CN111584521B - Array substrate, manufacturing method thereof and display panel - Google Patents
Array substrate, manufacturing method thereof and display panel Download PDFInfo
- Publication number
- CN111584521B CN111584521B CN202010447754.7A CN202010447754A CN111584521B CN 111584521 B CN111584521 B CN 111584521B CN 202010447754 A CN202010447754 A CN 202010447754A CN 111584521 B CN111584521 B CN 111584521B
- Authority
- CN
- China
- Prior art keywords
- layer
- source electrode
- metal oxide
- substrate
- oxide pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 265
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 201
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 200
- 239000010409 thin film Substances 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims description 60
- 239000002184 metal Substances 0.000 claims description 60
- 238000000034 method Methods 0.000 claims description 54
- 238000002161 passivation Methods 0.000 claims description 54
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims description 13
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 12
- 238000001259 photo etching Methods 0.000 claims 2
- 239000010410 layer Substances 0.000 description 419
- 238000000206 photolithography Methods 0.000 description 29
- 238000010586 diagram Methods 0.000 description 28
- 229920002120 photoresistant polymer Polymers 0.000 description 21
- 239000004065 semiconductor Substances 0.000 description 20
- 239000004973 liquid crystal related substance Substances 0.000 description 11
- 229910021645 metal ion Inorganic materials 0.000 description 10
- 238000005468 ion implantation Methods 0.000 description 8
- 125000004430 oxygen atom Chemical group O* 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
- H10D86/021—Manufacture or treatment of multiple TFTs
- H10D86/0221—Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/421—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
- H10D86/423—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer comprising semiconductor materials not belonging to the Group IV, e.g. InGaZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明提供一种阵列基板及其制作方法、显示面板。本发明提供的阵列基板,包括基板和设置在基板上的薄膜晶体管,薄膜晶体管包括栅极、栅绝缘层、源极和金属氧化物图形,源极和金属氧化物图形同层设置,且金属氧化物图形和源极之间具有相互重叠的部分,栅绝缘层在阵列基板的层叠方向上设于栅极和源极之间;其中,金属氧化物图形包括位于中间区域的第一部分和位于第一部分两侧的第二部分,源极和第二部分接触,第一部分半导体化形成有源层,第二部分作为像素电极。本发明提供的阵列基板中薄膜晶体管的性能较好,且阵列基板的生产工艺较为简单,生产成本较低。
The invention provides an array substrate, a manufacturing method thereof, and a display panel. The array substrate provided by the invention includes a substrate and a thin film transistor arranged on the substrate. The thin film transistor includes a gate electrode, a gate insulating layer, a source electrode and a metal oxide pattern. The source electrode and the metal oxide pattern are arranged in the same layer, and the metal oxide There are overlapping portions between the physical pattern and the source electrode, and the gate insulating layer is provided between the gate electrode and the source electrode in the stacking direction of the array substrate; wherein, the metal oxide pattern includes a first portion located in the middle area and a first portion located in the first portion. The second part on both sides, the source electrode and the second part are in contact, the first part is semiconductorized to form an active layer, and the second part serves as a pixel electrode. The thin film transistor in the array substrate provided by the present invention has better performance, and the production process of the array substrate is relatively simple and the production cost is low.
Description
技术领域Technical field
本发明涉及液晶显示技术领域,尤其涉及一种阵列基板及其制作方法、显示面板。The present invention relates to the field of liquid crystal display technology, and in particular, to an array substrate, a manufacturing method thereof, and a display panel.
背景技术Background technique
随着显示技术的发展,液晶显示器(Liquid Crystal Display,简称LCD)等平面显示装置因具有高画质、省电、机身薄、无辐射等优点,而被广泛的应用于手机、电视、个人数字助理、笔记本电脑等各种消费性电子产品中,成为显示装置中的主流。With the development of display technology, flat display devices such as Liquid Crystal Display (LCD) are widely used in mobile phones, TVs, and personal computers due to their advantages such as high image quality, power saving, thin body, and no radiation. It has become the mainstream display device in various consumer electronic products such as digital assistants and notebook computers.
液晶显示面板通常由相对设置的阵列基板、彩膜基板以及夹设在阵列基板和彩膜基板之间的液晶层组成,通过在阵列基板和彩膜基板之间施加驱动电压,可控制液晶分子旋转,从而将背光模组的光线折射出来产生画面。其中,阵列基板通常包括玻璃基板及设置在玻璃基板上的薄膜晶体管,薄膜晶体管包括栅极、源极、漏极、半导体层以及像素电极;源极、漏极和半导体层通常位于同一层内,且源极和漏极位于半导体层两侧,源极和漏极通过半导体层连接,三者形成有源岛图形;栅极与有源岛图形设置在不同层,且栅极所在层与有源岛图形所在层之间通过栅绝缘层间隔开;像素电极可以与有源岛图形同层或不同层设置,且像素电极与漏极相连接。A liquid crystal display panel usually consists of an array substrate, a color filter substrate, and a liquid crystal layer sandwiched between the array substrate and the color filter substrate. By applying a driving voltage between the array substrate and the color filter substrate, the rotation of the liquid crystal molecules can be controlled. , thereby refracting the light from the backlight module to produce a picture. Among them, the array substrate usually includes a glass substrate and a thin film transistor disposed on the glass substrate. The thin film transistor includes a gate electrode, a source electrode, a drain electrode, a semiconductor layer and a pixel electrode; the source electrode, drain electrode and semiconductor layer are usually located in the same layer. The source and drain are located on both sides of the semiconductor layer, and the source and drain are connected through the semiconductor layer. The three form an active island pattern; the gate electrode and the active island pattern are set on different layers, and the layer where the gate electrode is located is connected to the active island pattern. The layers where the island patterns are located are separated by a gate insulating layer; the pixel electrodes can be placed on the same layer or in different layers as the active island patterns, and the pixel electrodes are connected to the drain electrodes.
但是,现有技术中的阵列基板,源极中的金属离子会扩散至半导体层,会对半导体层产生影响,进而影响薄膜晶体管的特性。However, in array substrates in the prior art, metal ions in the source electrode will diffuse to the semiconductor layer, which will affect the semiconductor layer, thereby affecting the characteristics of the thin film transistor.
发明内容Contents of the invention
本发明提供一种阵列基板及其制作方法、显示面板,阵列基板中薄膜晶体管的性能较好,且阵列基板的生产工艺较为简单,生产成本较低。The invention provides an array substrate, a manufacturing method thereof, and a display panel. The thin film transistors in the array substrate have better performance, and the production process of the array substrate is relatively simple and the production cost is low.
第一方面,本发明提供一种阵列基板,该阵列基板包括基板和设置在基板上的薄膜晶体管,薄膜晶体管包括栅极、栅绝缘层、源极和金属氧化物图形,源极和金属氧化物图形同层设置,且金属氧化物图形和源极之间具有相互重叠的部分,栅绝缘层在阵列基板的层叠方向上设于栅极和源极之间;其中,金属氧化物图形包括位于中间区域与栅极相对的第一部分和位于第一部分两侧的第二部分,第一部分半导体化形成有源层,源极和靠近源极的第二部分之间具有相互重叠的部分,远离源极的第二部分作为像素电极。In a first aspect, the present invention provides an array substrate. The array substrate includes a substrate and a thin film transistor arranged on the substrate. The thin film transistor includes a gate electrode, a gate insulating layer, a source electrode and a metal oxide pattern. The source electrode and the metal oxide The patterns are arranged on the same layer, and the metal oxide pattern and the source electrode have overlapping parts. The gate insulating layer is arranged between the gate electrode and the source electrode in the stacking direction of the array substrate; wherein, the metal oxide pattern includes a layer located in the middle The first part of the region opposite to the gate electrode and the second part located on both sides of the first part, the first part is semiconductorized to form an active layer, the source electrode and the second part close to the source electrode have overlapping parts, and the part far from the source electrode The second part serves as the pixel electrode.
在一种可能的实施方式中,栅极设置在基板上,栅绝缘层覆盖基板和栅极,源极和金属氧化物图形设置在栅绝缘层上。In a possible implementation, the gate electrode is disposed on the substrate, the gate insulating layer covers the substrate and the gate electrode, and the source electrode and the metal oxide pattern are disposed on the gate insulating layer.
在一种可能的实施方式中,还包括钝化层,钝化层设在栅绝缘层上,钝化层覆盖源极和金属氧化物图形;其中,钝化层包括依次层叠在栅绝缘层上的第一钝化层和第二钝化层,第一钝化层为氧化硅层,第二钝化层为氮化硅层。In a possible implementation, a passivation layer is also included, the passivation layer is provided on the gate insulating layer, and the passivation layer covers the source electrode and the metal oxide pattern; wherein, the passivation layer includes layers stacked on the gate insulating layer in sequence. A first passivation layer and a second passivation layer, the first passivation layer is a silicon oxide layer, and the second passivation layer is a silicon nitride layer.
在一种可能的实施方式中,源极和金属氧化物图形设置在基板上,栅绝缘层覆盖基板及源极和金属氧化物图形,栅极设置在栅绝缘层上。In a possible implementation, the source electrode and the metal oxide pattern are disposed on the substrate, the gate insulating layer covers the substrate and the source electrode and the metal oxide pattern, and the gate electrode is disposed on the gate insulating layer.
在一种可能的实施方式中,阵列基板还包括绝缘衬底层,绝缘衬底层设在基板和栅绝缘层之间,源极和金属氧化物图形设在绝缘衬底层上;其中,绝缘衬底层包括依次层叠在基板上的第一绝缘衬底层和第二绝缘衬底层,第一绝缘衬底层为氮化硅层,第二绝缘衬底层为氧化硅层。In a possible implementation, the array substrate further includes an insulating substrate layer, the insulating substrate layer is provided between the substrate and the gate insulating layer, the source electrode and the metal oxide pattern are provided on the insulating substrate layer; wherein the insulating substrate layer includes A first insulating substrate layer and a second insulating substrate layer are sequentially stacked on the substrate. The first insulating substrate layer is a silicon nitride layer, and the second insulating substrate layer is a silicon oxide layer.
在一种可能的实施方式中,阵列基板还包括漏极,金属氧化物图形中远离源极的第二部分包括第一段和第二段,第一段与第一部分连接,第二段与第一段之间具有间隔,漏极连接在第一段和第二段之间,第二段作为像素电极。In a possible implementation, the array substrate further includes a drain electrode, and the second part of the metal oxide pattern away from the source electrode includes a first section and a second section, the first section is connected to the first section, and the second section is connected to the second section. There is a gap between one section and the drain electrode is connected between the first section and the second section, and the second section serves as the pixel electrode.
第二方面,本发明提供一种阵列基板的制作方法,该制作方法包括如下步骤:In a second aspect, the present invention provides a method for manufacturing an array substrate. The manufacturing method includes the following steps:
在基板上形成栅极;forming a gate on the substrate;
在基板上形成栅绝缘层,栅绝缘层覆盖栅极;A gate insulating layer is formed on the substrate, and the gate insulating layer covers the gate electrode;
在栅绝缘层上形成源极和金属氧化物图形;其中,金属氧化物图形包括位于中间区域的第一部分和位于第一部分两侧的第二部分,源极和靠近源极的第二部分之间具有相互重叠的部分,远离源极的第二部分作为像素电极;Forming a source electrode and a metal oxide pattern on the gate insulating layer; wherein the metal oxide pattern includes a first part located in the middle area and a second part located on both sides of the first part, between the source electrode and a second part close to the source electrode There are mutually overlapping parts, and the second part away from the source electrode serves as the pixel electrode;
对金属氧化物图形的第一部分进行半导体化使其形成有源层;Semiconducting the first portion of the metal oxide pattern to form an active layer;
在栅绝缘层上形成钝化层,钝化层覆盖源极和金属氧化物图形。A passivation layer is formed on the gate insulating layer, and the passivation layer covers the source electrode and the metal oxide pattern.
第三方面,本发明提供一种阵列基板的制作方法,该制作方法包括如下步骤:In a third aspect, the present invention provides a method for manufacturing an array substrate. The manufacturing method includes the following steps:
在基板上形成绝缘衬底层;forming an insulating substrate layer on the substrate;
在绝缘衬底层上形成源极和金属氧化物图形;其中,金属氧化物图形包括位于中间区域的第一部分和位于第一部分两侧的第二部分,源极和靠近源极的第二部分之间具有相互重叠的部分,远离源极的第二部分作为像素电极;Forming a source electrode and a metal oxide pattern on the insulating substrate layer; wherein the metal oxide pattern includes a first part located in the middle area and a second part located on both sides of the first part, between the source electrode and a second part close to the source electrode There are mutually overlapping parts, and the second part away from the source electrode serves as the pixel electrode;
对金属氧化物图形的第一部分进行半导体化使其形成有源层;Semiconducting the first portion of the metal oxide pattern to form an active layer;
在绝缘衬底层上形成栅绝缘层,栅绝缘层覆盖源极和金属氧化物图形;A gate insulating layer is formed on the insulating substrate layer, and the gate insulating layer covers the source electrode and the metal oxide pattern;
在栅绝缘层上形成栅极。A gate electrode is formed on the gate insulating layer.
在一种可能的实施方式中,形成源极和金属氧化物图形,具体包括:In a possible implementation, forming the source electrode and metal oxide pattern specifically includes:
在栅绝缘层或绝缘衬底层上沉积源极金属层;Depositing a source metal layer on the gate insulating layer or insulating substrate layer;
对源极金属层进行光刻工艺形成源极;Perform photolithography process on the source metal layer to form the source;
在栅绝缘层或绝缘衬底层上沉积金属氧化物层,金属氧化物层覆盖源极;Deposit a metal oxide layer on the gate insulating layer or insulating substrate layer, and the metal oxide layer covers the source electrode;
对金属氧化物层进行光刻工艺形成金属氧化物图形;其中,金属氧化物图形包括位于中间区域的第一部分和位于第一部分两侧的第二部分,源极和靠近源极的第二部分之间具有相互重叠的部分。A photolithography process is performed on the metal oxide layer to form a metal oxide pattern; wherein the metal oxide pattern includes a first part located in the middle area and a second part located on both sides of the first part, between the source electrode and a second part close to the source electrode. have overlapping parts.
在一种可能的实施方式中,形成源极和金属氧化物图形,具体包括:In a possible implementation, forming the source electrode and metal oxide pattern specifically includes:
在栅绝缘层或绝缘衬底层上沉积源漏极金属层;Deposit source and drain metal layers on the gate insulating layer or insulating substrate layer;
对源漏极金属层进行光刻工艺形成源极和漏极;其中,源极和漏极之间具有间隔;A photolithography process is performed on the source and drain metal layers to form source and drain electrodes; wherein, there is a gap between the source and drain electrodes;
在栅绝缘层或绝缘衬底层上沉积金属氧化物层,金属氧化物层覆盖源极和漏极;Deposit a metal oxide layer on the gate insulating layer or insulating substrate layer, and the metal oxide layer covers the source and drain electrodes;
对金属氧化物层进行光刻工艺形成金属氧化物图形;其中,金属氧化物图形包括位于中间区域的第一部分和位于第一部分两侧的第二部分,源极和靠近源极的第二部分之间具有相互重叠的部分,远离源极的第二部分包括第一段和第二段,第一段与第一部分连接,第二段与第一段之间具有间隔,漏极连接在第一段和第二段之间。A photolithography process is performed on the metal oxide layer to form a metal oxide pattern; wherein the metal oxide pattern includes a first part located in the middle area and a second part located on both sides of the first part, between the source electrode and a second part close to the source electrode. There are mutually overlapping parts. The second part away from the source includes a first section and a second section. The first section is connected to the first section. There is a gap between the second section and the first section. The drain is connected to the first section. between the second paragraph.
第四方面,本发明提供一种显示面板,该显示面板包括如上所述的阵列基板。In a fourth aspect, the present invention provides a display panel, which includes the array substrate as described above.
本发明提供一种阵列基板及其制作方法、显示面板,阵列基板通过在同一结构层内设置源极和金属氧化物图形,且金属氧化物图形和源极之间具有相互重叠的部分,其中,金属氧化物图形包括第一部分和第二部分,第一部分位于金属氧化物图形的中间区域,第二部分位于第一部分两侧,源极和与其相对应的第二部分接触;通过将金属氧化物图形的第二部分作为像素电极,并且对金属氧化物图形的第一部分进行半导体化处理,将第一部分作为有源层,这样可以实现源极将电信号通过有源层传递至像素电极;同时,由于有源层的两侧均为第二部分,即第二部分将源极和有源层间隔开,因而源极中的金属离子不会扩散至有源层,不会影响有源层的半导体特性,进而可以提高薄膜晶体管的性能;另外,阵列基板的生产工艺较为简单,生产成本较低。The present invention provides an array substrate, a manufacturing method thereof, and a display panel. The array substrate is provided with a source electrode and a metal oxide pattern in the same structural layer, and the metal oxide pattern and the source electrode have overlapping portions, wherein, The metal oxide pattern includes a first part and a second part. The first part is located in the middle area of the metal oxide pattern, and the second part is located on both sides of the first part. The source electrode is in contact with the second part corresponding to it; by connecting the metal oxide pattern The second part serves as the pixel electrode, and the first part of the metal oxide pattern is semiconductorized, and the first part is used as the active layer, so that the source can transmit the electrical signal to the pixel electrode through the active layer; at the same time, because There are second parts on both sides of the active layer, that is, the second part separates the source and the active layer, so the metal ions in the source will not diffuse to the active layer and will not affect the semiconductor of the active layer. characteristics, which can improve the performance of thin film transistors; in addition, the production process of the array substrate is relatively simple and the production cost is low.
附图说明Description of the drawings
为了更清楚地说明本发明或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the present invention or the prior art, a brief introduction will be made below to the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are the drawings of the present invention. For some embodiments, those of ordinary skill in the art can also obtain other drawings based on these drawings without exerting any creative effort.
图1为本发明实施例一提供的一种阵列基板的结构示意图;Figure 1 is a schematic structural diagram of an array substrate provided in Embodiment 1 of the present invention;
图2为本发明实施例一提供的第二种阵列基板的结构示意图;Figure 2 is a schematic structural diagram of a second array substrate provided by Embodiment 1 of the present invention;
图3为本发明实施例一提供的第三种阵列基板的结构示意图;Figure 3 is a schematic structural diagram of a third array substrate provided by Embodiment 1 of the present invention;
图4为本发明实施例一提供的第四种阵列基板的结构示意图;Figure 4 is a schematic structural diagram of a fourth array substrate provided in Embodiment 1 of the present invention;
图5为本发明实施例二提供的一种阵列基板的制作方法的流程示意图;Figure 5 is a schematic flow chart of a method for manufacturing an array substrate provided in Embodiment 2 of the present invention;
图6为本发明实施例二提供的在基板上形成栅极的结构示意图;Figure 6 is a schematic structural diagram of forming a gate electrode on a substrate according to Embodiment 2 of the present invention;
图7为本发明实施例二提供的在栅极上形成栅绝缘层的结构示意图;Figure 7 is a schematic structural diagram of forming a gate insulating layer on a gate according to Embodiment 2 of the present invention;
图8为本发明实施例二提供的在栅绝缘层上形成源极和金属氧化物图形的结构示意图;Figure 8 is a schematic structural diagram of forming a source electrode and a metal oxide pattern on a gate insulating layer according to Embodiment 2 of the present invention;
图9为本发明实施例二提供的在源极和金属氧化物图形上形成钝化层的结构示意图;Figure 9 is a schematic structural diagram of forming a passivation layer on a source electrode and a metal oxide pattern according to Embodiment 2 of the present invention;
图10为本发明实施例三提供的另一种阵列基板的制作方法的流程示意图;Figure 10 is a schematic flow chart of another method for manufacturing an array substrate provided in Embodiment 3 of the present invention;
图11为本发明实施例三提供的在基板上形成绝缘衬底层的结构示意图;Figure 11 is a schematic structural diagram of forming an insulating substrate layer on a substrate according to Embodiment 3 of the present invention;
图12为本发明实施例三提供的在绝缘衬底层上形成源极和金属氧化物图形的结构示意图;Figure 12 is a schematic structural diagram of forming source electrodes and metal oxide patterns on an insulating substrate layer according to Embodiment 3 of the present invention;
图13为本发明实施例三提供的在源极和金属氧化物图形上形成栅绝缘层的结构示意图;Figure 13 is a schematic structural diagram of forming a gate insulating layer on a source electrode and a metal oxide pattern according to Embodiment 3 of the present invention;
图14为本发明实施例三提供的在栅绝缘层上形成栅极的结构示意图;Figure 14 is a schematic structural diagram of forming a gate electrode on a gate insulating layer according to Embodiment 3 of the present invention;
图15为本发明实施例四提供的一种形成源极和金属氧化物图形的流程图;Figure 15 is a flow chart for forming source electrodes and metal oxide patterns according to Embodiment 4 of the present invention;
图16为本发明实施例四提供的另一种形成源极和金属氧化物图形的流程图。FIG. 16 is another flow chart for forming source electrodes and metal oxide patterns provided in Embodiment 4 of the present invention.
附图标记说明:Explanation of reference symbols:
100-阵列基板;110-基板;120-栅极;130-栅绝缘层;131-第一栅绝缘层;132-第二栅绝缘层;140-源极;150-金属氧化物图形;151-第一部分;151a-有源层;152-第二部分;152a-像素电极;1521-第一段;1522-第二段;160-钝化层;161-第一钝化层;162-第二钝化层;170-绝缘衬底层;171-第一绝缘衬底层;172-第二绝缘衬底层;180-漏极;a-第一金属层;b-第二金属层。100-array substrate; 110-substrate; 120-gate; 130-gate insulating layer; 131-first gate insulating layer; 132-second gate insulating layer; 140-source; 150-metal oxide pattern; 151- First part; 151a-active layer; 152-second part; 152a-pixel electrode; 1521-first section; 1522-second section; 160-passivation layer; 161-first passivation layer; 162-second Passivation layer; 170-insulating substrate layer; 171-first insulating substrate layer; 172-second insulating substrate layer; 180-drain; a-first metal layer; b-second metal layer.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the present invention more clear, the technical solutions in the present invention will be clearly and completely described below in conjunction with the accompanying drawings of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention. , not all examples. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without making creative efforts fall within the scope of protection of the present invention.
实施例一Embodiment 1
图1为本发明实施例一提供的一种阵列基板的结构示意图;图2为本发明实施例一提供的第二种阵列基板的结构示意图;图3为本发明实施例一提供的第三种阵列基板的结构示意图;图4为本发明实施例一提供的第四种阵列基板的结构示意图。Figure 1 is a schematic structural diagram of an array substrate provided in Embodiment 1 of the present invention; Figure 2 is a schematic structural diagram of a second array substrate provided in Embodiment 1 of the present invention; Figure 3 is a third array substrate provided in Embodiment 1 of the present invention. A schematic structural diagram of an array substrate; FIG. 4 is a schematic structural diagram of a fourth array substrate provided in Embodiment 1 of the present invention.
如图1至图4所示,本实施例提供一种阵列基板100,该阵列基板100包括基板110和设置在基板110上的薄膜晶体管,薄膜晶体管包括栅极120、栅绝缘层130、源极140和金属氧化物图形150,源极140和金属氧化物图形150同层设置,且金属氧化物图形150和源极140之间具有相互重叠的部分,栅绝缘层130在阵列基板100的层叠方向上设于栅极120和源极140之间;其中,金属氧化物图形150包括位于中间区域与栅极120相对的第一部分151和位于第一部分151两侧的第二部分152,第一部分151半导体化形成有源层151a,源极140和靠近源极140的第二部分152之间具有相互重叠的部分,远离源极140的第二部分152作为像素电极152a。As shown in FIGS. 1 to 4 , this embodiment provides an array substrate 100 . The array substrate 100 includes a substrate 110 and a thin film transistor disposed on the substrate 110 . The thin film transistor includes a gate electrode 120 , a gate insulating layer 130 , and a source electrode. 140 and the metal oxide pattern 150, the source electrode 140 and the metal oxide pattern 150 are arranged in the same layer, and there are overlapping portions between the metal oxide pattern 150 and the source electrode 140. The gate insulating layer 130 is in the stacking direction of the array substrate 100. is provided between the gate electrode 120 and the source electrode 140; wherein, the metal oxide pattern 150 includes a first part 151 located in the middle area opposite to the gate electrode 120 and a second part 152 located on both sides of the first part 151. The first part 151 is a semiconductor The active layer 151a is formed, the source electrode 140 and the second portion 152 close to the source electrode 140 have overlapping portions, and the second portion 152 far away from the source electrode 140 serves as the pixel electrode 152a.
如图1至图4所示,阵列基板100中包括基板110,基板110作为阵列基板100的基础承载结构,阵列基板100的其余层级结构均形成在基板110上,其中,基板110可以是石英或玻璃基板。As shown in FIGS. 1 to 4 , the array substrate 100 includes a substrate 110 . The substrate 110 serves as the basic carrying structure of the array substrate 100 . The remaining hierarchical structures of the array substrate 100 are formed on the substrate 110 . The substrate 110 may be quartz or quartz. Glass base board.
本实施例中,应当理解的是,对于液晶显示面板中应用的阵列基板100,阵列基板100的像素区域中通常设置有多条数据线和扫描线,多条数据线和多条扫描线将像素区域划分为多个子像素,每个子像素中均设有至少一个薄膜晶体管。In this embodiment, it should be understood that for the array substrate 100 used in the liquid crystal display panel, multiple data lines and scan lines are usually provided in the pixel area of the array substrate 100. The multiple data lines and the multiple scan lines connect the pixels to each other. The area is divided into a plurality of sub-pixels, and at least one thin film transistor is provided in each sub-pixel.
具体的,多条数据线之间相互平行间隔设置,多条扫描线之间相互平行间隔设置,且数据线和扫描线在空间上横纵交错设置。以阵列基板100的形状为矩形为例,数据线可以沿阵列基板100的宽度方向延伸,扫描线可以沿阵列基板100的长度方向延伸,通过数据线和扫描线的相互交错,在阵列基板100上形成多个呈矩阵式排布的子像素。Specifically, multiple data lines are arranged in parallel and spaced apart from each other, multiple scanning lines are arranged in parallel and spaced apart from each other, and the data lines and scanning lines are arranged in a criss-cross direction in space. Taking the shape of the array substrate 100 as a rectangle as an example, the data lines can extend along the width direction of the array substrate 100, and the scan lines can extend along the length direction of the array substrate 100. Through the interlacing of the data lines and scan lines, on the array substrate 100 Multiple sub-pixels arranged in a matrix are formed.
其中,数据线和扫描线对薄膜晶体管的驱动方式可以采用逐行扫描等现有的驱动方式,此处不再赘述。Among them, the driving method of the thin film transistors by the data lines and scanning lines can adopt existing driving methods such as progressive scanning, which will not be described again here.
如图1至图4所示,本实施例提供的阵列基板100中,薄膜晶体管设置在基板110上,薄膜晶体管(简称:TFT器件)包括栅极120、栅绝缘层130、源极140和金属氧化物图形150。其中,金属氧化物图形150包括像素电极152a和有源层151a。As shown in FIGS. 1 to 4 , in the array substrate 100 provided by this embodiment, the thin film transistor is disposed on the substrate 110 . The thin film transistor (abbreviation: TFT device) includes a gate electrode 120 , a gate insulating layer 130 , a source electrode 140 and a metal Oxide graphics150. Among them, the metal oxide pattern 150 includes a pixel electrode 152a and an active layer 151a.
具体的,源极140和金属氧化物图形150同层设置,栅极120与源极140、金属氧化物图形150间隔设置在不同结构层内,其中,栅绝缘层130间隔在源极140和栅极120之间,这样可以使栅极120和源极140之间彼此绝缘。Specifically, the source electrode 140 and the metal oxide pattern 150 are arranged in the same layer, and the gate electrode 120 is spaced apart from the source electrode 140 and the metal oxide pattern 150 in different structural layers, wherein the gate insulating layer 130 is spaced between the source electrode 140 and the gate electrode 140 . between the gate electrode 120, so that the gate electrode 120 and the source electrode 140 can be insulated from each other.
在实际应用中,对于每个子像素,源极140可以对应数据线设置,即源极140与数据线同层设置,源极140可以为数据线上连接的分支,每个子像素内均具有源极140;同样的,栅极120可以对应扫描线设置,即栅极120与扫描线同层设置,栅极120可以为扫描线上连接的分支,每个子像素内均具有栅极120。In practical applications, for each sub-pixel, the source 140 can be set corresponding to the data line, that is, the source 140 and the data line are set on the same layer. The source 140 can be a branch connected to the data line, and each sub-pixel has a source. 140; Similarly, the gate 120 can be arranged corresponding to the scanning line, that is, the gate 120 and the scanning line are arranged on the same layer. The gate 120 can be a branch connected to the scanning line, and each sub-pixel has a gate 120.
可以理解的是,扫描线通电产生电信号后,将电信号传递至栅极120,栅极120带电可将通过栅绝缘层130与其间隔设置的有源层151a导体化,使有源层151a能够将源极140上的电信号传递至像素电极152a;而在扫描线未通电时,有源层151a则维持其半导体特性。It can be understood that after the scan line is energized to generate an electrical signal, the electrical signal is transmitted to the gate 120. The gate 120 is charged to conduct the active layer 151a spaced therefrom through the gate insulating layer 130, so that the active layer 151a can The electrical signal on the source electrode 140 is transmitted to the pixel electrode 152a; when the scan line is not energized, the active layer 151a maintains its semiconductor characteristics.
本实施例中,金属氧化物图形150和源极140之间具有相互重叠的部分,即金属氧化物图形150和源极140相对的一侧之间相互搭接,以使源极140可以将电信号传递至金属氧化物图形150。其中,金属氧化物图形150包括第一部分151和第二部分152,第一部分151对应位于金属氧化物图形150的中间区域,第一部分151的两侧均为金属氧化物图形150的第二部分152。In this embodiment, the metal oxide pattern 150 and the source electrode 140 have overlapping portions, that is, the opposite sides of the metal oxide pattern 150 and the source electrode 140 are overlapped with each other, so that the source electrode 140 can conduct electricity. The signal is passed to metal oxide pattern 150. The metal oxide pattern 150 includes a first part 151 and a second part 152. The first part 151 is located in the middle area of the metal oxide pattern 150, and both sides of the first part 151 are the second parts 152 of the metal oxide pattern 150.
具体的,与源极140相对的金属氧化物图形150的第二部分152与源极140接触,远离源极140的金属氧化物图形150的第二部分152可以作为像素电极152a,而位于金属氧化物图形150的中间区域的第一部分151则形成有源层151a,这样源极140将电信号传递至有源层151a,通过有源层151a将电信号传递至作为像素电极152a的金属氧化物图形150的第二部分152,如此实现对像素电极152a进行充放电。Specifically, the second part 152 of the metal oxide pattern 150 opposite to the source electrode 140 is in contact with the source electrode 140, and the second part 152 of the metal oxide pattern 150 away from the source electrode 140 can serve as the pixel electrode 152a, and is located on the metal oxide The first part 151 of the middle area of the object pattern 150 forms the active layer 151a, so that the source electrode 140 transmits the electrical signal to the active layer 151a, and transmits the electrical signal to the metal oxide pattern serving as the pixel electrode 152a through the active layer 151a. The second part 152 of 150 realizes charging and discharging the pixel electrode 152a in this way.
其中,金属氧化物图形150作为导体,若要将其第一部分151形成有源层151a,可以通过对第一部分151进行半导体化来实现。示例性的,可以采用对第一部分151通过紫外光照射或等离子注入等方法,来实现第一部分151的半导体化。The metal oxide pattern 150 serves as a conductor. If the first portion 151 of the metal oxide pattern 150 is to form the active layer 151a, this can be achieved by semiconductorizing the first portion 151. For example, the first part 151 may be semiconductorized by irradiating the first part 151 with ultraviolet light or plasma implantation.
现有技术中,有源层151a通常直接和源极140接触,例如,源极140的一侧覆盖在有源层151a上,或有源层151a的一侧覆盖在源极140上。对于这种结构形式,源极140中的Cu、Al等金属离子会直接扩散至与其接触的有源层151a,有源层151a吸收这些金属离子后,可能会被导体化,这样会影响有源层151a的半导体特性,进而影响TFT器件的特性。In the prior art, the active layer 151a is usually in direct contact with the source electrode 140. For example, one side of the source electrode 140 covers the active layer 151a, or one side of the active layer 151a covers the source electrode 140. For this structure, metal ions such as Cu and Al in the source electrode 140 will directly diffuse to the active layer 151a in contact with it. After absorbing these metal ions, the active layer 151a may become a conductor, which will affect the active layer 151a. The semiconductor properties of layer 151a further affect the characteristics of the TFT device.
如图1所示,本实施例中,对金属氧化物图形150的位于中间区域的第一部分151进行半导体化形成有源层151a,源极140与金属氧化物图形150的第二部分152接触,即有源层151a与源极140之间通过第二部分152间隔开,这样源极140中的Cu、Al等金属离子只能向与其接触的第二部分152扩散,第二部分152会吸收从源极140扩散而来的金属离子。As shown in Figure 1, in this embodiment, the first part 151 of the metal oxide pattern 150 located in the middle area is semiconductorized to form an active layer 151a, and the source electrode 140 is in contact with the second part 152 of the metal oxide pattern 150. That is, the active layer 151a and the source electrode 140 are separated by the second part 152, so that the metal ions such as Cu and Al in the source electrode 140 can only diffuse to the second part 152 in contact with it, and the second part 152 will absorb the ions from the second part 152. The metal ions diffused from the source 140.
如此,源极140中的金属离子便不能扩散至有源层151a,因而不会对有源层151a造成影响,通过金属氧化物图形150的第二部分152间隔在源极140和有源层151a之间,可以保护有源层151a,使有源层151a维持良好的半导体特性,进而可以提高TFT器件的性能。In this way, the metal ions in the source electrode 140 cannot diffuse to the active layer 151a, and thus will not affect the active layer 151a. The second portion 152 of the metal oxide pattern 150 is spaced between the source electrode 140 and the active layer 151a. In this way, the active layer 151a can be protected, so that the active layer 151a can maintain good semiconductor characteristics, thereby improving the performance of the TFT device.
示例性的,形成金属氧化物图形150的材料可以为氧化铟锡ITO,即金属氧化物图形150为ITO透明导电层。其中,ITO透明导电层的远离源极140的第二部分152作为像素电极152a。在一些其他实施例中,金属氧化物图形150也可以采用其他金属氧化物材料形成,本实施例对此不作限制。For example, the material forming the metal oxide pattern 150 may be indium tin oxide (ITO), that is, the metal oxide pattern 150 is an ITO transparent conductive layer. Among them, the second portion 152 of the ITO transparent conductive layer away from the source electrode 140 serves as the pixel electrode 152a. In some other embodiments, the metal oxide pattern 150 can also be formed using other metal oxide materials, which is not limited in this embodiment.
本实施例通过将金属氧化物图形150分为第一部分151和第二部分152,第一部分151位于中间区域,第二部分152位于第一部分151两侧,与源极140相对的第二部分152和源极140之间具有相互重叠的区域,远离源极140的第二部分152作为像素电极152a,将第一部分151半导体化形成有源层151a。这样不仅可以实现源极140将电信号通过有源层151a传递至像素电极152a,实现对像素电极152a充放电;同时,有源层151a和源极140之间通过第二部分152间隔开,可以阻碍源极140中的金属离子向有源层151a扩散,以保护有源层151a的半导体特性,进而提高TFT器件的性能。In this embodiment, the metal oxide pattern 150 is divided into a first part 151 and a second part 152. The first part 151 is located in the middle area, and the second part 152 is located on both sides of the first part 151. The second part 152 opposite to the source electrode 140 and There are mutually overlapping regions between the source electrodes 140. The second portion 152 away from the source electrode 140 serves as the pixel electrode 152a, and the first portion 151 is semiconductorized to form the active layer 151a. In this way, not only can the source electrode 140 transmit electrical signals to the pixel electrode 152a through the active layer 151a, thereby charging and discharging the pixel electrode 152a; at the same time, the active layer 151a and the source electrode 140 can be separated by the second part 152. The diffusion of metal ions in the source electrode 140 to the active layer 151a is hindered to protect the semiconductor properties of the active layer 151a, thereby improving the performance of the TFT device.
另外,对于阵列基板100的各层级结构的形成过程,本实施例中仅需要经过三次光刻工艺过程。具体的,在基板110上形成栅极120需要经过一次光刻工艺过程,形成源极140需要经过一次光刻工艺过程,形成金属氧化物图形150需要经过一次光刻工艺过程。In addition, in this embodiment, only three photolithography processes are required to form each hierarchical structure of the array substrate 100 . Specifically, forming the gate electrode 120 on the substrate 110 requires a photolithography process, forming the source electrode 140 requires a photolithography process, and forming the metal oxide pattern 150 requires a photolithography process.
与现有技术中阵列基板100的形成过程相比,本实施例的阵列基板100经历的光刻工艺次数较少,生产工艺更简单,这样可以降低阵列基板100的生产成本。Compared with the formation process of the array substrate 100 in the prior art, the array substrate 100 of this embodiment undergoes fewer photolithography processes and has a simpler production process, which can reduce the production cost of the array substrate 100 .
应当理解的是,本实施例中,形成阵列基板100的各层级结构需要经历三次光刻工艺过程,但若要实现对TFT器件的驱动,则阵列基板100中还需要设置与外部器件搭接的部位,例如,需要在阵列基板100中预留出能够暴露出栅极120和源极140的预留孔,通过在栅极120和源极140上设置与外部连通的预留孔,以将外部的电信号导通至阵列基板100中,从而实现对TFT器件的驱动。It should be understood that in this embodiment, three photolithography processes are required to form each hierarchical structure of the array substrate 100. However, if the TFT device is to be driven, the array substrate 100 also needs to be provided with an external device that overlaps with the external device. For example, a reserved hole that can expose the gate electrode 120 and the source electrode 140 needs to be reserved in the array substrate 100, and the reserved hole connected to the outside is provided on the gate electrode 120 and the source electrode 140 to connect the external The electrical signal is conducted to the array substrate 100 to realize driving of the TFT device.
而由于需要在栅极120和源极140上设置预留孔,不可避免的还需要增加一次刻蚀预留孔的工艺,因而还需要增加一次光刻工艺过程。Since reserved holes need to be provided on the gate electrode 120 and the source electrode 140 , it is inevitable to add a process of etching the reserved holes, and therefore also need to add a photolithography process.
如图1和图3所示,在一些实施方式中,本实施例中的阵列基板100,源极140和金属氧化物图形150所在的层级结构中,可以仅设置有源极140,而不设置漏极180,金属氧化物图形150的第一部分151半导体化形成的有源层151a直接和作为像素电极152a的第二部分152接触,因而源极140的电信号通过半导体层直接传递至像素电极152a。As shown in FIGS. 1 and 3 , in some embodiments, in the array substrate 100 in this embodiment, in the hierarchical structure where the source electrode 140 and the metal oxide pattern 150 are located, only the source electrode 140 may be provided, and no source electrode 140 may be provided. The drain electrode 180 and the active layer 151a formed by semiconductorizing the first part 151 of the metal oxide pattern 150 directly contact the second part 152 serving as the pixel electrode 152a, so the electrical signal of the source electrode 140 is directly transmitted to the pixel electrode 152a through the semiconductor layer. .
如图2和图4所示,在一些其他实施方式中,本实施例的阵列基板100中,源极140和金属氧化物图形150所在的层级结构中,还可以设置有漏极180,漏极180与源极140间隔设置,通过漏极180将电信号传递至像素电极152a。As shown in FIGS. 2 and 4 , in some other implementations, in the array substrate 100 of this embodiment, a drain electrode 180 may also be provided in the hierarchical structure where the source electrode 140 and the metal oxide pattern 150 are located. 180 is spaced apart from the source electrode 140, and the electrical signal is transmitted to the pixel electrode 152a through the drain electrode 180.
对于阵列基板100中设置有漏极180的结构,设置的金属氧化物图形150可以包括位于源极140和漏极180之间的部分和与漏极180一侧相邻的部分。其中,金属氧化物图形150中被半导体化为有源层151a的第一部分151位于源极140和漏极180之间的间隔内,且位于间隔内的还有第一部分151两侧的第二部分152,源极140与第二部分152具有相互重叠的区域;第二部分152包括第一段1521和第二段1522,第一段1521为对应连接在第一部分151两侧的区域,第二段1522设置在漏极180一侧,且第二段1522与第一段1521之间具有间隔,漏极180位于与第一部分151连接的第一段1521和第二段1522之间,这样即是以第二段1522作为像素电极152a。For a structure in which the drain electrode 180 is provided in the array substrate 100 , the metal oxide pattern 150 provided may include a portion located between the source electrode 140 and the drain electrode 180 and a portion adjacent to one side of the drain electrode 180 . Among them, the first portion 151 of the metal oxide pattern 150 that is semiconductorized into the active layer 151a is located in the interval between the source electrode 140 and the drain electrode 180, and is located in the interval as well as the second portions on both sides of the first portion 151. 152, the source 140 and the second part 152 have mutually overlapping areas; the second part 152 includes a first section 1521 and a second section 1522. The first section 1521 is a region corresponding to the two sides connected to the first part 151, and the second section 152 1522 is disposed on one side of the drain electrode 180, and there is a gap between the second section 1522 and the first section 1521. The drain electrode 180 is located between the first section 1521 and the second section 1522 connected to the first part 151, so that The second section 1522 serves as the pixel electrode 152a.
对于有漏极180的结构,电信号由源极140传递至有源层151a,有源层151a将电信号传递漏极180,漏极180再将电信号传递至像素电极152a,通过这样的方式来对像素电极152a充放电。For a structure with a drain electrode 180, the electrical signal is transmitted from the source electrode 140 to the active layer 151a. The active layer 151a transmits the electrical signal to the drain electrode 180, and the drain electrode 180 then transmits the electrical signal to the pixel electrode 152a. In this way to charge and discharge the pixel electrode 152a.
另外,本实施例中,对于设置漏极180的阵列基板100,漏极180可以和源极140经过同一道光刻工艺形成,并且虽然金属氧化物图形150的第二部分152包括第一段1521和第二段1522,但金属氧化物图形150同样仅需一次光刻工艺形成,因而并不会增加阵列基板100的光刻工艺次数,阵列基板100的制程工序与没有漏极180的阵列基板100的制程工序相同,生产工艺同样较为简单,阵列基板100的生产成本较低。In addition, in this embodiment, for the array substrate 100 provided with the drain electrode 180, the drain electrode 180 and the source electrode 140 can be formed through the same photolithography process, and although the second part 152 of the metal oxide pattern 150 includes the first segment 1521 and the second section 1522, but the metal oxide pattern 150 also only needs one photolithography process to form, so it does not increase the number of photolithography processes for the array substrate 100. The manufacturing process of the array substrate 100 is the same as that of the array substrate 100 without the drain electrode 180. The manufacturing process is the same, the production process is also relatively simple, and the production cost of the array substrate 100 is low.
以下以不设置漏极180的阵列基板100的各层级结构为例,对于设置漏极180的基板110,以下实施方式同样适用,此处不再赘述。The following takes the hierarchical structure of the array substrate 100 without the drain electrode 180 as an example. For the substrate 110 with the drain electrode 180 , the following embodiments are also applicable and will not be described again here.
如图1和图2所示,本实施例中,阵列基板100中的TFT器件可以为底栅结构。对于底栅结构的阵列基板100,栅极120可以设置在基板110上,栅绝缘层130覆盖基板110和栅极120,源极140和金属氧化物图形150设置在栅绝缘层130上。As shown in FIGS. 1 and 2 , in this embodiment, the TFT device in the array substrate 100 may have a bottom gate structure. For the array substrate 100 of the bottom gate structure, the gate electrode 120 may be disposed on the substrate 110 , the gate insulating layer 130 covers the substrate 110 and the gate electrode 120 , and the source electrode 140 and the metal oxide pattern 150 are disposed on the gate insulating layer 130 .
在一种可能的实施方式中,栅绝缘层130上还可以设置有钝化层160,钝化层160覆盖源极140和金属氧化物图形150。钝化层160用于保护其下方的源极140以及金属氧化物图形150中的像素电极152a和有源层151a,并且钝化层160可以作为阵列基板100的最外层结构,可以作为阵列基板100的保护层结构。In a possible implementation, a passivation layer 160 may also be provided on the gate insulating layer 130 , and the passivation layer 160 covers the source electrode 140 and the metal oxide pattern 150 . The passivation layer 160 is used to protect the source electrode 140 below it and the pixel electrode 152a and the active layer 151a in the metal oxide pattern 150. The passivation layer 160 can be used as the outermost structure of the array substrate 100 and can be used as an array substrate. 100% protective layer structure.
具体的,钝化层160可以包括依次层叠在栅绝缘层130上的第一钝化层161和第二钝化层162,第一钝化层161可以为氧化硅层,第二钝化层162可以为氮化硅层。第一钝化层161直接覆盖源极140和金属氧化物图形150,第二钝化层162覆盖在第一钝化层161上,通过设置第一钝化层161和第二钝化层162对源极140和金属氧化物图形150具有更好的保护作用。Specifically, the passivation layer 160 may include a first passivation layer 161 and a second passivation layer 162 sequentially stacked on the gate insulating layer 130. The first passivation layer 161 may be a silicon oxide layer, and the second passivation layer 162 It can be a silicon nitride layer. The first passivation layer 161 directly covers the source electrode 140 and the metal oxide pattern 150, and the second passivation layer 162 covers the first passivation layer 161. By setting the first passivation layer 161 and the second passivation layer 162 to The source electrode 140 and the metal oxide pattern 150 have better protection.
其中,钝化层160中的第一钝化层161为氧化硅层,第二钝化层162为氮化硅层。第二钝化层162可以作为阵列基板100的最外层结构,或者第二钝化层162距离阵列基板100的外表面较近,通过将第二钝化层162设置为氮化硅层,可以隔离外界的水汽,防止水汽对金属氧化物图形150和源极140造成影响;第一钝化层161直接覆盖在金属氧化物图形150和源极140上,通过将第一钝化层161设置为致密性较佳的氧化硅层,氧化硅层中富含的氧原子可以扩散到金属氧化物图形150的有源层151a中,补充有源层151a中的氧原子,维持有源层151a的半导体特性。The first passivation layer 161 in the passivation layer 160 is a silicon oxide layer, and the second passivation layer 162 is a silicon nitride layer. The second passivation layer 162 can be used as the outermost structure of the array substrate 100, or the second passivation layer 162 is closer to the outer surface of the array substrate 100. By setting the second passivation layer 162 as a silicon nitride layer, it can Isolate external water vapor to prevent the water vapor from affecting the metal oxide pattern 150 and the source electrode 140; the first passivation layer 161 directly covers the metal oxide pattern 150 and the source electrode 140. By setting the first passivation layer 161 to The denser silicon oxide layer, the oxygen atoms rich in the silicon oxide layer can diffuse into the active layer 151a of the metal oxide pattern 150, supplement the oxygen atoms in the active layer 151a, and maintain the semiconductor properties of the active layer 151a characteristic.
如图3和图4所示,本实施例中,阵列基板100中的TFT器件也可以为顶栅结构。对于顶栅结构的阵列基板100,源极140和金属氧化物图形150可以设置在基板110上,栅绝缘层130可以覆盖基板110及源极140和金属氧化物图形150,栅极120设置在栅绝缘层130上。As shown in FIGS. 3 and 4 , in this embodiment, the TFT device in the array substrate 100 may also have a top-gate structure. For the array substrate 100 with a top gate structure, the source electrode 140 and the metal oxide pattern 150 may be disposed on the substrate 110 , the gate insulating layer 130 may cover the substrate 110 and the source electrode 140 and the metal oxide pattern 150 , and the gate electrode 120 may be disposed on the gate on the insulating layer 130.
对于顶栅结构的TFT器件,栅极120可以位于源极140、金属氧化物图形150的上方,栅绝缘层130覆盖在源极140和金属氧化物图形150上,栅极120设置在栅绝缘层130上。其中,源极140和金属氧化物图形150可以直接设置在基板110上,在阵列基板100的层叠方向上,依次为基板110、源极140和金属氧化物图形150、栅绝缘层130、栅极120。For a TFT device with a top gate structure, the gate electrode 120 may be located above the source electrode 140 and the metal oxide pattern 150. The gate insulating layer 130 covers the source electrode 140 and the metal oxide pattern 150. The gate electrode 120 is disposed on the gate insulating layer. 130 on. Among them, the source electrode 140 and the metal oxide pattern 150 can be directly disposed on the substrate 110. In the stacking direction of the array substrate 100, the substrate 110, the source electrode 140 and the metal oxide pattern 150, the gate insulating layer 130, and the gate electrode are in sequence. 120.
不论是底栅结构还是顶栅结构,与钝化层160对源极140和金属氧化物图形150的保护作用类似的,栅绝缘层130可以包括第一栅绝缘层131和第二栅绝缘层132,第一栅绝缘层131相对位于阵列基板100的外侧;其中,对于底栅结构,第一栅绝缘层131更靠近基板110,对于顶栅结构,第一栅绝缘层131更靠近栅极120;第二栅绝缘层132相对更靠近源极140和金属氧化物图形150所在的结构层;其中,对于底栅结构,第二栅绝缘层132可以覆盖在第一栅绝缘层131上,对于顶栅结构,第二栅绝缘层132直接覆盖在源极140和金属氧化物图形150上,第一栅绝缘层131覆盖在第二栅绝缘层132上。Regardless of whether it is a bottom gate structure or a top gate structure, similar to the protective effect of the passivation layer 160 on the source electrode 140 and the metal oxide pattern 150 , the gate insulating layer 130 may include a first gate insulating layer 131 and a second gate insulating layer 132 , the first gate insulating layer 131 is relatively located outside the array substrate 100; wherein, for the bottom gate structure, the first gate insulating layer 131 is closer to the substrate 110, and for the top gate structure, the first gate insulating layer 131 is closer to the gate electrode 120; The second gate insulating layer 132 is relatively close to the source electrode 140 and the structural layer where the metal oxide pattern 150 is located; wherein, for the bottom gate structure, the second gate insulating layer 132 can cover the first gate insulating layer 131, and for the top gate structure Structure, the second gate insulating layer 132 directly covers the source electrode 140 and the metal oxide pattern 150, and the first gate insulating layer 131 covers the second gate insulating layer 132.
其中,第一栅绝缘层131为氮化硅层,氮化硅层具有较好的隔离水汽的作用,可以隔离阵列基板100外部或来自基板110的水汽,防止水汽进入到有源层151a,以保护有源层151a不受水汽影响。Among them, the first gate insulating layer 131 is a silicon nitride layer. The silicon nitride layer has a good effect of isolating water vapor. It can isolate the water vapor outside the array substrate 100 or from the substrate 110 and prevent water vapor from entering the active layer 151a. The active layer 151a is protected from moisture.
第二栅绝缘层132为氧化硅层,氧化硅层的致密性更好,其中富含有较多的氧元素。若有源层151a中的氧原子和源极140中的金属离子或钝化层160中存在的游离氢离子结合,由此而使有源层151a失去氧原子而被导体化,有源层151a失去半导体特性,第二栅绝缘层132中的氧原子则可以扩散到有源层151a中,补充有源层151a中的氧原子,进而使有源层151a维持其半导体特性。The second gate insulating layer 132 is a silicon oxide layer. The silicon oxide layer is denser and contains more oxygen elements. If the oxygen atoms in the active layer 151a combine with the metal ions in the source electrode 140 or the free hydrogen ions present in the passivation layer 160, thereby causing the active layer 151a to lose oxygen atoms and become a conductor, the active layer 151a If the semiconductor properties are lost, the oxygen atoms in the second gate insulating layer 132 can diffuse into the active layer 151a, supplementing the oxygen atoms in the active layer 151a, so that the active layer 151a maintains its semiconductor properties.
液晶显示面板作为被动发光器件,显示屏的背面需要设置背光源,若源极140和金属氧化物图形150直接设置在基板110上,背光源的光会透过基板110照射至金属氧化物图形150,光线照射到金属氧化物图形150中的有源层151a时,会在有源层151a上产生光生载流子,这会影响有源层151a的半导体特性,进而会影响TFT器件的关态电流特性。As a passive light-emitting device, the liquid crystal display panel needs to be provided with a backlight source on the back of the display screen. If the source electrode 140 and the metal oxide pattern 150 are directly placed on the substrate 110, the light from the backlight source will pass through the substrate 110 and illuminate the metal oxide pattern 150. , when light irradiates the active layer 151a in the metal oxide pattern 150, photogenerated carriers will be generated on the active layer 151a, which will affect the semiconductor characteristics of the active layer 151a, and in turn affect the off-state current of the TFT device. characteristic.
因此,为了避免背光源的光直接照射至金属氧化物图形150中形成的有源层151a,本实施例中,对于顶栅结构,在基板110上还设置有绝缘衬底层170,绝缘衬底层170位于基板110和栅绝缘层130之间,源极140和金属氧化物图形150设在绝缘衬底层170上。Therefore, in order to prevent the light from the backlight from directly irradiating the active layer 151a formed in the metal oxide pattern 150, in this embodiment, for the top gate structure, an insulating substrate layer 170 is also provided on the substrate 110. The insulating substrate layer 170 Located between the substrate 110 and the gate insulating layer 130, the source electrode 140 and the metal oxide pattern 150 are provided on the insulating substrate layer 170.
如图3和图4所示,通过在基板110上设置绝缘衬底层170,将源极140和金属氧化物图形150设置在绝缘衬底层170上,这样绝缘衬底层170间隔在基板110和金属氧化物图形150中的有源层151a之间。来自背光源的光透过基板110首先照射至绝缘衬底层170,绝缘衬底层170具有一定的折射系数,可对光线进行散射、漫反射或反射等,可以衰减光线能量,从而来自背光源的光不会集中照射向有源层151a,以此保护有源层151a的半导体特性,保证薄膜晶体管的关态电流特性。As shown in FIGS. 3 and 4 , by disposing the insulating substrate layer 170 on the substrate 110 , the source electrode 140 and the metal oxide pattern 150 are disposed on the insulating substrate layer 170 , so that the insulating substrate layer 170 is spaced between the substrate 110 and the metal oxide layer 170 . between the active layers 151a in the object pattern 150. The light from the backlight source passes through the substrate 110 and first irradiates to the insulating substrate layer 170. The insulating substrate layer 170 has a certain refractive index, which can scatter, diffusely reflect or reflect the light, and can attenuate the light energy, so that the light from the backlight source The irradiation will not be concentrated on the active layer 151a, thereby protecting the semiconductor characteristics of the active layer 151a and ensuring the off-state current characteristics of the thin film transistor.
如图3和图4所示,与栅绝缘层130类似的,绝缘衬底层170可以包括依次层叠在基板110上的第一绝缘衬底层171和第二绝缘衬底层172,第一绝缘衬底层171为氮化硅层,第二绝缘衬底层172为氧化硅层。As shown in FIGS. 3 and 4 , similar to the gate insulating layer 130 , the insulating substrate layer 170 may include a first insulating substrate layer 171 and a second insulating substrate layer 172 that are sequentially stacked on the substrate 110 . The first insulating substrate layer 171 is a silicon nitride layer, and the second insulating substrate layer 172 is a silicon oxide layer.
通过在基板110上设置氮化硅层作为第一绝缘衬底层171,氮化硅层可以隔离来自阵列基板100外部或基板110的水汽,保护金属氧化物图形150中的有源层151a不受水汽影响;通过在第一绝缘衬底层171上覆盖氧化硅层作为第二绝缘衬底层172,源极140和金属氧化物图形150直接形成在氧化硅层上,氧化硅层的致密性更好,其中富含有较多的氧元素,可以补充有源层151a中的氧原子,使有源层151a维持其半导体特性。By disposing a silicon nitride layer as the first insulating substrate layer 171 on the substrate 110, the silicon nitride layer can isolate water vapor from outside the array substrate 100 or the substrate 110, and protect the active layer 151a in the metal oxide pattern 150 from water vapor. Impact: By covering the first insulating substrate layer 171 with a silicon oxide layer as the second insulating substrate layer 172, the source electrode 140 and the metal oxide pattern 150 are directly formed on the silicon oxide layer, and the density of the silicon oxide layer is better, where It is rich in oxygen elements, which can supplement the oxygen atoms in the active layer 151a, so that the active layer 151a maintains its semiconductor characteristics.
另外,需要说明的是,如图1至图4所示,本实施例中,无论是底栅结构还是顶栅结构,本实施例中,源极140、漏极180和栅极120均可以由层叠的第一金属层a和第二金属层b组成,其中,位于底层的第一金属层a中的金属包括钛、钼中的至少一种,位于顶层的第二金属层b中的金属包括铜、铝中的至少一种。In addition, it should be noted that, as shown in FIGS. 1 to 4 , in this embodiment, whether it is a bottom gate structure or a top gate structure, in this embodiment, the source electrode 140 , the drain electrode 180 and the gate electrode 120 can all be composed of It consists of a stacked first metal layer a and a second metal layer b, wherein the metal in the first metal layer a at the bottom includes at least one of titanium and molybdenum, and the metal in the second metal layer b at the top includes At least one of copper and aluminum.
通过设置第一金属层a和第二金属层b两层金属层作为源极140、漏极180和栅极120,第二金属层b层叠在第一金属层a上,且第一金属层a为钛、钼等单一金属层或复合金属层,第二金属层b为铜、铝等单一金属层或复合金属层。其中,位于底层的第一金属层a主要用于使源极140、漏极180或栅极120与其下层结构连接更牢固,增强源极140、漏极180或栅极120与其下层结构之间的连接强度;位于顶层的第二金属层b则主要用于发挥源极140、漏极180和栅极120的导电性,以保证TFT器件的性能。By providing two metal layers, the first metal layer a and the second metal layer b, as the source electrode 140, the drain electrode 180 and the gate electrode 120, the second metal layer b is stacked on the first metal layer a, and the first metal layer a It is a single metal layer or a composite metal layer such as titanium or molybdenum, and the second metal layer b is a single metal layer or a composite metal layer such as copper or aluminum. Among them, the first metal layer a located at the bottom is mainly used to make the source electrode 140, the drain electrode 180 or the gate electrode 120 more firmly connected to its underlying structure, and to enhance the connection between the source electrode 140, the drain electrode 180 or the gate electrode 120 and its underlying structure. Connection strength; the second metal layer b located on the top layer is mainly used to exert the conductivity of the source electrode 140, the drain electrode 180 and the gate electrode 120 to ensure the performance of the TFT device.
本实施例提供的阵列基板,通过在同一结构层内设置源极和金属氧化物图形,且金属氧化物图形和源极之间具有相互重叠的部分,其中,金属氧化物图形包括第一部分和第二部分,第一部分位于金属氧化物图形的中间区域,第二部分位于第一部分两侧,源极和与其相对应的第二部分接触;通过将金属氧化物图形的第二部分作为像素电极,并且对金属氧化物图形的第一部分进行半导体化处理,将第一部分作为有源层,这样可以实现源极将电信号通过有源层传递至像素电极;同时,由于有源层的两侧均为第二部分,即第二部分将源极和有源层间隔开,因而源极中的金属离子不会扩散至有源层,不会影响有源层的半导体特性,进而可以提高薄膜晶体管的性能;另外,阵列基板的生产工艺较为简单,生产成本较低。In the array substrate provided by this embodiment, the source electrode and the metal oxide pattern are provided in the same structural layer, and the metal oxide pattern and the source electrode have overlapping parts, wherein the metal oxide pattern includes a first part and a third part. Two parts, the first part is located in the middle area of the metal oxide pattern, the second part is located on both sides of the first part, the source electrode is in contact with the second part corresponding to it; by using the second part of the metal oxide pattern as the pixel electrode, and The first part of the metal oxide pattern is semiconductorized and used as the active layer, so that the source can transmit the electrical signal to the pixel electrode through the active layer; at the same time, since both sides of the active layer are The second part separates the source electrode from the active layer, so the metal ions in the source electrode will not diffuse to the active layer and will not affect the semiconductor properties of the active layer, thereby improving the performance of the thin film transistor. ; In addition, the production process of the array substrate is relatively simple and the production cost is low.
实施例二Embodiment 2
图5为本发明实施例二提供的一种阵列基板的制作方法的流程示意图;图6为本发明实施例二提供的在基板上形成栅极的结构示意图;图7为本发明实施例二提供的在栅极上形成栅绝缘层的结构示意图;图8为本发明实施例二提供的在栅绝缘层上形成源极和金属氧化物图形的结构示意图;图9为本发明实施例二提供的在源极和金属氧化物图形上形成钝化层的结构示意图。Figure 5 is a schematic flow diagram of a method for manufacturing an array substrate provided in Embodiment 2 of the present invention; Figure 6 is a schematic structural diagram of forming a gate electrode on a substrate provided in Embodiment 2 of the present invention; Figure 7 is provided in Embodiment 2 of the present invention Figure 8 is a schematic structural diagram of forming a gate insulating layer on a gate electrode; Figure 8 is a schematic structural diagram of forming a source electrode and a metal oxide pattern on a gate insulating layer according to Embodiment 2 of the present invention; Figure 9 is a schematic diagram of a structure provided by Embodiment 2 of the present invention. Schematic diagram of the structure of forming a passivation layer on the source electrode and metal oxide pattern.
本实施例提供一种阵列基板100的制作方法,该制作方法用于制作实施例一中所述的底栅结构的阵列基板100。阵列基板100的结构、功能以及工作原理在实施例一中进行了详细的介绍,此处不在赘述。This embodiment provides a method for manufacturing an array substrate 100, which is used to manufacture the array substrate 100 with the bottom gate structure described in Embodiment 1. The structure, function and working principle of the array substrate 100 are introduced in detail in Embodiment 1 and will not be described again here.
如图5所示,对于底栅结构的阵列基板100,阵列基板100的制作方法包括如下步骤:As shown in Figure 5, for an array substrate 100 with a bottom gate structure, the manufacturing method of the array substrate 100 includes the following steps:
S1a、在基板110上形成栅极120。S1a. Form the gate 120 on the substrate 110.
如图6所示,首先在基板110110上形成栅极120120。具体的,首先在基板110上沉积栅极金属层,然后通过光刻工艺使栅极金属层形成图形化的栅极120。其中,沉积栅极金属层包括依次在基板110上沉积第一金属层a和第二金属层b,第一金属层a可以为Ti、Mo等单一金属层或复合金属层,第二金属层b可以为Cu、Al等单一金属层或复合金属层。As shown in FIG. 6 , the gate electrode 120120 is first formed on the substrate 110110 . Specifically, a gate metal layer is first deposited on the substrate 110, and then the gate metal layer is formed into a patterned gate electrode 120 through a photolithography process. Wherein, depositing the gate metal layer includes sequentially depositing a first metal layer a and a second metal layer b on the substrate 110. The first metal layer a can be a single metal layer such as Ti or Mo or a composite metal layer, and the second metal layer b It can be a single metal layer such as Cu or Al or a composite metal layer.
对栅极金属层进行光刻工艺形成栅极120,具体过程可以为:先在栅极金属层上涂覆一层光刻胶层,在栅极金属层上方设置掩模版,掩模版上设置有透光区和不透光区,紫外光通过掩模版照射到光刻胶层表面,引起光刻胶层的曝光区域的光刻胶发生化学反应,再通过显影技术溶解去除曝光区域的光刻胶(正性光刻胶)或未曝光区域的光刻胶(负性光刻胶);如此光刻胶层中剩余的光刻胶仅覆盖栅极金属层中对应栅极120的区域,栅极金属层的其他区域均暴露出来,此时再对暴露出来的栅极金属层的区域进行刻蚀,最终仅保留栅极120,最后再清除覆盖栅极120的光刻胶,便可在基板110上形成栅极120。The gate metal layer is subjected to a photolithography process to form the gate 120. The specific process may be as follows: first, a layer of photoresist is coated on the gate metal layer, and a mask is set above the gate metal layer. The mask is provided with In the light-transmitting area and the light-impermeable area, ultraviolet light irradiates the surface of the photoresist layer through the mask, causing a chemical reaction in the photoresist in the exposed area of the photoresist layer, and then dissolves and removes the photoresist in the exposed area through development technology. (positive photoresist) or photoresist in unexposed areas (negative photoresist); in this way, the remaining photoresist in the photoresist layer only covers the area corresponding to the gate electrode 120 in the gate metal layer, and the gate electrode Other areas of the metal layer are exposed. At this time, the exposed area of the gate metal layer is etched until only the gate 120 is left. Finally, the photoresist covering the gate 120 is removed, and then the substrate 110 can be formed. A gate 120 is formed thereon.
可以理解的是,利用紫外光通过掩模版照射向光刻胶层,以使掩模版上的掩模图形转移到光刻胶层形成光刻胶层图形的曝光和显影工艺,以及形成光刻胶层图形后对未被光刻胶层覆盖的区域进行刻蚀的工艺,与上述工艺流程相同或类似,对于本实施例之后出现的曝光显影及刻蚀过程,不再一一赘述。It can be understood that the exposure and development process of using ultraviolet light to illuminate the photoresist layer through the mask is to transfer the mask pattern on the mask to the photoresist layer to form the photoresist layer pattern, and to form the photoresist. The process of etching the areas not covered by the photoresist layer after layer patterning is the same as or similar to the above-mentioned process flow. The exposure, development and etching processes that occur after this embodiment will not be described again one by one.
S2a、在基板110上形成栅绝缘层130,栅绝缘层130覆盖栅极120。S2a. Form a gate insulating layer 130 on the substrate 110, and the gate insulating layer 130 covers the gate electrode 120.
如图7所示,基板110上形成栅极120后,在基板110上沉积栅绝缘层130,栅绝缘层130可以覆盖整个基板110;其中,栅绝缘层130覆盖栅极120。沉积栅绝缘层130包括在基板110上依次沉积形成第一栅绝缘层131和第二栅绝缘层132。As shown in FIG. 7 , after the gate electrode 120 is formed on the substrate 110 , a gate insulating layer 130 is deposited on the substrate 110 . The gate insulating layer 130 can cover the entire substrate 110 ; wherein, the gate insulating layer 130 covers the gate electrode 120 . Depositing the gate insulating layer 130 includes sequentially depositing a first gate insulating layer 131 and a second gate insulating layer 132 on the substrate 110 .
S3a、在栅绝缘层130上形成源极140和金属氧化物图形150;其中,金属氧化物图形150包括位于中间区域的第一部分151和位于第一部分151两侧的第二部分152,源极140和靠近源极140的第二部分152之间具有相互重叠的部分,远离源极140的第二部分152作为像素电极152a。S3a. Form the source electrode 140 and the metal oxide pattern 150 on the gate insulating layer 130; wherein the metal oxide pattern 150 includes a first part 151 located in the middle area and a second part 152 located on both sides of the first part 151. The source electrode 140 There is an overlapping portion with the second portion 152 close to the source electrode 140, and the second portion 152 far away from the source electrode 140 serves as the pixel electrode 152a.
如图8所示,在基板110上沉积形成栅绝缘层130后,接下来是在栅绝缘层130上形成源极140和金属氧化物图形150。As shown in FIG. 8 , after the gate insulating layer 130 is deposited on the substrate 110 , the source electrode 140 and the metal oxide pattern 150 are formed on the gate insulating layer 130 .
在一种可能的实施方式中,可以先在栅绝缘层130上沉积源极金属层,再对源极金属层进行光刻工艺形成图形化的源极140;然后在栅绝缘层130上沉积金属氧化物层,金属氧化物层覆盖源极140,对金属氧化物层进行光刻工艺形成金属氧化物图形150。其中,金属氧化物图形150包括第一部分151和位于第一部分151两侧的第二部分152,靠近源极140的第二部分152覆盖在源极140上,远离源极140的第二部分152作为像素电极152a。In a possible implementation, a source metal layer can be deposited on the gate insulating layer 130 first, and then a photolithography process is performed on the source metal layer to form a patterned source 140; and then a metal layer is deposited on the gate insulating layer 130. The metal oxide layer covers the source electrode 140, and a photolithography process is performed on the metal oxide layer to form a metal oxide pattern 150. Among them, the metal oxide pattern 150 includes a first part 151 and a second part 152 located on both sides of the first part 151. The second part 152 close to the source electrode 140 covers the source electrode 140, and the second part 152 far away from the source electrode 140 serves as a Pixel electrode 152a.
在另一种可能的实施方式中,可以先在栅绝缘层130上沉积金属氧化物层,再对金属氧化物层进行光刻工艺形成金属氧化物图形150;然后在栅绝缘层130上沉积源极金属层,源极金属层覆盖金属氧化物图形150,再对源极金属层进行光刻工艺形成图形化的源极140。如此,源极140便覆盖在靠近其的金属氧化图形的第二部分152上。In another possible implementation, a metal oxide layer can be deposited on the gate insulating layer 130 first, and then a photolithography process is performed on the metal oxide layer to form the metal oxide pattern 150; and then a source is deposited on the gate insulating layer 130. The source metal layer covers the metal oxide pattern 150, and then a photolithography process is performed on the source metal layer to form a patterned source 140. In this way, the source electrode 140 covers the second portion 152 of the metal oxide pattern adjacent thereto.
S4a、对金属氧化物图形150的第一部分151进行半导体化使其形成有源层151a。S4a: Semiconducting the first portion 151 of the metal oxide pattern 150 to form an active layer 151a.
如图8所示,在形成金属氧化物图形150后,对金属氧化物图形150的第一部分151采用紫外光照射或等离子注入等方法,使第一部分151半导体化形成有源层151a。As shown in FIG. 8 , after the metal oxide pattern 150 is formed, the first part 151 of the metal oxide pattern 150 is irradiated with ultraviolet light or plasma implanted to semiconductorize the first part 151 to form an active layer 151 a.
以对金属氧化物图形150的第一部分151采用等离子注入的方法进行半导体化为例,具体的,以灰化后的光刻胶图案作为掩膜对金属氧化物图形150的第一部分151进行半导体化,以形成有源层151a。For example, the first part 151 of the metal oxide pattern 150 is semiconductorized by plasma implantation. Specifically, the ashed photoresist pattern is used as a mask to semiconductorize the first part 151 of the metal oxide pattern 150 . , to form the active layer 151a.
由于灰化后的光刻胶图案中,与有源层151a对应的区域暴露在外,其余部分均由光刻胶覆盖,因此以灰化后的光刻胶图案作为掩膜进行半导体化处理,例如进行离子注入,就可以在想要形成有源层151a的区域形成有源层151a。Since the area corresponding to the active layer 151a in the ashed photoresist pattern is exposed and the rest is covered by the photoresist, the ashed photoresist pattern is used as a mask to perform the semiconductorization process, for example By performing ion implantation, the active layer 151a can be formed in the region where the active layer 151a is to be formed.
上述方案中,利用上述灰化后的光刻胶图案作为掩膜,对金属氧化物图形150上与第一部分151对应的区域进行离子注入,在离子注入设备中,离子注入反应腔室的真空度为3×10-4Pa~8×10-4Pa,真空时间为30~50s。在设定的腔室温度下,例如200℃~300℃的温度下,离子注入能量大于或等于200KeV,注入深度可与金属氧化物图形150的厚度相同,以将作为像素电极152a的第二部分152和与源极140接触的第二部分152分隔开。In the above scheme, the above-mentioned ashed photoresist pattern is used as a mask to perform ion implantation on the area of the metal oxide pattern 150 corresponding to the first part 151. In the ion implantation equipment, the vacuum degree of the ion implantation reaction chamber is It is 3×10 -4 Pa~8×10 -4 Pa, and the vacuum time is 30~50s. At a set chamber temperature, such as a temperature of 200°C to 300°C, the ion implantation energy is greater than or equal to 200KeV, and the implantation depth can be the same as the thickness of the metal oxide pattern 150 to serve as the second part of the pixel electrode 152a 152 is separated from the second portion 152 in contact with the source 140 .
气体可以选择碳源气体等,离子注入成分含Cr、HF的至少一者,使得离子具有大约50KeV的注入能量,以改变导体表面的原子排列,不断重组。离子注入的时间不做限定,以金属氧化物图形150的厚度为40~90nm为例,注入时间可以为200~250s。The gas can be carbon source gas, etc. The ion implantation component contains at least one of Cr and HF, so that the ions have an injection energy of about 50KeV to change the atomic arrangement on the conductor surface and continuously recombine. The time of ion implantation is not limited. For example, if the thickness of the metal oxide pattern 150 is 40-90 nm, the implantation time may be 200-250 s.
如上所述进行离子注入,并进行高温退火,其中,退火温度例如可以为250℃~400℃,可将金属氧化物图形150上的第一部分151半导体化为有源层151a。As described above, ion implantation is performed and high-temperature annealing is performed. The annealing temperature may be, for example, 250° C. to 400° C., and the first portion 151 on the metal oxide pattern 150 can be semiconductorized into the active layer 151 a.
S5a、在栅绝缘层130上形成钝化层160,钝化层160覆盖源极140和金属氧化物图形150。S5a. Form a passivation layer 160 on the gate insulating layer 130, and the passivation layer 160 covers the source electrode 140 and the metal oxide pattern 150.
如图9所示,在形成源极140和金属氧化物图形150,并且金属氧化物图形150的第一部分151形成有源层151a后,在栅绝缘层130上沉积钝化层160,使钝化层160覆盖源极140和金属氧化物图形150。其中,在栅绝缘层130上沉积钝化层160包括依次在栅绝缘层130上沉积第一钝化层161和第二钝化层162。As shown in FIG. 9 , after the source electrode 140 and the metal oxide pattern 150 are formed, and the first part 151 of the metal oxide pattern 150 forms the active layer 151a, a passivation layer 160 is deposited on the gate insulating layer 130 to passivate the Layer 160 covers source 140 and metal oxide pattern 150 . Wherein, depositing the passivation layer 160 on the gate insulating layer 130 includes sequentially depositing the first passivation layer 161 and the second passivation layer 162 on the gate insulating layer 130 .
实施例三Embodiment 3
图10为本发明实施例三提供的另一种阵列基板100的制作方法的流程示意图;图11为本发明实施例三提供的在基板110上形成绝缘衬底层170的结构示意图;图12为本发明实施例三提供的在绝缘衬底层170上形成源极140和金属氧化物图形150的结构示意图;图13为本发明实施例三提供的在源极140和金属氧化物图形150上形成栅绝缘层130的结构示意图;图14为本发明实施例三提供的在栅绝缘层130上形成栅极120的结构示意图。Figure 10 is a schematic flow diagram of another method for manufacturing an array substrate 100 provided in the third embodiment of the present invention; Figure 11 is a schematic structural diagram of forming an insulating substrate layer 170 on the substrate 110 provided in the third embodiment of the present invention; Figure 12 is a schematic diagram of this method. The third embodiment of the invention provides a schematic structural diagram of forming the source electrode 140 and the metal oxide pattern 150 on the insulating substrate layer 170; FIG. 13 shows the formation of the gate insulation on the source electrode 140 and the metal oxide pattern 150 according to the third embodiment of the invention. A schematic structural diagram of layer 130; FIG. 14 is a schematic structural diagram of forming gate electrode 120 on gate insulating layer 130 according to Embodiment 3 of the present invention.
本实施例提供另一种阵列基板100的制作方法,该制作方法用于制作实施例一中所述的顶栅结构的阵列基板100。This embodiment provides another method for manufacturing the array substrate 100, which is used to manufacture the array substrate 100 with the top gate structure described in Embodiment 1.
如图10所示,对于顶栅结构的阵列基板100,阵列基板100的制作方法包括如下步骤:As shown in Figure 10, for an array substrate 100 with a top gate structure, the manufacturing method of the array substrate 100 includes the following steps:
S1b、在基板110上形成绝缘衬底层170。S1b. Form the insulating substrate layer 170 on the substrate 110.
如图11所示,首先在基板110上沉积绝缘衬底层170,绝缘衬底层170可以覆盖整个基板110。其中,沉积绝缘衬底层170包括在基板110上依次沉积形成第一绝缘衬底层171和第二绝缘衬底层172。As shown in FIG. 11 , an insulating substrate layer 170 is first deposited on the substrate 110 , and the insulating substrate layer 170 can cover the entire substrate 110 . Wherein, depositing the insulating substrate layer 170 includes sequentially depositing the first insulating substrate layer 171 and the second insulating substrate layer 172 on the substrate 110 .
S2b、在绝缘衬底层170上形成源极140和金属氧化物图形150;其中,金属氧化物图形150包括位于中间区域的第一部分151和位于第一部分151两侧的第二部分152,源极140和靠近源极140的第二部分152之间具有相互重叠的部分,远离源极140的第二部分152作为像素电极152a。S2b. Form the source electrode 140 and the metal oxide pattern 150 on the insulating substrate layer 170; wherein the metal oxide pattern 150 includes a first part 151 located in the middle area and a second part 152 located on both sides of the first part 151. The source electrode 140 There is an overlapping portion with the second portion 152 close to the source electrode 140, and the second portion 152 far away from the source electrode 140 serves as the pixel electrode 152a.
如图12所示,在基板110上沉积形成绝缘衬底层170后,接下来是在绝缘衬底层170上形成源极140和金属氧化物图形150。As shown in FIG. 12 , after the insulating substrate layer 170 is deposited on the substrate 110 , the source electrode 140 and the metal oxide pattern 150 are formed on the insulating substrate layer 170 .
在一种可能的实施方式中,可以先在绝缘衬底层170上沉积源极金属层,再对源极金属层进行光刻工艺形成图形化的源极140;然后在绝缘衬底层170上沉积金属氧化物层,金属氧化物层覆盖源极140,对金属氧化物层进行光刻工艺形成金属氧化物图形150。其中,金属氧化物图形150包括第一部分151和位于第一部分151两侧的第二部分152,靠近源极140的第二部分152覆盖在源极140上,远离源极140的第二部分152作为像素电极152a。In a possible implementation, a source metal layer can be deposited on the insulating substrate layer 170 first, and then a photolithography process is performed on the source metal layer to form the patterned source electrode 140; and then a metal layer is deposited on the insulating substrate layer 170. The metal oxide layer covers the source electrode 140, and a photolithography process is performed on the metal oxide layer to form a metal oxide pattern 150. Among them, the metal oxide pattern 150 includes a first part 151 and a second part 152 located on both sides of the first part 151. The second part 152 close to the source electrode 140 covers the source electrode 140, and the second part 152 far away from the source electrode 140 serves as a Pixel electrode 152a.
在另一种可能的实施方式中,可以先在绝缘衬底层170上沉积金属氧化物层,再对金属氧化物层进行光刻工艺形成金属氧化物图形150;然后在绝缘衬底层170上沉积源极金属层,源极金属层覆盖金属氧化物图形150,再对源极金属层进行光刻工艺形成图形化的源极140。如此,源极140便覆盖在靠近其的金属氧化图形的第二部分152上。In another possible implementation, a metal oxide layer can be deposited on the insulating substrate layer 170 first, and then a photolithography process is performed on the metal oxide layer to form the metal oxide pattern 150; and then the source is deposited on the insulating substrate layer 170. The source metal layer covers the metal oxide pattern 150, and then a photolithography process is performed on the source metal layer to form a patterned source 140. In this way, the source electrode 140 covers the second portion 152 of the metal oxide pattern adjacent thereto.
S3b、对金属氧化物图形150的第一部分151进行半导体化使其形成有源层151a。S3b. Semiconducting the first portion 151 of the metal oxide pattern 150 to form an active layer 151a.
如图12所示,在形成金属氧化物图形150后,对金属氧化物图形150的第一部分151采用紫外光照射或等离子注入等方法,使第一部分151半导体化形成有源层151a。As shown in FIG. 12 , after the metal oxide pattern 150 is formed, the first part 151 of the metal oxide pattern 150 is irradiated with ultraviolet light or plasma implanted to semiconductorize the first part 151 to form an active layer 151 a.
S4b、在绝缘衬底层170上形成栅绝缘层130,栅绝缘层130覆盖源极140和金属氧化物图形150。S4b. Form a gate insulating layer 130 on the insulating substrate layer 170, and the gate insulating layer 130 covers the source electrode 140 and the metal oxide pattern 150.
如图13所示,在形成源极140和金属氧化物图形150,并且金属氧化物图形150的第一部分151形成有源层151a后,在绝缘衬底层170上沉积栅绝缘层130,使栅绝缘层130覆盖源极140和金属氧化物图形150。其中,沉积栅绝缘层130包括依次在绝缘衬底层170上沉积第二栅绝缘层132和第一栅绝缘层131。As shown in FIG. 13, after the source electrode 140 and the metal oxide pattern 150 are formed, and the first part 151 of the metal oxide pattern 150 forms the active layer 151a, the gate insulating layer 130 is deposited on the insulating substrate layer 170 to insulate the gate. Layer 130 covers source 140 and metal oxide pattern 150 . Wherein, depositing the gate insulating layer 130 includes sequentially depositing the second gate insulating layer 132 and the first gate insulating layer 131 on the insulating substrate layer 170 .
S5b、在栅绝缘层130上形成栅极120。S5b. Form the gate electrode 120 on the gate insulating layer 130.
如图14所示,栅绝缘层130形成后,在栅绝缘层130上沉积栅极金属层,然后通过光刻工艺使栅极金属层形成图形化的栅极120。As shown in FIG. 14 , after the gate insulating layer 130 is formed, a gate metal layer is deposited on the gate insulating layer 130 , and then the gate metal layer is formed into a patterned gate electrode 120 through a photolithography process.
实施例四Embodiment 4
图15为本发明实施例四提供的一种形成源极140和金属氧化物图形150的流程图;图16为本发明实施例四提供的另一种形成源极140和金属氧化物图形150的流程图。FIG. 15 is a flow chart for forming the source electrode 140 and the metal oxide pattern 150 according to the fourth embodiment of the present invention; FIG. 16 is another method for forming the source electrode 140 and the metal oxide pattern 150 according to the fourth embodiment of the present invention. flow chart.
如图15和图16所示,不论阵列基板100是底栅结构还是顶栅结构,阵列基板100中可以设置漏极180,或者阵列基板100中不设置漏极180。本实施例中,对于设置漏极180和不设置漏极180的两种阵列基板100的形成源极140和金属氧化物图形150的工艺过程进行说明。As shown in FIGS. 15 and 16 , regardless of whether the array substrate 100 has a bottom gate structure or a top gate structure, the drain electrode 180 may be provided in the array substrate 100 , or the drain electrode 180 may not be provided in the array substrate 100 . In this embodiment, the process of forming the source electrode 140 and the metal oxide pattern 150 for two array substrates 100 with and without the drain electrode 180 is described.
如图15所示,对于不设置漏极180的阵列基板100,在一种可能的实施方式中,形成源极140和金属氧化物图形150,具体可以包括如下步骤:As shown in Figure 15, for the array substrate 100 without the drain electrode 180, in one possible implementation, forming the source electrode 140 and the metal oxide pattern 150 may specifically include the following steps:
S10a、在栅绝缘层130(绝缘衬底层170)上沉积源极金属层。S10a. Deposit a source metal layer on the gate insulating layer 130 (insulating substrate layer 170).
S20a、对源极金属层进行光刻工艺形成源极140。S20a. Perform a photolithography process on the source metal layer to form the source electrode 140.
S30a、在栅绝缘层130(绝缘衬底层170)上沉积金属氧化物层,金属氧化物层覆盖源极140。S30a. Deposit a metal oxide layer on the gate insulating layer 130 (insulating substrate layer 170), and the metal oxide layer covers the source electrode 140.
S40a、对金属氧化物层进行光刻工艺形成金属氧化物图形150。S40a. Perform a photolithography process on the metal oxide layer to form a metal oxide pattern 150.
形成的金属氧化物图形150包括第一部分151和第二部分152,第二部分152位于第一部分151两侧,其中,靠近源极140的第二部分152覆盖源极140的部分区域,远离源极140的第二部分152可以作为像素电极152a。The formed metal oxide pattern 150 includes a first part 151 and a second part 152. The second part 152 is located on both sides of the first part 151. The second part 152 close to the source electrode 140 covers part of the source electrode 140 and is far away from the source electrode. The second portion 152 of 140 may serve as the pixel electrode 152a.
如图16所示,对于设置漏极180的阵列基板100,在一种可能的实施方式中,形成源极140和金属氧化物图形150,具体可以包括如下步骤:As shown in Figure 16, for the array substrate 100 provided with the drain electrode 180, in a possible implementation, forming the source electrode 140 and the metal oxide pattern 150 may specifically include the following steps:
S10b、在栅绝缘层130(绝缘衬底层170)上沉积源漏极180金属层。S10b. Deposit the source and drain 180 metal layers on the gate insulating layer 130 (insulating substrate layer 170).
S20b、对源漏极180金属层进行光刻工艺形成源极140和漏极180;其中,源极140和漏极180之间具有间隔。S20b. Perform a photolithography process on the metal layer of the source and drain electrodes 180 to form the source electrode 140 and the drain electrode 180; wherein there is a gap between the source electrode 140 and the drain electrode 180.
S30b、在栅绝缘层130(绝缘衬底层170)上沉积金属氧化物层,金属氧化物覆盖源极140和漏极180。S30b. Deposit a metal oxide layer on the gate insulating layer 130 (insulating substrate layer 170), and the metal oxide covers the source electrode 140 and the drain electrode 180.
S40b、对金属氧化物层进行光刻工艺形成金属氧化物图形150。S40b. Perform a photolithography process on the metal oxide layer to form a metal oxide pattern 150.
形成的金属氧化物图形150包括第一部分151和第二部分152,第二部分152位于第一部分151两侧,其中,靠近源极140的第二部分152覆盖源极140的部分区域,远离源极140的第二部分152包括第一段1521和第二段1522,第一段1521与第一部分151连接且位于源极140和漏极180之间的间隔内,第二段1522与第一段1521之间具有间隔,第二段1522位于漏极180的另一侧,且部分第二段1522覆盖在漏极180上。The formed metal oxide pattern 150 includes a first part 151 and a second part 152. The second part 152 is located on both sides of the first part 151. The second part 152 close to the source electrode 140 covers part of the source electrode 140 and is far away from the source electrode. The second part 152 of 140 includes a first section 1521 and a second section 1522. The first section 1521 is connected to the first section 151 and is located in the interval between the source electrode 140 and the drain electrode 180. The second section 1522 is connected to the first section 1521. There is a gap therebetween, the second section 1522 is located on the other side of the drain electrode 180 , and part of the second section 1522 covers the drain electrode 180 .
实施例五Embodiment 5
本实施例提供一种显示面板,该显示面板包括彩膜基板、液晶层和实施例一所述的阵列基板100。其中,阵列基板100和彩膜基板相对设置,液晶层夹设在阵列基板100和彩膜基板之间。通过在阵列基板100和彩膜基板之间施加电场,电场中的电压可以控制液晶层内的液晶分子的排列状况,从而达到遮光和透光的目的,以使显示面板显示图像。This embodiment provides a display panel, which includes a color filter substrate, a liquid crystal layer, and the array substrate 100 described in Embodiment 1. Among them, the array substrate 100 and the color filter substrate are arranged oppositely, and the liquid crystal layer is sandwiched between the array substrate 100 and the color filter substrate. By applying an electric field between the array substrate 100 and the color filter substrate, the voltage in the electric field can control the arrangement of liquid crystal molecules in the liquid crystal layer, thereby achieving the purpose of light shielding and light transmission, so that the display panel displays images.
其中,阵列基板100的结构、功能以及工作原理在实施例一中进行了详细的介绍,此处不再赘述。The structure, function and working principle of the array substrate 100 are introduced in detail in Embodiment 1 and will not be described again here.
本实施例的另一方面还提供一种显示装置,显示装置包括上述显示面板。示例性的,本实施例中,显示装置可以为液晶电视、笔记本电脑、平板电脑、电子纸等。Another aspect of this embodiment also provides a display device, which includes the above-mentioned display panel. For example, in this embodiment, the display device may be an LCD TV, a notebook computer, a tablet computer, electronic paper, etc.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present invention, but not to limit it. Although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features can be equivalently replaced; and these modifications or substitutions do not deviate from the essence of the corresponding technical solutions from the technical solutions of the embodiments of the present invention. scope.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010447754.7A CN111584521B (en) | 2020-05-25 | 2020-05-25 | Array substrate, manufacturing method thereof and display panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010447754.7A CN111584521B (en) | 2020-05-25 | 2020-05-25 | Array substrate, manufacturing method thereof and display panel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111584521A CN111584521A (en) | 2020-08-25 |
CN111584521B true CN111584521B (en) | 2023-10-03 |
Family
ID=72117549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010447754.7A Active CN111584521B (en) | 2020-05-25 | 2020-05-25 | Array substrate, manufacturing method thereof and display panel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111584521B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114446993A (en) * | 2020-10-16 | 2022-05-06 | 上海和辉光电股份有限公司 | Display panel, manufacturing method thereof and display device |
CN113871401B (en) * | 2021-09-24 | 2025-02-14 | Tcl华星光电技术有限公司 | Thin film transistor, display panel and method for manufacturing the same |
CN116825644A (en) * | 2023-08-30 | 2023-09-29 | 惠科股份有限公司 | Preparation method of semiconductor device, array substrate and display panel |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107820640A (en) * | 2016-11-23 | 2018-03-20 | 深圳市柔宇科技有限公司 | Array base palte and its manufacture method |
CN107818989A (en) * | 2017-10-20 | 2018-03-20 | 武汉华星光电技术有限公司 | Array base palte and preparation method thereof |
WO2018199037A1 (en) * | 2017-04-28 | 2018-11-01 | シャープ株式会社 | Active matrix substrate and manufacturing method therfor |
CN109712993A (en) * | 2019-01-02 | 2019-05-03 | 南京中电熊猫平板显示科技有限公司 | Array substrate and manufacturing method and display device |
CN110007536A (en) * | 2019-04-01 | 2019-07-12 | 深圳市华星光电技术有限公司 | Thin film transistor array substrate and display panel |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203085533U (en) * | 2012-10-26 | 2013-07-24 | 京东方科技集团股份有限公司 | Array substrate and display apparatus |
CN105633016B (en) * | 2016-03-30 | 2019-04-02 | 深圳市华星光电技术有限公司 | The production method of TFT substrate and TFT substrate obtained |
-
2020
- 2020-05-25 CN CN202010447754.7A patent/CN111584521B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107820640A (en) * | 2016-11-23 | 2018-03-20 | 深圳市柔宇科技有限公司 | Array base palte and its manufacture method |
WO2018199037A1 (en) * | 2017-04-28 | 2018-11-01 | シャープ株式会社 | Active matrix substrate and manufacturing method therfor |
CN107818989A (en) * | 2017-10-20 | 2018-03-20 | 武汉华星光电技术有限公司 | Array base palte and preparation method thereof |
CN109712993A (en) * | 2019-01-02 | 2019-05-03 | 南京中电熊猫平板显示科技有限公司 | Array substrate and manufacturing method and display device |
CN110007536A (en) * | 2019-04-01 | 2019-07-12 | 深圳市华星光电技术有限公司 | Thin film transistor array substrate and display panel |
Also Published As
Publication number | Publication date |
---|---|
CN111584521A (en) | 2020-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9911762B2 (en) | Display device | |
EP2876676B1 (en) | Manufacturing method of array substrate and array substrate and display device | |
US9640559B2 (en) | Low temperature poly-silicon array substrate and forming method thereof | |
CN111584521B (en) | Array substrate, manufacturing method thereof and display panel | |
CN102645803A (en) | Pixel unit, array substrate, liquid crystal panel, display device and manufacturing method thereof | |
CN103236440B (en) | Thin-film transistor, array base palte and manufacture method thereof, display unit | |
CN102148196A (en) | TFT-LCD (thin film transistor-liquid crystal display) array substrate and manufacturing method therefor | |
CN102629585A (en) | Display device, thin film transistor, array substrate and manufacturing method thereof | |
US20170285430A1 (en) | Array Substrate and Manufacturing Method Thereof, Display Panel and Display Device | |
CN103354218A (en) | Array substrate, manufacturing method thereof, and display device | |
CN104269414A (en) | Array substrate, array substrate manufacturing method and display device | |
JP2010114459A (en) | Liquid crystal display device using small molecule organic semiconductor material, and method of manufacturing the same | |
KR101799048B1 (en) | Thin film transistor array panel and manufacturing method thereof | |
WO2014153958A1 (en) | Array substrate, method for manufacturing array substrate and display device | |
CN107871753A (en) | Array substrate and its preparation method | |
CN110718561A (en) | Fabrication method of array substrate and array substrate | |
US9230995B2 (en) | Array substrate, manufacturing method thereof and display device | |
CN212517205U (en) | Low temperature poly oxide array substrate | |
CN103700663B (en) | A kind of array base palte and preparation method thereof, display device | |
KR101383776B1 (en) | Display Substrate, Method of Manufacturing The Same And Liquid Crystal Display Device Having The Same | |
CN212571000U (en) | Low temperature poly oxide array substrate | |
JP2008034853A (en) | Thin film transistor substrate, manufacturing method thereof, and display panel having the same | |
CN203480181U (en) | Array substrate and display device | |
CN114639688B (en) | Display substrate, preparation method thereof, display panel and display device | |
CN112582342B (en) | Manufacturing method of array substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: No. 1778, Qinglan Road, Huangjia Street, Shuangliu District, Chengdu, Sichuan 610200 Applicant after: Chengdu BOE Display Technology Co.,Ltd. Address before: No. 1778, Qinglan Road, Gongxing street, Shuangliu District, Chengdu, Sichuan 610200 Applicant before: CHENGDU ZHONGDIAN PANDA DISPLAY TECHNOLOGY Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |