CN111583385A - A personalized deformation method and system for a deformable digital human anatomy model - Google Patents
A personalized deformation method and system for a deformable digital human anatomy model Download PDFInfo
- Publication number
- CN111583385A CN111583385A CN202010297172.5A CN202010297172A CN111583385A CN 111583385 A CN111583385 A CN 111583385A CN 202010297172 A CN202010297172 A CN 202010297172A CN 111583385 A CN111583385 A CN 111583385A
- Authority
- CN
- China
- Prior art keywords
- model
- deformation
- image data
- module
- personalized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/20—Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/08—Indexing scheme for image data processing or generation, in general involving all processing steps from image acquisition to 3D model generation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Graphics (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Architecture (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Processing Or Creating Images (AREA)
Abstract
本发明属于数字人解剖学模型技术领域,公开了一种可变形数字人解剖学模型的个性化变形方法及系统,所述可变形数字人解剖学模型的个性化变形系统包括:原始图像数据获取模块、图像数据处理模块、图像数据整合模块、主控模块、解剖学模型建立模块、个性化变形模块、数据存储模块、显示模块。本发明通过这些外观的和内部的解剖形态特征,可以引导数字人体模型发生变形,使其外表形态和内部解剖结构的形态变得与受试者相似,从而构建个性化的解剖结构模型。本发明能够显示管道结构与外周组织的解剖位置关系,实现模型的个性化变形;可适用于与用户个体相关的医疗信息管理、人体建模仿真、个性化解剖结构展示、病患沟通、解剖学教育等诸多领域。
The invention belongs to the technical field of digital human anatomy models, and discloses a personalized deformation method and system for a deformable digital human anatomy model. The personalized deformation system for the deformable digital human anatomy model includes: acquiring original image data Module, image data processing module, image data integration module, main control module, anatomical model establishment module, personalized deformation module, data storage module, display module. Through these external and internal anatomical morphological features, the present invention can guide the digital human body model to deform, so that the external and internal anatomical structures of the model become similar to the subjects, thereby constructing a personalized anatomical structure model. The invention can display the anatomical position relationship between the pipeline structure and the peripheral tissue, and realize the personalized deformation of the model; it can be applied to medical information management related to the individual user, human modeling simulation, personalized anatomical structure display, patient communication, anatomy education and many other fields.
Description
技术领域technical field
本发明属于数字人解剖学模型技术领域,尤其涉及一种可变形数字人解剖学模型的个性化变形方法及系统。The invention belongs to the technical field of digital human anatomy models, and in particular relates to a personalized deformation method and system for a deformable digital human anatomy model.
背景技术Background technique
目前,随着大数据时代的到来,三维数字人体模型被运用在医疗、人体建模仿真、服装设计、体育运动等领域,但目前现有的数字模型大多是不可变形的标准人体模型,缺乏相关的个体解剖形态差异信息。如果建立一个可变形的人体解剖模型,实现数字人模型与病人个体变形配准,则可以通过数字人变形生成一个与病人本身解剖形态相似的个性化数字人,作为病人本身的虚拟数字化代表,为医患交流、模拟仿真、临床诊疗提供个性化的人体解剖模型。At present, with the advent of the era of big data, 3D digital human models are used in medical treatment, human modeling and simulation, clothing design, sports and other fields. information on individual anatomical morphological differences. If a deformable human anatomical model is established to realize the deformation registration of the digital human model and the individual patient, a personalized digital human similar to the anatomical shape of the patient can be generated through the deformation of the digital human, as the virtual digital representative of the patient itself. Provide personalized human anatomical models for doctor-patient communication, simulation, and clinical diagnosis and treatment.
2011年2月2日,中国发明专利CN101964155A公开了“一种人体解剖学铸型标本模型的制作方法”,该专利所披露的技术方案利用医学图像三维重建技术,提取分析各种人体管道结构,并利用快速成型设备三维打印出铸型标本模型。此方案制作的模型没有外周组织包裹,无法显示管道结构与外周组织的解剖位置关系;无法实现模型的个性化变形。On February 2, 2011, Chinese invention patent CN101964155A disclosed "a method for making a human anatomy casting mold specimen model". The technical solution disclosed in the patent uses the three-dimensional reconstruction technology of medical images to extract and analyze various human body pipeline structures. And use rapid prototyping equipment to 3D print out the mold specimen model. The model produced by this scheme is not wrapped by peripheral tissue, so it cannot show the anatomical positional relationship between the pipeline structure and the peripheral tissue; it cannot realize the personalized deformation of the model.
同时,现有的数字解剖模型多是针对一个标准的人体,没能涵盖不同人类个体之间的解剖形态差异。因此,亟需一种新的可变形数字人解剖学模型的建立方法,以解决现有技术方案中存在的问题。At the same time, most of the existing digital anatomical models are aimed at a standard human body and fail to cover the anatomical morphological differences between different human individuals. Therefore, a new method for establishing a deformable digital human anatomy model is urgently needed to solve the problems existing in the prior art solutions.
通过上述分析,现有技术存在的问题及缺陷为:Through the above analysis, the existing problems and defects in the prior art are:
(1)现有技术方案无法显示管道结构与外周组织的解剖位置关系;无法实现模型的个性化变形。(1) The existing technical solution cannot display the anatomical positional relationship between the pipeline structure and the peripheral tissue, and cannot realize the personalized deformation of the model.
