W42,P1、W44,P1的全色子像素信息与全色像素W11,P2、W13,P2、W22,P2、W24,P2、W31,P2、W33,P12、W42,P2、W44,P2的全色子像素信息组成一对全色子像素信息对,第三全色子像素信息的计算方式可为:LT1=(W11,P1+W13,P1+W22,P1+W24,P1+W31,P1+W33,P1+W42,P1+W44,P1)/8,第四全色子像素信息的计算方式可为:RB1=(W11,P2+W13,P2+W22,P2+W24,P2+W31,P2+W33,P12+W42,P2+W44,P2)/8。其余的全色子像素信息对的第三全色子像素信息及第四全色子像素信息的计算方式与此类似,在此不再赘述。如此,处理芯片20可以得到多个第三全色子像素信息及多个第四子全色像素信息。多个第三全色子像素信息可以描绘出一条直方图曲线(即第一曲线),多个第四全色子像素信息可以描绘出另一条直方图曲线(即第二曲线)。随后,处理芯片20可以根据两条直方图曲线计算出相位差。随后,处理芯片20即可根据相位差及事先标定好的参数来确定出镜头30需要移动的距离。随后,处理芯片20可以控制镜头30移动需要移动的距离以使得镜头30处于合焦状态。After acquiring multiple pairs of panchromatic sub-pixel information pairs, the
请参阅图1和图11,在某些实施方式中,彩色像素包括两个彩色子像素。彩色子像素信息包括第一彩色子像素信息及第二彩色子像素信息。第一彩色子像素信息及第二子像素信息分别由位于透镜170的第一方位的彩色子像素及位于透镜170的第二方位的彩色子像素输出。一个第一彩色子像素信息与对应的一个第二彩色子像素信息作为一对彩色子像素信息对。根据彩色子像素信息计算相位差以进行对焦的步骤包括:根据多对彩色子像素信息对中的第一彩色子像素信息形成第三曲线;根据多对彩色子像素信息对中的第二彩色子像素信息形成第四曲线;及根据第三曲线及第四曲线计算相位差以进行对焦。该过程与前述仅根据全色子像素信息计算相位差以进行对焦的过程类似,再次不再展开说明。Referring to Figures 1 and 11, in some embodiments, a color pixel includes two color sub-pixels. The color sub-pixel information includes first color sub-pixel information and second color sub-pixel information. The first color sub-pixel information and the second sub-pixel information are output by the color sub-pixels located at the first orientation of the
请参阅图1和图11,在某些实施方式中,彩色像素包括两个彩色子像素。彩色子像素信息包括第一彩色子像素信息及第二彩色子像素信息。第一彩色子像素信息及第二彩色子像素信息分别由位于透镜170的第一方位的彩色子像素及位于透镜170的第二方位的彩色子像素输出。多个第一彩色子像素信息与对应的多个第二彩色子像素信息作为一对彩色子像素信息对。根据彩色子像素信息计算相位差以进行对焦,包括:根据每对彩色子像素信息对中的多个第一彩色子像素信息计算第三彩色子像素信息;根据每对彩色子像素信息对中的多个第二彩色子像素信息计算第四彩色子像素信息;根据多个第三彩色子像素信息形成第三曲线;根据多个第四彩色子像素信息形成第四曲线;及根据第三曲线及第四曲线计算相位差以进行对焦。该过程与前述仅根据全色子像素信息计算相位差以进行对焦的过程类似,再次不再展开说明。Referring to Figures 1 and 11, in some embodiments, a color pixel includes two color sub-pixels. The color sub-pixel information includes first color sub-pixel information and second color sub-pixel information. The first color sub-pixel information and the second color sub-pixel information are output by the color sub-pixels located at the first orientation of the
请参阅图1和图11,在某些实施方式中,全色像素包括两个全色子像素。彩色像素包括两个彩色子像素。全色子像素信息包括第一全色子像素信息及第二全色子像素信息,彩色子像素信息包括第一彩色子像素信息及第二彩色子像素信息。第一全色子像素信息、第二全色子像素信息、第一彩色子像素信息、及第二彩色子像素信息分别由位于透镜170的第一方位的全色子像素、位于透镜170的第二方位的全色子像素、位于透镜170的第一方位的彩色子像素、及位于透镜170的第二方位的彩色子像素输出。一个第一全色子像素信息与对应的一个第二全色子像素信息作为一对全色子像素信息对,一个第一彩色子像素信息与对应的一个第二彩色子像素信息作为一对彩色子像素信息对。根据全色子像素信息及彩色子像素信息计算相位差以进行对焦,包括:根据多对全色子像素信息对中的第一全色子像素信息形成第一曲线;根据多对全色子像素信息对中的第二全色子像素信息形成第二曲线;根据多对彩色子像素信息对中的第一彩色子像素信息形成第三曲线;根据多对彩色子像素信息对中的第二彩色子像素信息形成第四曲线;及根据第一曲线、第二曲线、第三曲线、及第四曲线计算相位差以进行对焦。该过程与前述分别根据全色子像素信息计算相位差以进行对焦、根据彩色子像素信息计算相位差以进行对焦的过程类似,再次不再展开说明。Referring to Figures 1 and 11, in some embodiments, a panchromatic pixel includes two panchromatic sub-pixels. A color pixel includes two color sub-pixels. The panchromatic subpixel information includes first panchromatic subpixel information and second panchromatic subpixel information, and the color subpixel information includes first color subpixel information and second color subpixel information. The first panchromatic sub-pixel information, the second panchromatic sub-pixel information, the first color sub-pixel information, and the second color sub-pixel information are respectively composed of the panchromatic sub-pixel located at the first orientation of the
请参阅图1和图11,在某些实施方式中,全色像素包括两个全色子像素。彩色像素包括两个彩色子像素。全色子像素信息包括第一全色子像素信息及第二全色子像素信息,彩色子像素信息包括第一彩色子像素信息及第二彩色子像素信息。第一全色子像素信息、第二全色子像素信息、第一彩色子像素信息、及第二彩色子像素信息分别由位于透镜170的第一方位的全色子像素、位于透镜170的第二方位的全色子像素、位于透镜170的第一方位的彩色子像素、及位于透镜170的第二方位的彩色子像素输出。多个第一全色子像素信息与对应的多个第二全色子像素信息作为一对全色子像素信息对,多个第一彩色子像素信息与对应的多个第二彩色子像素信息作为一对彩色子像素信息对。根据全色子像素信息及彩色子像素信息计算相位差以进行对焦,包括:根据每对全色子像素信息对中的多个第一全色子像素信息计算第三全色子像素信息;根据每对全色子像素信息对中的多个第二全色子像素信息计算第四全色子像素信息;根据每对彩色子像素信息对中的多个第一彩色子像素信息计算第三彩色子像素信息;根据每对彩色子像素信息对中的多个第二彩色子像素信息计算第四彩色子像素信息;根据多个第三全色子像素信息形成第一曲线;根据多个第四全色子像素信息形成第二曲线;根据多个第三彩色子像素信息形成第三曲线;根据多个第四彩色子像素信息形成第四曲线;及根据第一曲线、第二曲线、第三曲线、及第四曲线计算相位差以进行对焦。该过程与前述分别根据全色子像素信息计算相位差以进行对焦、根据彩色子像素信息计算相位差以进行对焦的过程类似,再次不再展开说明。Referring to Figures 1 and 11, in some embodiments, a panchromatic pixel includes two panchromatic sub-pixels. A color pixel includes two color sub-pixels. The panchromatic subpixel information includes first panchromatic subpixel information and second panchromatic subpixel information, and the color subpixel information includes first color subpixel information and second color subpixel information. The first panchromatic sub-pixel information, the second panchromatic sub-pixel information, the first color sub-pixel information, and the second color sub-pixel information are respectively composed of the panchromatic sub-pixel located at the first orientation of the
请参阅图1和图24,在某些实施方式中,控制方法还包括:Referring to FIG. 1 and FIG. 24, in some embodiments, the control method further includes:
04:获取环境亮度;04: Get ambient brightness;
步骤03在合焦状态下,控制二维像素阵列11曝光以获取目标图像,包括:
031:在环境亮度大于第一预定亮度时,在合焦状态下,控制每个全色像素中的至少两个子像素102曝光以分别输出全色子像素信息,控制每个彩色像素中的至少两个子像素102曝光以分别输出彩色子像素信息;031: When the ambient brightness is greater than the first predetermined brightness, in the in-focus state, control the exposure of at least two sub-pixels 102 in each panchromatic pixel to output panchromatic sub-pixel information respectively, and control at least two sub-pixels 102 in each color pixel to be exposed. The sub-pixels 102 are exposed to output color sub-pixel information respectively;
032:根据全色子像素信息和彩色子像素信息生成目标图像。032: Generate a target image according to the panchromatic sub-pixel information and the color sub-pixel information.
请参阅图1和图22,在某些实施方式中,步骤04、步骤031、及步骤032均可以由处理芯片10实现。也即是说,处理芯片20可以用于:获取环境亮度;在环境亮度大于第一预定亮度时,在合焦状态下,控制每个全色像素中的至少两个子像素102曝光以分别输出全色子像素信息,控制每个彩色像素中的至少两个子像素102曝光以分别输出彩色子像素信息;根据全色子像素信息和彩色子像素信息生成目标图像。Referring to FIG. 1 and FIG. 22 , in some embodiments,
具体地,请结合图25,以每个全色像素包括两个全色子像素、每个彩色像素包括两个彩色子像素为例,全色子像素信息包括第一全子色像素信息及第二全色子像素信息。第一全色子像素信息及第二全色子像素信息分别由位于透镜170的第一方位P1的全色子像素及位于透镜170的第二方位P2的全色子像素输出(图25中未标出透镜170的第一方位P1和第二方位P2,可结合图23中透镜170的方位划分)。在一个例子中,每个透镜170的第一方位P1为透镜170的左半部分对应的位置,第二方位P2为透镜170的右半部分对应的位置。每个全色像素W中,一个子像素102(即全色子像素W)位于透镜170的第一方位P1,另一个子像素102(即全色子像素W)位于透镜170的第二方位P2。每个全色像素W中,位于透镜170的第一方位P1的全色子像素W和位于透镜170的第二方位P2的全色子像素W曝光后,分别输出第一全色子像素信息和第二全色子像素信息。例如,全色子像素W11,P1和全色子像素W11,P2曝光分别输出第一全色子像素信息和第二全色子像素信息,全色子像素W22,P1和全色子像素W22,P2曝光分别输出第一全色子像素信息和第二全色子像素信息,依此类推。Specifically, referring to FIG. 25 , it is taken as an example that each panchromatic pixel includes two panchromatic sub-pixels and each color pixel includes two color sub-pixels. The panchromatic sub-pixel information includes the first pan-sub-color pixel information and the third Two panchromatic sub-pixel information. The first panchromatic sub-pixel information and the second panchromatic sub-pixel information are respectively output by the panchromatic sub-pixel located at the first orientation P1 of the
同样地,彩色子像素信息包括第一彩色子像素信息及第二彩色子像素信息。第一彩色子像素信息及第二彩色子像素信息分别由位于透镜170的第一方位P1的彩色子像素及位于透镜170的第二方位P2的彩色子像素输出(图25中未标出透镜170的第一方位P1和第二方位P2,可结合图23中透镜170的方位划分)。在一个例子中,每个透镜170的第一方位P1为透镜170的左半部分对应的位置,第二方位P2为透镜170的右半部分对应的位置。每个彩色像素中,一个子像素102(即彩色子像素A、彩色子像素B或彩色子像素C)位于透镜170的第一方位P1,另一个子像素102(即彩色子像素A、彩色子像素B或彩色子像素C)位于透镜170的第二方位P2。每个彩色像素中,位于透镜170的第一方位P1的彩色子像素和位于透镜170的第二方位P2的彩色子像素曝光后,分别输出第一彩色子像素信息和第二彩色子像素信息。例如,彩色子像素A12,P1和彩色子像素A12,P2曝光分别输出第一彩色子像素信息和第二彩色子像素信息,彩色子像素B14,P1和彩色子像素B14,P2曝光分别输出第一彩色子像素信息和第二彩色子像素信息,彩色子像素C34,P1和彩色子像素C34,P2曝光分别输出第一彩色子像素信息和第二彩色子像素信息,依此类推。Likewise, the color sub-pixel information includes first color sub-pixel information and second color sub-pixel information. The first color sub-pixel information and the second color sub-pixel information are respectively output by the color sub-pixel located at the first orientation P1 of the
本申请实施方式中,在环境亮度大于第一预定亮度时(即光线充足的条件下),每个全色像素和每个彩色像素均拆分为多个子像素分别输出子像素信息,可以提高目标图像的分辨率。例如图25中,每个全色像素和每个彩色像素均拆分为两个子像素分别输出子像素信息,输出的目标图像的横向分辨率能够变为原来的2倍(当每个全色像素和每个彩色像素均拆分为呈2*2矩阵分布的四个子像素分别输出子像素信息时,则输出的目标图像的横向分辨率和纵向分辨率均变为原来的2倍,此时相位对焦性能也更好)。In the embodiment of the present application, when the ambient brightness is greater than the first predetermined brightness (that is, under the condition of sufficient light), each full-color pixel and each color pixel are divided into multiple sub-pixels to output sub-pixel information respectively, which can improve the target The resolution of the image. For example, in Figure 25, each panchromatic pixel and each color pixel are split into two sub-pixels to output sub-pixel information respectively, and the horizontal resolution of the output target image can be doubled (when each panchromatic pixel is and each color pixel is divided into four sub-pixels distributed in a 2*2 matrix to output sub-pixel information respectively, then the horizontal resolution and vertical resolution of the output target image become twice the original, and the phase Focus performance is also better).
请参阅图1和图24,在某些实施方式中,控制方法还包括:04:获取环境亮度;Referring to FIG. 1 and FIG. 24, in some embodiments, the control method further includes: 04: obtaining ambient brightness;
步骤03在合焦状态下,控制二维像素阵列11曝光以获取目标图像,包括:
033:在环境亮度小于第二预定亮度时,在合焦状态下,控制每个全色像素中的至少两个子像素曝光以分别输出全色子像素信息,控制每个彩色像素中的至少两个子像素曝光以合并输出彩色合并像素信息;033: When the ambient brightness is less than the second predetermined brightness, in the focus state, control the exposure of at least two sub-pixels in each panchromatic pixel to output panchromatic sub-pixel information respectively, and control at least two sub-pixels in each color pixel to be exposed. Pixel exposure to merge output color merged pixel information;
034:根据全色子像素信息和彩色合并像素信息生成目标图像。034: Generate a target image according to the panchromatic sub-pixel information and the color combined pixel information.
请参阅图1和图22,在某些实施方式中,步骤04、步骤033、及步骤034均可以由处理芯片10实现。也即是说,处理芯片20可以用于:获取环境亮度;在环境亮度小于第二预定亮度时,在合焦状态下,控制每个全色像素中的至少两个子像素曝光以分别输出全色子像素信息,控制每个彩色像素中的至少两个子像素曝光以合并输出彩色合并像素信息;根据全色子像素信息和彩色合并像素信息生成目标图像。Referring to FIG. 1 and FIG. 22 , in some embodiments,
其中,第二预定亮度小于或等于第一预定亮度。Wherein, the second predetermined brightness is less than or equal to the first predetermined brightness.
具体地,请结合图26,以每个全色像素包括两个全色子像素、每个彩色像素包括两个彩色子像素为例,全色子像素信息包括第一全子色像素信息及第二全色子像素信息。第一全色子像素信息及第二全色子像素信息分别由位于透镜170的第一方位P1的全色子像素及位于透镜170的第二方位P2的全色子像素输出(图26中未标出透镜170的第一方位P1和第二方位P2,可结合图23中透镜170的方位划分)。在一个例子中,每个透镜170的第一方位P1为透镜170的左半部分对应的位置,第二方位P2为透镜170的右半部分对应的位置。每个全色像素W中,一个子像素102(即全色子像素W)位于透镜170的第一方位P1,另一个子像素102(即全色子像素W)位于透镜170的第二方位P2。每个全色像素W中,位于透镜170的第一方位P1的全色子像素W和位于透镜170的第二方位P2的全色子像素W曝光后,分别输出第一全色子像素信息和第二全色子像素信息。例如,全色子像素W11,P1和全色子像素W11,P2曝光分别输出第一全色子像素信息和第二全色子像素信息,全色子像素W22,P1和全色子像素W22,P2曝光分别输出第一全色子像素信息和第二全色子像素信息,依此类推。Specifically, referring to FIG. 26 , taking an example that each panchromatic pixel includes two panchromatic sub-pixels and each color pixel includes two color sub-pixels, the panchromatic sub-pixel information includes the first pan-sub-color pixel information and the third Two panchromatic sub-pixel information. The first panchromatic sub-pixel information and the second panchromatic sub-pixel information are respectively output by the panchromatic sub-pixel located at the first orientation P1 of the
彩色合并像素信息由位于透镜170的第一方位P1的彩色子像素及位于透镜170的第二方位P2的彩色子像素合并输出(图26中未标出透镜170的第一方位P1和第二方位P2,可结合图23中透镜170的方位划分)。在一个例子中,每个透镜170的第一方位P1为透镜170的左半部分对应的位置,第二方位P2为透镜170的右半部分对应的位置。每个彩色像素中,一个子像素102(即彩色子像素A、彩色子像素B或彩色子像素C)位于透镜170的第一方位P1,另一个子像素102(即彩色子像素A、彩色子像素B或彩色子像素C)位于透镜170的第二方位P2。每个彩色像素中,位于透镜170的第一方位P1的彩色子像素和位于透镜170的第二方位P2的彩色子像素曝光后,合并输出彩色合并像素信息。例如,彩色子像素A12,P1和彩色子像素A12,P2曝光合并输出彩色合并像素信息,彩色子像素B14,P1和彩色子像素B14,P2曝光合并输出彩色合并像素信息,彩色子像素C34,P1和彩色子像素C34,P2曝光合并输出彩色合并像素信息,依此类推。The color combination pixel information is combined and output by the color sub-pixels located at the first orientation P1 of the
在光线较暗的条件下,全色像素的灵敏度远高于彩色像素,若每个彩色像素拆分为多个子像素分别输出子像素信息,会严重降低图像的信噪比。因此,本申请实施方式中,在环境亮度小于第二预定亮度时(即光线较暗的条件下),每个全色像素拆分为多个子像素分别输出子像素信息,每个彩色像素中的多个子像素合并输出合并像素信息,在一定程度上可以提高目标图像的分辨率。例如图26中,每个全色像素均拆分为两个子像素分别输出子像素信息,输出的目标图像的横向分辨率能够变为原来的1.5倍。Under the condition of low light, the sensitivity of panchromatic pixels is much higher than that of color pixels. If each color pixel is divided into multiple sub-pixels to output sub-pixel information separately, the signal-to-noise ratio of the image will be seriously reduced. Therefore, in the embodiment of the present application, when the ambient brightness is less than the second predetermined brightness (that is, under the condition of low light), each full-color pixel is divided into a plurality of sub-pixels to output sub-pixel information respectively. Multiple sub-pixels are combined to output combined pixel information, which can improve the resolution of the target image to a certain extent. For example, in FIG. 26, each panchromatic pixel is divided into two sub-pixels to output sub-pixel information respectively, and the lateral resolution of the output target image can be changed to 1.5 times the original.
请参阅图1和图24,在某些实施方式中,控制方法还包括:04:获取环境亮度;Referring to FIG. 1 and FIG. 24, in some embodiments, the control method further includes: 04: obtaining ambient brightness;
步骤03在合焦状态下,控制二维像素阵列11曝光以获取目标图像,包括:
035:在环境亮度小于第三预定亮度时,在合焦状态下,控制每个全色像素中的至少两个子像素曝光以合并输出全色合并像素信息,控制每个彩色像素中的至少两个子像素曝光以合并输出彩色合并像素信息;035: When the ambient brightness is lower than the third predetermined brightness, in the focus state, control the exposure of at least two sub-pixels in each panchromatic pixel to combine and output full-color combined pixel information, and control at least two sub-pixels in each color pixel to be exposed. Pixel exposure to merge output color merged pixel information;
036:根据全色合并像素信息和彩色合并像素信息生成目标图像。036: Generate a target image according to the full-color combined pixel information and the color combined pixel information.
请参阅图1和图22,在某些实施方式中,步骤04、步骤035、及步骤036均可以由处理芯片10实现。也即是说,处理芯片20可以用于:获取环境亮度;在环境亮度小于第三预定亮度时,在合焦状态下,控制每个全色像素中的至少两个子像素曝光以合并输出全色合并像素信息,控制每个彩色像素中的至少两个子像素曝光以合并输出彩色合并像素信息;根据全色合并像素信息和彩色合并像素信息生成目标图像。Referring to FIG. 1 and FIG. 22 , in some embodiments,
其中,第三预定亮度小于第二预定亮度。Wherein, the third predetermined brightness is smaller than the second predetermined brightness.
具体地,请结合图27,以每个全色像素包括两个全色子像素、每个彩色像素包括两个彩色子像素为例,全色合并像素信息由位于透镜170的第一方位P1的全色子像素及位于透镜170的第二方位P2的全色子像素合并输出(图27中未标出透镜170的第一方位P1和第二方位P2,可结合图23中透镜170的方位划分)。在一个例子中,每个透镜170的第一方位P1为透镜170的左半部分对应的位置,第二方位P2为透镜170的右半部分对应的位置。每个全色像素W中,一个子像素102(即全色子像素W)位于透镜170的第一方位P1,另一个子像素102(即全色子像素W)位于透镜170的第二方位P2。每个全色像素W中,位于透镜170的第一方位P1的全色子像素W和位于透镜170的第二方位P2的全色子像素W曝光后,合并输出全色合并像素信息。例如,全色子像素W11,P1和全色子像素W11,P2曝光合并输出全色合并像素信息,全色子像素W22,P1和全色子像素W22,P2曝光合并输出全色合并像素信息,依此类推。Specifically, referring to FIG. 27 , taking each panchromatic pixel including two panchromatic sub-pixels and each color pixel including two color sub-pixels as an example, the panchromatic combined pixel information is determined by the pixel located at the first orientation P1 of the
彩色合并像素信息由位于透镜170的第一方位P1的彩色子像素及位于透镜170的第二方位P2的彩色子像素合并输出(图27中未标出透镜170的第一方位P1和第二方位P2,可结合图23中透镜170的方位划分)。在一个例子中,每个透镜170的第一方位P1为透镜170的左半部分对应的位置,第二方位P2为透镜170的右半部分对应的位置。每个彩色像素中,一个子像素102(即彩色子像素A、彩色子像素B或彩色子像素C)位于透镜170的第一方位P1,另一个子像素102(即彩色子像素A、彩色子像素B或彩色子像素C)位于透镜170的第二方位P2。每个彩色像素中,位于透镜170的第一方位P1的彩色子像素和位于透镜170的第二方位P2的彩色子像素曝光后,合并输出彩色合并像素信息。例如,彩色子像素A12,P1和彩色子像素A12,P2曝光合并输出彩色合并像素信息,彩色子像素B14,P1和彩色子像素B14,P2曝光合并输出彩色合并像素信息,彩色子像素C34,P1和彩色子像素C34,P2曝光合并输出彩色合并像素信息,依此类推。The color combination pixel information is combined and output by the color sub-pixels located at the first orientation P1 of the
在光线极暗的条件下,全色像素和彩色像素的信号都较低,追求图像的分辨率意义不大。因此,本申请实施方式中,在环境亮度小于第三预定亮度时(即光线极暗的条件下),每个全色像素拆分为多个子像素分别输出子像素信息,每个全色像素和每个彩色像素中的多个子像素均合并输出合并像素信息,以提高信号量、提高信噪比。Under extremely low light conditions, the signals of both panchromatic and color pixels are low, and the pursuit of image resolution is of little significance. Therefore, in the embodiment of the present application, when the ambient brightness is less than the third predetermined brightness (that is, under extremely dark conditions), each panchromatic pixel is divided into a plurality of sub-pixels to output sub-pixel information respectively, and each panchromatic pixel and Multiple sub-pixels in each color pixel are combined to output combined pixel information, so as to increase the signal quantity and improve the signal-to-noise ratio.
在二维像素阵列11曝光输出包括全色子像素信息和彩色合并像素信息的原始图像(如图25所示),或者输出包括全色合并像素信息和彩色合并像素信息的原始图像(如图26所示),或者输出包括全色合并像素信息和彩色合并像素信息的原始图像(如图27所示)后,针对这三种不同分辨率的原始图像,处理芯片20还可以对原始图像进行对应的去马赛克算法(例如双线性插值算法)处理,以补全各个通道(例如包括红色通道、绿色通道和蓝色通道)的像素信息或子像素信息,保持图像色彩的完整呈现,最终得到彩色的目标图像。在一个例子中,在由原始图像得到目标图像的过程中,处理芯片20还可以对原始图像进行黑电平矫正处理、镜头阴影矫正处理、坏点补偿处理、色彩矫正处理、全局色调映射处理和色彩转换处理中的任意一个或多个,以具有更好的图像效果。Expose the two-
请参阅图1、图22和图28,本申请还提供一种移动终端90。本申请实施方式的移动终端90可以是手机、平板电脑、笔记本电脑、智能穿戴设备(如智能手表、智能手环、智能眼镜、智能头盔等)、头显设备、虚拟现实设备等等,在此不做限制。本申请实施方式的移动终端90包括上述任一实施方式的摄像头组件40、处理器60、存储器70和机壳80。摄像头组件40、处理器60和存储器70均安装在机壳80上。其中,摄像头组件40中的图像传感器10与处理器60连接。处理器60可以执行与摄像头组件40中的处理芯片20相同的功能,换言之,处理器60可以实现上述任意一项实施方式的处理芯片20所能实现的功能。存储器70与处理器60连接,存储器70可以存储处理器60处理后得到的数据,如目标图像等。处理器60可以与图像传感器10安装在同一个基板上,此时图像传感器10和处理器60可视为一个摄像头组件40。当然,处理器60也可以与图像传感器10安装在不同的基板上。Please refer to FIG. 1 , FIG. 22 and FIG. 28 , the present application further provides a
本申请实施方式的移动终端90中,二维像素阵列11包括多个彩色像素和多个全色像素,相较于一般的彩色传感器而言,增加了通光量,具有更好的信噪比,在暗光下对焦性能更好,子像素102的灵敏度也会更高。此外,每个像素101包括至少两个子像素102,可以在实现相位对焦的同时,提高图像传感器10的分辨率。In the
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "exemplary embodiment," "example," "specific example," or "some examples" or the like is meant to be used in conjunction with the described embodiments. A particular feature, structure, material, or characteristic described in a manner or example is included in at least one embodiment or example of the present application. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。Any description of a process or method in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing a specified logical function or step of the process , and the scope of the preferred embodiments of the present application includes alternative implementations in which the functions may be performed out of the order shown or discussed, including performing the functions substantially concurrently or in the reverse order depending upon the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application belong.
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。Although the embodiments of the present application have been shown and described above, it should be understood that the above embodiments are exemplary and should not be construed as limitations to the present application. Embodiments are subject to variations, modifications, substitutions and alterations.
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010377218.4A CN111586323A (en) | 2020-05-07 | 2020-05-07 | Image sensor, control method, camera assembly, and mobile terminal |
PCT/CN2021/088404 WO2021223590A1 (en) | 2020-05-07 | 2021-04-20 | Image sensor, control method, camera assembly, and mobile terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010377218.4A CN111586323A (en) | 2020-05-07 | 2020-05-07 | Image sensor, control method, camera assembly, and mobile terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111586323A true CN111586323A (en) | 2020-08-25 |
Family
ID=72126248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010377218.4A Pending CN111586323A (en) | 2020-05-07 | 2020-05-07 | Image sensor, control method, camera assembly, and mobile terminal |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111586323A (en) |
WO (1) | WO2021223590A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112235494A (en) * | 2020-10-15 | 2021-01-15 | Oppo广东移动通信有限公司 | Image sensor, control method, imaging device, terminal, and readable storage medium |
CN113178457A (en) * | 2021-04-12 | 2021-07-27 | 维沃移动通信有限公司 | Pixel structure and image sensor |
WO2021223590A1 (en) * | 2020-05-07 | 2021-11-11 | Oppo广东移动通信有限公司 | Image sensor, control method, camera assembly, and mobile terminal |
CN113676675A (en) * | 2021-08-16 | 2021-11-19 | Oppo广东移动通信有限公司 | Image generation method, apparatus, electronic device, and computer-readable storage medium |
CN113676708A (en) * | 2021-07-01 | 2021-11-19 | Oppo广东移动通信有限公司 | Image generation method and device, electronic equipment and computer-readable storage medium |
WO2022073364A1 (en) * | 2020-10-09 | 2022-04-14 | Oppo广东移动通信有限公司 | Image obtaining method and apparatus, terminal, and computer readable storage medium |
CN114697585A (en) * | 2020-12-31 | 2022-07-01 | 杭州海康威视数字技术股份有限公司 | Image sensor, image processing system and image processing method |
WO2022141349A1 (en) * | 2020-12-31 | 2022-07-07 | Oppo广东移动通信有限公司 | Image processing pipeline, image processing method, camera assembly, and electronic device |
WO2023020527A1 (en) * | 2021-08-19 | 2023-02-23 | 维沃移动通信(杭州)有限公司 | Image processing method and apparatus, electronic device, and readable storage medium |
WO2023087908A1 (en) * | 2021-11-22 | 2023-05-25 | Oppo广东移动通信有限公司 | Focusing control method and apparatus, image sensor, electronic device, and computer readable storage medium |
WO2023098230A1 (en) * | 2021-12-01 | 2023-06-08 | Oppo广东移动通信有限公司 | Image sensor, camera module, electronic device, and image generation method and apparatus |
EP4210323A4 (en) * | 2020-11-18 | 2024-01-10 | Samsung Electronics Co., Ltd. | Camera module and electronic device including camera module |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11683604B1 (en) * | 2022-02-23 | 2023-06-20 | Omnivision Technologies, Inc. | Circuit and method for image artifact reduction in high-density, highpixel-count, image sensor with phase detection autofocus |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104718745A (en) * | 2012-09-27 | 2015-06-17 | 株式会社尼康 | Image pick-up element and image pick-up device |
CN104978920A (en) * | 2015-07-24 | 2015-10-14 | 京东方科技集团股份有限公司 | Pixel array, display device and display method thereof |
CN107124536A (en) * | 2017-04-28 | 2017-09-01 | 广东欧珀移动通信有限公司 | Dual-core focus image sensor, focus control method and imaging device thereof |
WO2019082568A1 (en) * | 2017-10-24 | 2019-05-02 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging device and electronic apparatus |
CN110649056A (en) * | 2019-09-30 | 2020-01-03 | Oppo广东移动通信有限公司 | Image sensor, camera assembly and mobile terminal |
CN110740272A (en) * | 2019-10-31 | 2020-01-31 | Oppo广东移动通信有限公司 | Image acquisition method, camera assembly and mobile terminal |
CN110913152A (en) * | 2019-11-25 | 2020-03-24 | Oppo广东移动通信有限公司 | Image sensor, camera assembly and mobile terminal |
CN110996077A (en) * | 2019-11-25 | 2020-04-10 | Oppo广东移动通信有限公司 | Image sensor, camera assembly and mobile terminal |
CN111031297A (en) * | 2019-12-02 | 2020-04-17 | Oppo广东移动通信有限公司 | Image sensor, control method, camera assembly and mobile terminal |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8139130B2 (en) * | 2005-07-28 | 2012-03-20 | Omnivision Technologies, Inc. | Image sensor with improved light sensitivity |
EP2696585A4 (en) * | 2011-03-24 | 2014-10-08 | Fujifilm Corp | Color image capturing element, image capturing device, and image capturing program |
CN107040724B (en) * | 2017-04-28 | 2020-05-15 | Oppo广东移动通信有限公司 | Dual-core focusing image sensor, focusing control method thereof and imaging device |
CN111586323A (en) * | 2020-05-07 | 2020-08-25 | Oppo广东移动通信有限公司 | Image sensor, control method, camera assembly, and mobile terminal |
CN111464733B (en) * | 2020-05-22 | 2021-10-01 | Oppo广东移动通信有限公司 | Control method, camera assembly and mobile terminal |
-
2020
- 2020-05-07 CN CN202010377218.4A patent/CN111586323A/en active Pending
-
2021
- 2021-04-20 WO PCT/CN2021/088404 patent/WO2021223590A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104718745A (en) * | 2012-09-27 | 2015-06-17 | 株式会社尼康 | Image pick-up element and image pick-up device |
CN104978920A (en) * | 2015-07-24 | 2015-10-14 | 京东方科技集团股份有限公司 | Pixel array, display device and display method thereof |
CN107124536A (en) * | 2017-04-28 | 2017-09-01 | 广东欧珀移动通信有限公司 | Dual-core focus image sensor, focus control method and imaging device thereof |
WO2019082568A1 (en) * | 2017-10-24 | 2019-05-02 | ソニーセミコンダクタソリューションズ株式会社 | Solid-state imaging device and electronic apparatus |
CN110649056A (en) * | 2019-09-30 | 2020-01-03 | Oppo广东移动通信有限公司 | Image sensor, camera assembly and mobile terminal |
CN110740272A (en) * | 2019-10-31 | 2020-01-31 | Oppo广东移动通信有限公司 | Image acquisition method, camera assembly and mobile terminal |
CN110913152A (en) * | 2019-11-25 | 2020-03-24 | Oppo广东移动通信有限公司 | Image sensor, camera assembly and mobile terminal |
CN110996077A (en) * | 2019-11-25 | 2020-04-10 | Oppo广东移动通信有限公司 | Image sensor, camera assembly and mobile terminal |
CN111031297A (en) * | 2019-12-02 | 2020-04-17 | Oppo广东移动通信有限公司 | Image sensor, control method, camera assembly and mobile terminal |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021223590A1 (en) * | 2020-05-07 | 2021-11-11 | Oppo广东移动通信有限公司 | Image sensor, control method, camera assembly, and mobile terminal |
EP4216534A4 (en) * | 2020-10-09 | 2024-01-24 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | METHOD AND DEVICE FOR RECEIVING IMAGES, TERMINAL AND COMPUTER-READABLE STORAGE MEDIUM |
US12244911B2 (en) | 2020-10-09 | 2025-03-04 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Image obtaining method and apparatus, terminal, and computer-readable storage medium having multiple panchromatic binnng modes |
WO2022073364A1 (en) * | 2020-10-09 | 2022-04-14 | Oppo广东移动通信有限公司 | Image obtaining method and apparatus, terminal, and computer readable storage medium |
CN112235494A (en) * | 2020-10-15 | 2021-01-15 | Oppo广东移动通信有限公司 | Image sensor, control method, imaging device, terminal, and readable storage medium |
EP4210323A4 (en) * | 2020-11-18 | 2024-01-10 | Samsung Electronics Co., Ltd. | Camera module and electronic device including camera module |
CN114697585A (en) * | 2020-12-31 | 2022-07-01 | 杭州海康威视数字技术股份有限公司 | Image sensor, image processing system and image processing method |
WO2022141349A1 (en) * | 2020-12-31 | 2022-07-07 | Oppo广东移动通信有限公司 | Image processing pipeline, image processing method, camera assembly, and electronic device |
CN116114264A (en) * | 2020-12-31 | 2023-05-12 | Oppo广东移动通信有限公司 | Image processing pipeline, image processing method, camera assembly and electronics |
CN114697585B (en) * | 2020-12-31 | 2023-12-29 | 杭州海康威视数字技术股份有限公司 | Image sensor, image processing system and image processing method |
CN113178457A (en) * | 2021-04-12 | 2021-07-27 | 维沃移动通信有限公司 | Pixel structure and image sensor |
CN113676708B (en) * | 2021-07-01 | 2023-11-14 | Oppo广东移动通信有限公司 | Image generation method, device, electronic equipment and computer readable storage medium |
CN113676708A (en) * | 2021-07-01 | 2021-11-19 | Oppo广东移动通信有限公司 | Image generation method and device, electronic equipment and computer-readable storage medium |
CN113676675B (en) * | 2021-08-16 | 2023-08-15 | Oppo广东移动通信有限公司 | Image generating method, device, electronic device, and computer-readable storage medium |
CN113676675A (en) * | 2021-08-16 | 2021-11-19 | Oppo广东移动通信有限公司 | Image generation method, apparatus, electronic device, and computer-readable storage medium |
WO2023020527A1 (en) * | 2021-08-19 | 2023-02-23 | 维沃移动通信(杭州)有限公司 | Image processing method and apparatus, electronic device, and readable storage medium |
WO2023087908A1 (en) * | 2021-11-22 | 2023-05-25 | Oppo广东移动通信有限公司 | Focusing control method and apparatus, image sensor, electronic device, and computer readable storage medium |
WO2023098230A1 (en) * | 2021-12-01 | 2023-06-08 | Oppo广东移动通信有限公司 | Image sensor, camera module, electronic device, and image generation method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
WO2021223590A1 (en) | 2021-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111586323A (en) | Image sensor, control method, camera assembly, and mobile terminal | |
CN110649056B (en) | Image sensor, camera assembly and mobile terminal | |
CN111405204B (en) | Image acquisition method, imaging device, electronic device, and readable storage medium | |
CN110649057B (en) | Image sensor, camera assembly and mobile terminal | |
US12238429B2 (en) | Control method, camera assembly, and mobile terminal | |
US12244923B2 (en) | Control method, camera assembly, and mobile terminal with panchromatic pixels and minimum repeating units | |
CN112235494B (en) | Image sensor, control method, imaging device, terminal, and readable storage medium | |
US12136636B2 (en) | Image sensor, camera assembly and mobile terminal | |
CN111314592A (en) | Image processing method, camera assembly and mobile terminal | |
CN110784634A (en) | Image sensor, control method, camera assembly and mobile terminal | |
WO2021062661A1 (en) | Image sensor, camera assembly, and mobile terminal | |
KR20200098032A (en) | Pixel array included in image sensor and image sensor including the same | |
US20220150450A1 (en) | Image capturing method, camera assembly, and mobile terminal | |
JP2022192062A (en) | Image sensor, camera module, mobile terminal and image collection method | |
CN111263129A (en) | Image sensor, camera assembly and mobile terminal | |
WO2021062662A1 (en) | Image sensor, camera assembly, and mobile terminal | |
CN114424517B (en) | Image sensor, control method, camera component and mobile terminal | |
US20220279108A1 (en) | Image sensor and mobile terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200825 |