(2)现有的数字解剖模型多是针对一个标准的人体,没能涵盖不同人类个体之间的解剖形态差异。(2) Most of the existing digital anatomical models are aimed at a standard human body and fail to cover the anatomical morphological differences between different human individuals.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供了一种可变形数字人解剖学模型的个性化变形方法及系统。Aiming at the problems existing in the prior art, the present invention provides a personalized deformation method and system for a deformable digital human anatomy model.
本发明是这样实现的,一种可变形数字人解剖学模型的个性化变形方法,所述可变形数字人解剖学模型的个性化变形方法包括以下步骤:The present invention is realized in this way, a personalized deformation method of a deformable digital human anatomy model, the personalized deformation method of the deformable digital human anatomy model comprises the following steps:
步骤一,通过CT机扫描、MRI设备、X射线机或三维激光扫描设备采集被诊断为无临床症状的个体的不同组织或器官的原始数字图像数据;Step 1: Collect raw digital image data of different tissues or organs of individuals diagnosed as asymptomatic through CT scanning, MRI equipment, X-ray machine or 3D laser scanning equipment;
步骤二,通过图像处理程序对获取的原始图像数据进行分析处理;通过数据整合程序对分析处理后的图像数据进行整合;
步骤三,通过单片机控制模型个性化变形系统的正常运行;通过模型建立程序根据整合后的图像数据建立三维数字人体解剖学模型;Step 3: Control the normal operation of the model personalized deformation system through the single-chip microcomputer; establish a three-dimensional digital human anatomy model according to the integrated image data through a model establishment program;
步骤四,通过手动调节或变形程序自动配准的方式实现三维数字人体解剖学模型的个性化变形;Step 4, realize the personalized deformation of the three-dimensional digital human anatomy model by manual adjustment or automatic registration of the deformation program;
步骤五,通过存储器存储获取的原始图像数据、分析和整合处理后的数据、三维数字人体解剖学模型及模型个性化变形数据;
步骤六,通过显示器显示获取的原始图像数据、分析和整合处理后的数据、三维数字人体解剖学模型及模型个性化变形数据。In
进一步,步骤一中,所述个体的原始数字图像数据包括人体不同组织或器官的形状、大小、外部结构、内部管道的数字图像数据以及活体解剖学信息和中国人群样本信息;Further, in step 1, the original digital image data of the individual includes the shape, size, external structure, internal pipeline digital image data of different tissues or organs of the human body, as well as vital anatomy information and Chinese population sample information;
所述内部管道包括动脉、静脉、气管、支气管、淋巴管、肝管或胰管中的一种或多种;所述中国人群样本信息包括人体所有器官或组织的人与人之间差异变化、所有器官或组织的健康与病态差异变化。The internal pipeline includes one or more of arteries, veins, trachea, bronchi, lymphatic vessels, hepatic ducts or pancreatic ducts; the Chinese population sample information includes human-to-human differences in all organs or tissues of the human body, Health and pathological differential changes in all organs or tissues.
进一步,步骤二中,所述通过图像处理程序对获取的原始图像数据进行分析处理的方法如下:Further, in
(I)将获取的原始图像数据中的器官图像进行分割,得到所有器官和组织的三维区域划分,分割结果以三维曲面呈现;(1) the organ image in the acquired original image data is segmented, obtains the three-dimensional area division of all organs and tissues, and the segmentation result is presented with a three-dimensional curved surface;
所述器官图像分割方法包括:The organ image segmentation method includes:
首先,对原始图像数据进行平滑处理;并利用Sobel和LOG进行边缘检测;采用图像膨胀技术将图像边界向外部扩张,进行图像膨胀,并删除图像中的杂点;First, smooth the original image data; use Sobel and LOG for edge detection; use image expansion technology to expand the image boundary to the outside, perform image expansion, and remove noise in the image;
其次,对各个组织器官进行初步分离标记:遍历图像全部像素点,寻找灰度值非0点,若该点与上个已打标签的点是同一区域,则打上相同的标签,否则打上新的标签;整理打好的标签,若某一像素点与其下方像素点是标注不同的标签号且相连,则把两个像素点合成一个标签,同时重新调整所有标签的标号;Secondly, carry out preliminary separation and labeling of each tissue and organ: traverse all the pixel points of the image, and find the point whose gray value is not 0. If the point is in the same area as the previous marked point, the same label is marked, otherwise, a new one is marked. Labels; sort out the labels, if a pixel and the pixel below it are marked with different label numbers and are connected, then combine the two pixels into one label, and re-adjust the labels of all labels at the same time;
再者,采用阈值差分分割算法提取对各个器官区域进行划分,得到所有器官和组织的划分图像;Furthermore, the threshold difference segmentation algorithm is used to extract and divide each organ region to obtain the divided images of all organs and tissues;
最后,将得到的器官和组织划分图像分成多个子图像,分别对每个子图像进行小波分析,得到各子图像的小波系数与平均高频系数;获得种子节点,进行区域生长,获得物体的位置和轮廓;根据获得的轮廓的大小,对子图像中物体的周围进行处理;对器官和组织划分图像进行平滑滤波,生成深度图像;利用基于深度图像绘制原理,结合深度图像与器官和组织划分图像得到所有器官和组织的三维区域划分图像;Finally, the obtained organ and tissue division images are divided into multiple sub-images, and each sub-image is subjected to wavelet analysis to obtain the wavelet coefficients and average high-frequency coefficients of each sub-image; the seed nodes are obtained, the region is grown, and the position and the position of the object are obtained. Contour; according to the size of the obtained contour, the surrounding of the object in the sub-image is processed; the organ and tissue division image is smoothed and filtered to generate a depth image; the depth image is obtained by combining the depth image and the organ and tissue division image using the principle of depth image rendering. 3D region segmentation images of all organs and tissues;
(II)采用点云配准算法,将标准的人体三维模型与图像分割得到的三位区域进行配准,依次得到个体之间器官表面点云的解剖位置对应关系;(II) Using a point cloud registration algorithm, the standard three-dimensional model of the human body is registered with the three-dimensional regions obtained by image segmentation, and the anatomical position correspondence of the surface point clouds of the organs between individuals is obtained in turn;
(III)基于所有个体的配准结果,通过统计形状模型算法得形变模型及形变分量数据。(III) Based on the registration results of all individuals, the deformation model and the deformation component data are obtained through the statistical shape model algorithm.
进一步,步骤二中,所述通过数据整合程序对分析处理后的图像数据进行整合包括:Further, in
首先,基于分析处理后的图像数据的特征选择能够描述图像特征的变量,组成一个多维向量;First, based on the features of the analyzed image data, variables that can describe the image features are selected to form a multi-dimensional vector;
其次,将特征向量投影到对图像辨别有区分度的低维空间;对投影到低维空间中的特征点进行聚类;并利用图像的标签和聚类结果建立图像特征分布图;Secondly, project the feature vector into a low-dimensional space that distinguishes the image; cluster the feature points projected into the low-dimensional space; and use the label of the image and the clustering result to build the image feature distribution map;
然后,计算所有待融合图像的特征权重;Then, calculate the feature weights of all the images to be fused;
最后,基于所计算的特征权重融合所述分析处理后的图像。Finally, the analyzed images are fused based on the calculated feature weights.
进一步,步骤三中,所述三维数字人体解剖学模型的建立过程如下:Further, in
(1)采用统计形状训练算法,从整合后的大量医学图像数据中训练得到人体三维解剖学差异的变形分量;(1) Using a statistical shape training algorithm, the deformation components of the three-dimensional anatomical differences of the human body are obtained by training from a large amount of integrated medical image data;
(2)通过模型建立程序根据训练得到人体三维解剖学差异的变形分量建立三维数字人体解剖学模型;(2) establishing a three-dimensional digital human anatomy model according to the deformation component of the three-dimensional anatomical difference of the human body obtained by training through the model building program;
(3)通过调节众多解剖学特征参数控制人体模型发生由内到外的解剖形态变化,使人体模型的外观和内脏器官形态变得类似个体人类。(3) By adjusting many anatomical characteristic parameters to control the anatomical shape change of the human body model from the inside to the outside, so that the appearance of the human body model and the shape of the internal organs become similar to the individual human.
进一步,所述三维数字人体解剖学模型为:Further, the three-dimensional digital human anatomy model is:
其中,X为三维数字人体解剖学模型,在形变分量已知的情况下,X的形状通过调节形状系数来控制其产生变化;表示解剖学平均模型,由模型曲面的顶点坐标构成;为形变分量,是通过统计形状模型算法由训练数据集中学习得到;b=[b1,b2,...,bc]为形状系数;每个形变分量bm取值为λm为主成份分析特征值。Among them, X is a three-dimensional digital human anatomy model, and when the deformation component is known, the shape of X is controlled to change by adjusting the shape coefficient; Represents the anatomical average model, which consists of the vertex coordinates of the model surface; is the deformation component, which is learned from the training data set through the statistical shape model algorithm; b=[b 1 , b 2 ,...,b c ] is the shape coefficient; each deformation component b m takes the value of λ m is the principal component analysis eigenvalue.
进一步,步骤四中,所述数字人体解剖模型的个性化变形通过手动调节或自动配准的方式来实现;Further, in step 4, the personalized deformation of the digital human anatomy model is realized by manual adjustment or automatic registration;
手动调节方法即指人为输入受试者个体的外观和内脏器官形态学参数,模型根据所输入的参数实现变形,变得与病人个体形态相似。The manual adjustment method refers to artificially inputting the appearance and morphological parameters of the internal organs of the individual subject, and the model is deformed according to the input parameters and becomes similar to the individual patient's morphology.
本发明的另一目的在于提供一种应用所述的可变形数字人解剖学模型的个性化变形方法的可变形数字人解剖学模型的个性化变形系统,所述可变形数字人解剖学模型的个性化变形系统包括:Another object of the present invention is to provide a personalized deformation system of the deformable digital human anatomy model using the personalized deformation method of the deformable digital human anatomy model. Personalized deformation systems include:
原始图像数据获取模块、图像数据处理模块、图像数据整合模块、主控模块、解剖学模型建立模块、个性化变形模块、数据存储模块、显示模块;Original image data acquisition module, image data processing module, image data integration module, main control module, anatomical model building module, personalized deformation module, data storage module, display module;
原始图像数据获取模块,与主控模块连接,用于通过数据获取设备获取人体不同的组织或器官的原始图像数据;The original image data acquisition module, connected with the main control module, is used to acquire the original image data of different tissues or organs of the human body through the data acquisition device;
图像数据处理模块,与主控模块连接,用于通过图像处理程序对获取的原始图像数据进行分析处理;The image data processing module is connected with the main control module, and is used for analyzing and processing the acquired original image data through the image processing program;
图像数据整合模块,与主控模块连接,用于通过数据整合程序对分析处理后的图像数据进行整合;The image data integration module, connected with the main control module, is used to integrate the analyzed and processed image data through the data integration program;
主控模块,与原始图像数据获取模块、图像数据处理模块、图像数据整合模块、解剖学模型建立模块、个性化变形模块、数据存储模块、显示模块连接,用于通过单片机控制系统各个模块的正常运行;The main control module is connected with the original image data acquisition module, the image data processing module, the image data integration module, the anatomical model building module, the personalized deformation module, the data storage module and the display module, and is used to control the normal operation of each module of the system through the single chip microcomputer. run;
解剖学模型建立模块,与主控模块连接,用于通过模型建立程序根据整合后的图像数据建立三维数字人体解剖学模型;The anatomical model establishment module is connected with the main control module, and is used to establish a three-dimensional digital human anatomy model according to the integrated image data through the model establishment program;
个性化变形模块,与主控模块连接,用于通过手动调节或变形程序自动配准的方式实现三维数字人体解剖学模型的个性化变形;The personalized deformation module, connected with the main control module, is used to realize the personalized deformation of the three-dimensional digital human anatomy model through manual adjustment or automatic registration of the deformation program;
数据存储模块,与主控模块连接,用于通过存储器存储获取的原始图像数据、分析和整合处理后的数据、三维数字人体解剖学模型及模型个性化变形数据;A data storage module, connected with the main control module, is used for storing the acquired original image data, the data after analysis and integration processing, the three-dimensional digital human anatomy model and the personalized deformation data of the model through the memory;
显示模块,与主控模块连接,用于通过显示器显示获取的原始图像数据、分析和整合处理后的数据、三维数字人体解剖学模型及模型个性化变形数据。The display module is connected with the main control module, and is used for displaying the acquired original image data, the data after analysis and integration, the three-dimensional digital human anatomy model and the personalized deformation data of the model through the display.
本发明的另一目的在于提供一种存储在计算机可读介质上的计算机程序产品,包括计算机可读程序,供于电子装置上执行时,提供用户输入接口以实施所述的可变形数字人解剖学模型的个性化变形方法。Another object of the present invention is to provide a computer program product stored on a computer-readable medium, including a computer-readable program that, when executed on an electronic device, provides a user input interface to implement the deformable digital human anatomy Personalized deformation methods for learning models.
本发明的另一目的在于提供一种计算机可读存储介质,储存有指令,当所述指令在计算机上运行时,使得计算机执行所述的可变形数字人解剖学模型的个性化变形方法。Another object of the present invention is to provide a computer-readable storage medium storing instructions, which, when the instructions are executed on a computer, cause the computer to execute the personalized deformation method of the deformable digital human anatomy model.
结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明通过人体不同的组织或器官的原始图像数据,实现可变形数字人模型与病人个体变形配准,生成针对个体受试者的解剖结构模型,达到个性化全身解剖结构建模的目的。本发明通过这些外观的和内部的解剖形态特征,可以引导数字人体模型发生变形,使其外表形态和内部解剖结构的形态变得与受试者相似,从而构建个性化的解剖结构模型。Combined with all the above technical solutions, the advantages and positive effects of the present invention are as follows: the present invention realizes the deformable digital human model and the patient individual deformation registration through the original image data of different tissues or organs of the human body, and generates data for individual subjects. The anatomical structure model of the user can achieve the purpose of personalized whole-body anatomical structure modeling. Through these external and internal anatomical morphological features, the present invention can guide the digital human body model to deform, so that the external and internal anatomical structures of the model become similar to the subjects, thereby constructing a personalized anatomical structure model.
本发明能够显示管道结构与外周组织的解剖位置关系,实现模型的个性化变形;可适用于与用户个体相关的医疗信息管理、人体建模仿真、个性化解剖结构展示、病患沟通、解剖学教育等诸多领域。The invention can display the anatomical position relationship between the pipeline structure and the peripheral tissue, and realize the personalized deformation of the model; it can be applied to medical information management related to the individual user, human modeling simulation, personalized anatomical structure display, patient communication, anatomy education and many other fields.
附图说明Description of drawings
图1是本发明实施例提供的可变形数字人解剖学模型的个性化变形方法流程图。FIG. 1 is a flowchart of a method for personalized deformation of a deformable digital human anatomy model provided by an embodiment of the present invention.
图2是本发明实施例提供的可变形数字人解剖学模型的个性化变形系统结构框图;2 is a structural block diagram of a personalized deformation system of a deformable digital human anatomy model provided by an embodiment of the present invention;
图中:1、原始图像数据获取模块;2、图像数据处理模块;3、图像数据整合模块;4、主控模块;5、解剖学模型建立模块;6、个性化变形模块;7、数据存储模块;8、显示模块。In the figure: 1. Original image data acquisition module; 2. Image data processing module; 3. Image data integration module; 4. Main control module; 5. Anatomy model building module; 6. Personalized deformation module; 7. Data storage module; 8. Display module.
图3是本发明实施例提供的原始图像数据分析处理方法流程图。FIG. 3 is a flowchart of a method for analyzing and processing raw image data provided by an embodiment of the present invention.
图4是本发明实施例提供的图像数据整合方法流程图。FIG. 4 is a flowchart of an image data integration method provided by an embodiment of the present invention.
图5是本发明实施例提供的三维数字人体解剖学模型的建立方法流程图。FIG. 5 is a flowchart of a method for establishing a three-dimensional digital human anatomy model provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
针对现有技术存在的问题,本发明提供了一种可变形数字人解剖学模型的个性化变形方法及系统,下面结合附图对本发明作详细的描述。In view of the problems existing in the prior art, the present invention provides a method and system for personalized deformation of a deformable digital human anatomy model. The present invention is described in detail below with reference to the accompanying drawings.
如图1所示,本发明实施例提供的可变形数字人解剖学模型的个性化变形方法包括以下步骤:As shown in FIG. 1, the personalized deformation method of the deformable digital human anatomy model provided by the embodiment of the present invention includes the following steps:
S101,通过CT机扫描、MRI设备、X射线机或三维激光扫描设备采集被诊断为无临床症状的个体的不同组织或器官的原始数字图像数据。S101 , acquire raw digital image data of different tissues or organs of individuals diagnosed as asymptomatic through CT scanning, MRI equipment, X-ray machine or three-dimensional laser scanning equipment.
S102,通过图像处理程序对获取的原始图像数据进行分析处理;通过数据整合程序对分析处理后的图像数据进行整合。S102, analyze and process the acquired original image data through an image processing program; integrate the analyzed and processed image data through a data integration program.
S103,通过单片机控制模型个性化变形系统的正常运行;通过模型建立程序根据整合后的图像数据建立三维数字人体解剖学模型。S103, the normal operation of the model personalized deformation system is controlled by the single chip computer; the three-dimensional digital human anatomy model is established according to the integrated image data through the model establishment program.
S104,通过手动调节或变形程序自动配准的方式实现三维数字人体解剖学模型的个性化变形。S104, the personalized deformation of the three-dimensional digital human anatomy model is realized by manual adjustment or automatic registration of the deformation program.
S105,通过存储器存储获取的原始图像数据、分析和整合处理后的数据、三维数字人体解剖学模型及模型个性化变形数据。S105, store the acquired original image data, the data after analysis and integration processing, the three-dimensional digital human anatomy model and the personalized deformation data of the model through the memory.
S106,通过显示器显示获取的原始图像数据、分析和整合处理后的数据、三维数字人体解剖学模型及模型个性化变形数据。S106, the acquired original image data, the data after analysis and integration processing, the three-dimensional digital human anatomy model and the model personalized deformation data are displayed on the display.
本发明实施例提供的个体的原始数字图像数据包括人体不同组织或器官的形状、大小、外部结构、内部管道的数字图像数据以及活体解剖学信息和中国人群样本信息;所述内部管道包括动脉、静脉、气管、支气管、淋巴管、肝管或胰管中的一种或多种;所述中国人群样本信息包括人体所有器官或组织的人与人之间差异变化、所有器官或组织的健康与病态差异变化。The original digital image data of the individual provided by the embodiment of the present invention includes the shapes, sizes, external structures of different tissues or organs of the human body, digital image data of internal pipelines, as well as bioanatomy information and Chinese population sample information; the internal pipelines include arteries, One or more of veins, trachea, bronchi, lymphatic vessels, hepatic ducts or pancreatic ducts; the Chinese population sample information includes human-to-human differences in all organs or tissues of the human body, the health and Morbid differential change.
本发明实施例提供的数字人体解剖模型的个性化变形通过手动调节或自动配准的方式来实现;手动调节方法即指人为输入受试者个体的外观和内脏器官形态学参数,模型根据所输入的参数实现变形,变得与病人个体形态相似。The personalized deformation of the digital human anatomy model provided by the embodiment of the present invention is realized by manual adjustment or automatic registration; the manual adjustment method refers to the artificial input of the appearance and morphological parameters of the internal organs of the individual subject, and the model is based on the input. The parameters of the deformation are realized and become similar to the individual shape of the patient.
如图2所示,本发明实施例提供的可变形数字人解剖学模型的个性化变形系统包括:原始图像数据获取模块1、图像数据处理模块2、图像数据整合模块3、主控模块4、解剖学模型建立模块5、个性化变形模块6、数据存储模块7、显示模块8。As shown in FIG. 2, the personalized deformation system of the deformable digital human anatomy model provided by the embodiment of the present invention includes: an original image data acquisition module 1, an image
原始图像数据获取模块1,与主控模块4连接,用于通过数据获取设备获取人体不同的组织或器官的原始图像数据;The original image data acquisition module 1, connected with the main control module 4, is used to acquire the original image data of different tissues or organs of the human body through the data acquisition device;
图像数据处理模块2,与主控模块4连接,用于通过图像处理程序对获取的原始图像数据进行分析处理;The image
图像数据整合模块3,与主控模块4连接,用于通过数据整合程序对分析处理后的图像数据进行整合;The image
主控模块4,与原始图像数据获取模块1、图像数据处理模块2、图像数据整合模块3、解剖学模型建立模块5、个性化变形模块6、数据存储模块7、显示模块8连接,用于通过单片机控制系统各个模块的正常运行;The main control module 4 is connected with the original image data acquisition module 1, the image
解剖学模型建立模块5,与主控模块4连接,用于通过模型建立程序根据整合后的图像数据建立三维数字人体解剖学模型;The anatomical
个性化变形模块6,与主控模块4连接,用于通过手动调节或变形程序自动配准的方式实现三维数字人体解剖学模型的个性化变形;The
数据存储模块7,与主控模块4连接,用于通过存储器存储获取的原始图像数据、分析和整合处理后的数据、三维数字人体解剖学模型及模型个性化变形数据;The
显示模块8,与主控模块4连接,用于通过显示器显示获取的原始图像数据、分析和整合处理后的数据、三维数字人体解剖学模型及模型个性化变形数据。The
下面结合具体实施例对本发明作进一步描述。The present invention will be further described below in conjunction with specific embodiments.
实施例1:Example 1:
本发明实施例提供的可变形数字人解剖学模型的个性化变形方法如图1所示,作为优选实施例,如图3所示,本发明实施例提供的通过图像处理程序对获取的原始图像数据进行分析处理的方法如下:The personalized deformation method of the deformable digital human anatomy model provided by the embodiment of the present invention is shown in FIG. 1 . As a preferred embodiment, as shown in FIG. 3 , the original image obtained by the image processing program provided by the embodiment of the present invention is The methods of data analysis and processing are as follows:
S201,将获取的原始图像数据中的器官图像进行分割,得到所有器官和组织的三维区域划分,分割结果以三维曲面呈现。S201 , segment the organ images in the acquired original image data to obtain three-dimensional region divisions of all organs and tissues, and the segmentation results are presented in a three-dimensional curved surface.
S202,采用点云配准算法,将标准的人体三维模型与图像分割得到的三位区域进行配准,依次得到个体之间器官表面点云的解剖位置对应关系。S202 , using a point cloud registration algorithm, the standard three-dimensional model of the human body is registered with the three-dimensional regions obtained by image segmentation, and the corresponding relationship between the anatomical positions of the surface point clouds of the organs between individuals is obtained in turn.
S203,基于所有个体的配准结果,通过统计形状模型算法得形变模型及形变分量数据。S203, based on the registration results of all individuals, obtain deformation model and deformation component data through a statistical shape model algorithm.
步骤S201中,本发明实施例提供的器官图像分割方法包括:In step S201, the organ image segmentation method provided by the embodiment of the present invention includes:
首先,对原始图像数据进行平滑处理;并利用Sobel和LOG进行边缘检测;采用图像膨胀技术将图像边界向外部扩张,进行图像膨胀,并删除图像中的杂点;First, smooth the original image data; use Sobel and LOG for edge detection; use image expansion technology to expand the image boundary to the outside, perform image expansion, and remove noise in the image;
其次,对各个组织器官进行初步分离标记:遍历图像全部像素点,寻找灰度值非0点,若该点与上个已打标签的点是同一区域,则打上相同的标签,否则打上新的标签;整理打好的标签,若某一像素点与其下方像素点是标注不同的标签号且相连,则把两个像素点合成一个标签,同时重新调整所有标签的标号;Secondly, carry out preliminary separation and labeling of each tissue and organ: traverse all the pixel points of the image, and find the point whose gray value is not 0. If the point is in the same area as the previous marked point, the same label is marked, otherwise, a new one is marked. Labels; sort out the labels, if a pixel and the pixel below it are marked with different label numbers and are connected, then combine the two pixels into one label, and re-adjust the labels of all labels at the same time;
再者,采用阈值差分分割算法提取对各个器官区域进行划分,得到所有器官和组织的划分图像;Furthermore, the threshold difference segmentation algorithm is used to extract and divide each organ region to obtain the divided images of all organs and tissues;
最后,将得到的器官和组织划分图像分成多个子图像,分别对每个子图像进行小波分析,得到各子图像的小波系数与平均高频系数;获得种子节点,进行区域生长,获得物体的位置和轮廓;根据获得的轮廓的大小,对子图像中物体的周围进行处理;对器官和组织划分图像进行平滑滤波,生成深度图像;利用基于深度图像绘制原理,结合深度图像与器官和组织划分图像得到所有器官和组织的三维区域划分图像。Finally, the obtained organ and tissue division images are divided into multiple sub-images, and each sub-image is subjected to wavelet analysis to obtain the wavelet coefficients and average high-frequency coefficients of each sub-image; the seed nodes are obtained, the region is grown, and the position and the position of the object are obtained. Contour; according to the size of the obtained contour, the surrounding of the object in the sub-image is processed; the organ and tissue division image is smoothed and filtered to generate a depth image; the depth image is obtained by combining the depth image and the organ and tissue division image using the principle of depth image rendering. 3D region segmentation images of all organs and tissues.
实施例2:Example 2:
本发明实施例提供的可变形数字人解剖学模型的个性化变形方法如图1所示,作为优选实施例,如图4所示,本发明实施例提供的通过数据整合程序对分析处理后的图像数据进行整合方法包括:The personalized deformation method of the deformable digital human anatomy model provided by the embodiment of the present invention is shown in FIG. 1 . As a preferred embodiment, as shown in FIG. 4 , the data integration program provided by the embodiment of the present invention analyzes and processes the Image data integration methods include:
S301,基于分析处理后的图像数据的特征选择能够描述图像特征的变量,组成一个多维向量;S301, select variables that can describe the image features based on the features of the analyzed and processed image data to form a multi-dimensional vector;
S302,将特征向量投影到对图像辨别有区分度的低维空间;对投影到低维空间中的特征点进行聚类;并利用图像的标签和聚类结果建立图像特征分布图;S302, project the feature vector to a low-dimensional space that distinguishes the image; cluster the feature points projected into the low-dimensional space; and use the label of the image and the clustering result to establish an image feature distribution map;
S303,计算所有待融合图像的特征权重;S303, calculate the feature weights of all the images to be fused;
S304,基于所计算的特征权重融合所述分析处理后的图像。S304 , fuse the analyzed and processed images based on the calculated feature weights.
实施例3:Example 3:
本发明实施例提供的可变形数字人解剖学模型的个性化变形方法如图1所示,作为优选实施例,如图5所示,本发明实施例提供的三维数字人体解剖学模型的建立过程如下:The personalized deformation method of the deformable digital human anatomy model provided by the embodiment of the present invention is shown in FIG. 1 . As a preferred embodiment, as shown in FIG. 5 , the establishment process of the three-dimensional digital human anatomy model provided by the embodiment of the present invention is shown in FIG. as follows:
S401,采用统计形状训练算法,从整合后的大量医学图像数据中训练得到人体三维解剖学差异的变形分量。S401 , using a statistical shape training algorithm to train a deformation component of a three-dimensional anatomical difference of a human body from a large amount of integrated medical image data.
S402,通过模型建立程序根据训练得到人体三维解剖学差异的变形分量建立三维数字人体解剖学模型。S402 , establishing a three-dimensional digital human anatomy model according to the deformation components of the three-dimensional anatomical differences of the human body obtained through training through a model building program.
S403,通过调节众多解剖学特征参数控制人体模型发生由内到外的解剖形态变化,使人体模型的外观和内脏器官形态变得类似个体人类。S403, controlling the anatomical shape change of the human body model from the inside to the outside by adjusting many anatomical characteristic parameters, so that the appearance and the shape of the internal organs of the human body model become similar to an individual human.
本发明实施例提供的三维数字人体解剖学模型为:The three-dimensional digital human anatomy model provided by the embodiment of the present invention is:
其中,X为三维数字人体解剖学模型,在形变分量已知的情况下,X的形状通过调节形状系数来控制其产生变化;表示解剖学平均模型,由模型曲面的顶点坐标构成;为形变分量,是通过统计形状模型算法由训练数据集中学习得到;b=[b1,b2,...,bc]为形状系数;每个形变分量bm取值为λm为主成份分析特征值。Among them, X is a three-dimensional digital human anatomy model, and when the deformation component is known, the shape of X is controlled to change by adjusting the shape coefficient; Represents the anatomical average model, which consists of the vertex coordinates of the model surface; is the deformation component, which is learned from the training data set through the statistical shape model algorithm; b=[b 1 , b 2 ,...,b c ] is the shape coefficient; each deformation component b m takes the value of λ m is the principal component analysis eigenvalue.
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输)。所述计算机可读取存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘SolidState Disk(SSD))等。In the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented in whole or in part in the form of a computer program product, the computer program product includes one or more computer instructions. When the computer program instructions are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated. The computer may be a general purpose computer, special purpose computer, computer network, or other programmable device. The computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wireline (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.)). The computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, etc. that includes one or more available mediums integrated. The usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art is within the technical scope disclosed by the present invention, and all within the spirit and principle of the present invention Any modifications, equivalent replacements and improvements made within the scope of the present invention should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010297172.5A CN111583385B (en) | 2020-04-15 | 2020-04-15 | Personalized deformation method and system for deformable digital human anatomy model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010297172.5A CN111583385B (en) | 2020-04-15 | 2020-04-15 | Personalized deformation method and system for deformable digital human anatomy model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111583385A true CN111583385A (en) | 2020-08-25 |
CN111583385B CN111583385B (en) | 2024-02-13 |
Family
ID=72116620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010297172.5A Active CN111583385B (en) | 2020-04-15 | 2020-04-15 | Personalized deformation method and system for deformable digital human anatomy model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111583385B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112070731A (en) * | 2020-08-27 | 2020-12-11 | 佛山读图科技有限公司 | Method for guiding registration of human body model atlas and case CT image by artificial intelligence |
CN112598669A (en) * | 2021-03-04 | 2021-04-02 | 之江实验室 | Lung lobe segmentation method based on digital human technology |
CN112669450A (en) * | 2020-12-31 | 2021-04-16 | 武汉联影智融医疗科技有限公司 | Human body model construction method and personalized human body model construction method |
CN113240645A (en) * | 2021-05-17 | 2021-08-10 | 赤峰学院附属医院 | Display processing method and device, storage medium, processor and terminal equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104794476A (en) * | 2015-04-21 | 2015-07-22 | 杭州创恒电子技术开发有限公司 | Personnel trace extraction method |
CN107993293A (en) * | 2017-11-09 | 2018-05-04 | 大连理工大学 | A kind of three-dimensional interactive anatomic teaching method for including Chinese population difference |
CN109872292A (en) * | 2019-02-22 | 2019-06-11 | 东华理工大学 | Method for fast processing of graphic images |
CN109977844A (en) * | 2019-03-21 | 2019-07-05 | 江苏科技大学 | One kind giving precedence to pedestrian's control system and control method based on image recognition motor vehicle |
CN110335358A (en) * | 2019-06-18 | 2019-10-15 | 大连理工大学 | Personalized deformation method of deformable digital human anatomical model |
-
2020
- 2020-04-15 CN CN202010297172.5A patent/CN111583385B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104794476A (en) * | 2015-04-21 | 2015-07-22 | 杭州创恒电子技术开发有限公司 | Personnel trace extraction method |
CN107993293A (en) * | 2017-11-09 | 2018-05-04 | 大连理工大学 | A kind of three-dimensional interactive anatomic teaching method for including Chinese population difference |
CN109872292A (en) * | 2019-02-22 | 2019-06-11 | 东华理工大学 | Method for fast processing of graphic images |
CN109977844A (en) * | 2019-03-21 | 2019-07-05 | 江苏科技大学 | One kind giving precedence to pedestrian's control system and control method based on image recognition motor vehicle |
CN110335358A (en) * | 2019-06-18 | 2019-10-15 | 大连理工大学 | Personalized deformation method of deformable digital human anatomical model |
Non-Patent Citations (1)
Title |
---|
孙孝邦: "中国人躯干部位可变形统计图谱构建研究", 《中国优秀硕士学位论文全文信息库 基础科学辑 》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112070731A (en) * | 2020-08-27 | 2020-12-11 | 佛山读图科技有限公司 | Method for guiding registration of human body model atlas and case CT image by artificial intelligence |
CN112669450A (en) * | 2020-12-31 | 2021-04-16 | 武汉联影智融医疗科技有限公司 | Human body model construction method and personalized human body model construction method |
CN112669450B (en) * | 2020-12-31 | 2024-02-27 | 武汉联影智融医疗科技有限公司 | Human body model construction method and personalized human body model construction method |
CN112598669A (en) * | 2021-03-04 | 2021-04-02 | 之江实验室 | Lung lobe segmentation method based on digital human technology |
CN112598669B (en) * | 2021-03-04 | 2021-06-01 | 之江实验室 | Lung lobe segmentation method based on digital human technology |
WO2022183851A1 (en) * | 2021-03-04 | 2022-09-09 | 之江实验室 | Lung lobe segmentation method based on digital human technology |
CN113240645A (en) * | 2021-05-17 | 2021-08-10 | 赤峰学院附属医院 | Display processing method and device, storage medium, processor and terminal equipment |
CN113240645B (en) * | 2021-05-17 | 2024-04-16 | 赤峰学院附属医院 | Display processing method, device, storage medium, processor and terminal equipment |
Also Published As
Publication number | Publication date |
---|---|
CN111583385B (en) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109583440B (en) | Medical image auxiliary diagnosis method and system combining image recognition and report editing | |
WO2021203795A1 (en) | Pancreas ct automatic segmentation method based on saliency dense connection expansion convolutional network | |
EP2916738B1 (en) | Lung, lobe, and fissure imaging systems and methods | |
CN111583385B (en) | Personalized deformation method and system for deformable digital human anatomy model | |
CN108257135A (en) | The assistant diagnosis system of medical image features is understood based on deep learning method | |
Wen et al. | A novel statistical cerebrovascular segmentation algorithm with particle swarm optimization | |
Ferreira et al. | Segmentation algorithms for ear image data towards biomechanical studies | |
WO2019000455A1 (en) | Method and system for segmenting image | |
CN107169974A (en) | It is a kind of based on the image partition method for supervising full convolutional neural networks more | |
CN111931811A (en) | Calculation method based on super-pixel image similarity | |
WO2008091583A2 (en) | Image-based extraction for vascular trees | |
CN106447682A (en) | Automatic segmentation method for breast MRI focus based on Inter-frame correlation | |
CN107680110B (en) | Three-dimensional level set segmentation method of inner ear based on statistical shape model | |
CN105912874A (en) | Liver three-dimensional database system constructed on the basis of DICOM (Digital Imaging and Communications in Medicine) medical image | |
CN110796672A (en) | Breast cancer MRI segmentation method based on hierarchical convolutional neural network | |
US12125208B2 (en) | Method and arrangement for automatically localizing organ segments in a three-dimensional image | |
Belsare et al. | Breast histopathology image segmentation using spatio‐colour‐texture based graph partition method | |
Nowinski et al. | A 3D model of human cerebrovasculature derived from 3T magnetic resonance angiography | |
WO2021030995A1 (en) | Inferior vena cava image analysis method and product based on vrds ai | |
Huang et al. | Thin structure segmentation and visualization in three-dimensional biomedical images: a shape-based approach | |
Williams et al. | Interactive segmentation via deep learning and B-spline explicit active surfaces | |
Tong et al. | Computer-aided lung nodule detection based on CT images | |
KR102716447B1 (en) | Segmentation System and method for respiratory structure including lung lobe, trachea and bronchi from medical images | |
Jiang et al. | An automatic and fast centerline extraction algorithm for virtual colonoscopy | |
CN113689442A (en) | Method for realizing lung organ segmentation based on three-dimensional image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared |