CN111579131A - Calibration device - Google Patents
Calibration device Download PDFInfo
- Publication number
- CN111579131A CN111579131A CN202010576201.1A CN202010576201A CN111579131A CN 111579131 A CN111579131 A CN 111579131A CN 202010576201 A CN202010576201 A CN 202010576201A CN 111579131 A CN111579131 A CN 111579131A
- Authority
- CN
- China
- Prior art keywords
- heat
- heat flow
- flow meter
- heating
- calibration device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K19/00—Testing or calibrating calorimeters
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
技术领域technical field
本申请涉及热流计技术领域,尤其是涉及一种校准装置。The present application relates to the technical field of heat flow meters, and in particular, to a calibration device.
背景技术Background technique
热流计是一种测量单位面积热通量的仪器,用于量化热能传递或者转移。由于热流计生产企业制造水平及检测标定手段不同,造成了热流计测量精度差别较大,因此热流计需要校准。现有的传导式热流计校准装置主要分为绝对法和相对法。A heat flow meter is an instrument that measures heat flux per unit area and is used to quantify heat energy transfer or transfer. Due to the different manufacturing levels and detection and calibration methods of heat flow meter manufacturers, the measurement accuracy of heat flow meters is quite different, so heat flow meters need to be calibrated. Existing conduction heat flow meter calibration devices are mainly divided into absolute method and relative method.
绝对法例如包括保护热板法和箔加热法,其中保护热板法采用热板和冷板将热流传感器夹在中间,通过控制热板和冷板的温度及功率来获得稳定的热流,通过测量主加热器的功率来计算热流计。箔加热法与保护热板法原理相似,主要区别是采用加热箔代替保护热板法中的热板,通过测量加热箔的功率来计算热流。相对法则采用热板和冷板将热流传感器夹在中间产生稳定的热流,将相同形状大小的标准热流计与被测热流计叠放在一起或对称放置,通过标准热流计和被检热流计的比较来测量误差。Absolute methods include, for example, the protected hot plate method and the foil heating method, in which the protected hot plate method uses a hot plate and a cold plate to sandwich a heat flow sensor, and obtains a stable heat flow by controlling the temperature and power of the hot plate and the cold plate. The power of the main heater to calculate the heat flow meter. The principle of the foil heating method is similar to the protected hot plate method, the main difference is that the heating foil is used instead of the hot plate in the protected hot plate method, and the heat flow is calculated by measuring the power of the heating foil. The relative law uses a hot plate and a cold plate to sandwich the heat flow sensor to generate a stable heat flow. The standard heat flow meter and the measured heat flow meter of the same shape and size are stacked together or placed symmetrically. Compare to measure error.
然而,无论是绝对法还是相对法,均采用热板和冷板配合的校准方式,对于仅一侧表面不是平面的热流计难以准确检测。此外,保护热板法结构较为复杂,特别是低热流条件下,温度波动对测量结果影响较大,校准时热板、冷板、保护板温度精度要求高,因此平衡时间长;箔加热器自身热容极小,校准时易受保护板温度波动影响;相对法则需要有相同形状大小的热流计,在实际校准中,热流传感器形状多种多样,因此相对法具有明显的局限性。However, both the absolute method and the relative method use the calibration method of the cooperation of the hot plate and the cold plate, and it is difficult to accurately detect the heat flow meter whose surface is not flat. In addition, the structure of the protection hot plate method is relatively complex, especially under the condition of low heat flow, the temperature fluctuation has a great influence on the measurement results, and the temperature accuracy of the hot plate, cold plate and protection plate is required to be high during calibration, so the equilibration time is long; the foil heater itself The heat capacity is extremely small, and it is easily affected by the temperature fluctuation of the protective plate during calibration; the relative method requires heat flow meters of the same shape and size. In actual calibration, the shape of the heat flow sensor is various, so the relative method has obvious limitations.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本申请提供一种传校准装置,目的在于,一定程度上解决现有技术中无论是绝对法还是相对法,均采用热板和冷板配合的校准方式,对于仅一侧表面不是平面的热流计难以准确检测的技术问题。In view of this, the present application provides a calibration device, the purpose of which is to solve the problem to a certain extent that in the prior art, whether it is an absolute method or a relative method, both the hot plate and the cold plate are used for calibration. The technical problem that the plane heat flow meter is difficult to detect accurately.
本申请提供一种校准装置,用于对传导式热流计进行校准,所述传导式热流计形成有彼此背对的第一表面和第二表面,所述第一表面形成为平面;所述校准装置包括:The application provides a calibration device for calibrating a conduction heat flow meter, the conduction heat flow meter is formed with a first surface and a second surface facing away from each other, the first surface is formed as a plane; the calibration The device includes:
功率输出机构,用于提供产生热流的功率;A power output mechanism for providing power to generate heat flow;
数据采集机构,与所述功率输出机构和所述传导式热流计二者均通讯连接,以进行数据采集;a data acquisition mechanism, connected in communication with both the power output mechanism and the conduction heat flow meter for data acquisition;
所述校准装置包括:The calibration device includes:
加热机构,设置于所述传导式热流计的第一表面侧,并与所述功率输出机构电连接,所述加热机构用于对所述第一表面进行加热,使得所述传导式热流计的第二表面开放;A heating mechanism is arranged on the first surface side of the conduction heat flow meter, and is electrically connected to the power output mechanism, and the heating mechanism is used for heating the first surface, so that the the second surface is open;
所述数据采集机构能够对采集到的数据进行黎曼积分计算。The data collection mechanism can perform Riemann integral calculation on the collected data.
优选地,所述加热机构包括主加热组件,所述主加热组件包括:Preferably, the heating mechanism includes a main heating assembly, and the main heating assembly includes:
主加热构件,形成有彼此背对的第三表面和第四表面,以及在所述第三表面和第四表面之间延伸的侧表面,所述主加热构件与所述功率输出机构电连接,所述第三表面与所述第一表面彼此完全贴合,使得所述主加热构件对所述第一表面进行加热;a main heating member formed with third and fourth surfaces facing away from each other, and a side surface extending between the third and fourth surfaces, the main heating member being electrically connected to the power output mechanism, the third surface and the first surface are in complete contact with each other, so that the primary heating member heats the first surface;
第一绝热构件,设置于所述主加热构件的第四表面侧,并包覆于所述侧表面的外部,所述第一绝热构件由绝热材料形成。The first heat insulating member is provided on the fourth surface side of the main heating member and covers the outside of the side surface, and the first heat insulating member is formed of a heat insulating material.
优选地,所述加热机构还包括保护加热组件,所述保护加热组件设置于所述第一绝热构件的背对所述主加热构件的一侧,并包覆于所述第一绝热构件的除靠近所述传导式热流计的表面的其余外表面,所述保护加热组件对所述第一绝热构件进行加热,使得所述主加热构件经由所述第四表面和所述侧表面损失的热量为零。Preferably, the heating mechanism further includes a protective heating assembly, the protective heating assembly is disposed on the side of the first heat insulating member facing away from the main heating member, and is covered on the other side of the first heat insulating member. Proximate the remaining outer surface of the surface of the conduction heat flow meter, the protective heating assembly heats the first insulating member such that the heat lost by the primary heating member via the fourth surface and the side surface is zero.
优选地,所述保护加热组件包括:Preferably, the protective heating assembly includes:
保护加热构件,设置于所述第一绝热构件的背对所述主加热构件的一侧,并包覆于所述第一绝热构件的除靠近所述传导式热流计的表面的其余外表面;a protective heating member, disposed on the side of the first heat insulating member facing away from the main heating member, and covering the remaining outer surfaces of the first heat insulating member except the surface close to the conduction heat flow meter;
第二绝热构件,设置于所述保护加热构件的背对所述第一绝热构件的一侧,并包覆于所述保护加热构件的除靠近所述传导式热流计的表面的其余外表面。The second heat insulating member is disposed on the side of the protective heating member facing away from the first heat insulating member, and covers the remaining outer surface of the protective heating member except the surface close to the conduction heat flow meter.
优选地,所述校准装置还包括:Preferably, the calibration device further comprises:
温度控制机构,与所述保护加热构件电连接,并用于调节所述保护加热构件的温度,使得所述保护加热构件的温度与所述主加热构件的温度一致。A temperature control mechanism is electrically connected to the protective heating member and used to adjust the temperature of the protective heating member so that the temperature of the protective heating member is consistent with the temperature of the main heating member.
优选地,所述校准装置还包括:Preferably, the calibration device further comprises:
第一温度传感器,设置于所述第四表面与所述第一绝热构件之间,并向所述温度控制机构输送第一温度信号;a first temperature sensor, disposed between the fourth surface and the first heat insulating member, and delivering a first temperature signal to the temperature control mechanism;
第二温度传感器,设置于所述第一绝热构件与所述保护加热构件之间,并向所述温度控制机构输送第二温度信号;a second temperature sensor, disposed between the first heat insulating member and the protective heating member, and delivering a second temperature signal to the temperature control mechanism;
所述温度控制机构比对所述第一温度信号和所述第二温度信号,以控制使得所述保护加热构件的温度与所述主加热构件的温度一致。The temperature control mechanism compares the first temperature signal and the second temperature signal to control the temperature of the protective heating member to be consistent with the temperature of the main heating member.
优选地,所述第一绝热构件和所述第二绝热构件均形成为多层结构。Preferably, both the first heat insulating member and the second heat insulating member are formed in a multilayer structure.
优选地,所述主加热构件和所述保护加热构件包括以下结构:导热部,用于对外释放热量,并由金属材料形成;Preferably, the main heating member and the protective heating member include the following structures: a heat conduction part for releasing heat to the outside and formed of a metal material;
所述主加热构件的导热部在所述主加热构件内均匀分布;The heat conducting parts of the main heating member are evenly distributed in the main heating member;
所述保护加热构件的导热部在所述保护加热构件内均匀分布。The thermally conductive portions of the protective heating member are uniformly distributed within the protective heating member.
优选地,所述功率输出机构由电能驱动,且所述功率输出机构以反馈调节的方式被供电,使得所述功率输出机构输出恒定功率;Preferably, the power output mechanism is driven by electrical energy, and the power output mechanism is powered in a feedback adjustment manner, so that the power output mechanism outputs constant power;
所述功率输出机构还以预定噪声和预定波纹的方式被供电,使得数据采集机构对数据采集的不确定度小于或者等于3%。The power output mechanism is also powered with predetermined noise and predetermined ripple, so that the uncertainty of data acquisition by the data acquisition mechanism is less than or equal to 3%.
优选地,所述加热机构能够以大于500摄氏度的温度对所述传导式热流计进行加热;Preferably, the heating mechanism can heat the conduction heat flow meter at a temperature greater than 500 degrees Celsius;
所述传导式热流计的热流密度能够达到10000W/m2。The heat flux density of the conduction heat flow meter can reach 10000 W/m 2 .
本申请提供的校准装置采用单热板以及冷侧开放式设计,并采用黎曼积分方法进行偏差修正,进而能够在传导式热流计的一侧表面为非平面的情况下也能够进行校准,因此具备良好的适用性。The calibration device provided in this application adopts a single hot plate and an open cold side design, and uses the Riemann integration method for deviation correction, so that the calibration can be performed even when one surface of the conduction heat flow meter is non-planar. Therefore, Has good applicability.
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present application more obvious and easy to understand, the preferred embodiments are exemplified below, and are described in detail as follows in conjunction with the accompanying drawings.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present application more clearly, the following drawings will briefly introduce the drawings that need to be used in the embodiments. It should be understood that the following drawings only show some embodiments of the present application, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.
图1示出了校准装置对传导式热流计进行校准操作的示意图。FIG. 1 shows a schematic diagram of the calibration operation of the calibration device for the conduction heat flow meter.
附图标记:Reference number:
1-被测热流计;2-主加热板;3-第一绝热构件;4-保护加热器;5-第二绝热构件;6a-第一温度传感器;6b-第二温度传感器;7-功率输出机构;8-温度控制机构。1-Measured heat flow meter; 2-Main heating plate; 3-First insulation member; 4-Protection heater; 5-Second insulation member; 6a-First temperature sensor; 6b-Second temperature sensor; 7-Power Output mechanism; 8-Temperature control mechanism.
具体实施方式Detailed ways
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions of the present application will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。In the description of this application, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation or a specific orientation. construction and operation, and therefore should not be construed as limitations on this application. Furthermore, the terms "first", "second", and "third" are used for descriptive purposes only and should not be construed to indicate or imply relative importance.
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that, unless otherwise expressly specified and limited, the terms "installed", "connected" and "connected" should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood in specific situations.
另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。In addition, the technical solutions between the various embodiments can be combined with each other, but must be based on the realization by those of ordinary skill in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that the combination of such technical solutions does not exist. , is not within the scope of protection claimed in this application.
图1示出了校准装置对传导式热流计进行校准操作的示意图。参见图1,本申请提供的校准装置包括:被测热流计、主加热板、第一绝热构件、保护加热器、第二绝热构件、第一温度传感器、第二温度传感器、功率输出机构和温度调节机构,以及图中未示出的数据采集机构。以下将具体描述上述部件的关系和工作原理。FIG. 1 shows a schematic diagram of the calibration operation of the calibration device for the conduction heat flow meter. Referring to FIG. 1 , the calibration device provided by the present application includes: a heat flow meter under test, a main heating plate, a first thermal insulation member, a protective heater, a second thermal insulation member, a first temperature sensor, a second temperature sensor, a power output mechanism, and a temperature Adjustment mechanism, and data acquisition mechanism not shown in the figure. The relationship and working principle of the above components will be described in detail below.
需要事先说明的是,本实施例中,以上被测热流计1形成为传导式热流计;图1中示出的各部件之间的间隙(即被测热流计1与主加热板2之间的间隙、主加热板2与第一绝热构件3之间的间隙、第一绝热构件3与保护加热器4之间的间隙、第二绝热构件5与保护加热器4之间的间隙)均是为了清楚地示出各部件的位置关系而示意性给出的,实际上,各部件之间形成的是紧密接触。此外,为了便于以下的描述,以图1中示出的方位为例,被测热流计1的上表面可以被定义为背面,被测热流计1的下表面可以被定义为正面。It should be noted in advance that in this embodiment, the above-mentioned heat flow meter 1 under test is formed as a conduction heat flow meter; the gap between the components shown in FIG. , the gap between the
正如以上描述中所提及的,被测热流计1的正面和背面彼此背对,虽然图1中示出的正面和背面均为平面,但实际上,被测热流计1的被面也可以不是平面,即在正面为平面的情况下,本实施例中对校准装置针对的被测热流计1的背面形状并不作具体限定,这使得本实施例中的校准装置具有更广泛的适用性。As mentioned in the above description, the front and back of the measured heat flow meter 1 face away from each other. Although the front and back are shown as planes in FIG. 1, in fact, the quilt surface of the measured heat flow meter 1 can also be It is not a plane, that is, when the front is a plane, the shape of the back of the measured heat flow meter 1 targeted by the calibration device is not specifically limited in this embodiment, which makes the calibration device in this embodiment have wider applicability.
在实施例中,被测热流计1的背面开放(即背面完全暴露在外界环境中),主加热板2的上表面与被测热流计1的正面完全地紧密贴合(即主加热板2的上表面与被测热流计1的正面的面积相同),以对被测热流计1进行快速加热。主加热板2对外输出的热功率由与该主加热板2电连接的功率输出机构7实现,即功率输出机构7提供了产生热流的功率,功率输出机构7的工作方式将在随后的描述中给出。In the embodiment, the back of the measured heat flow meter 1 is open (that is, the back is completely exposed to the external environment), and the upper surface of the
主加热板2形成有对外释放热量,以用于加热的导热部。导热部可以由金属材料形成,作为一种较优的选择,可以例如由紫铜形成,由于紫铜的高导热性质,可以有效调高校准过程中的温度范围以及校准过程中的热流密度范围。进一步地,导热部可以在主加热板2内均匀分布,例如由丝状的紫铜经过往复折叠而在主加热板2内形成分布,以确保主加热板2的上表面释放的热量均匀,有利于加快被测热流计1的平衡速度。The
功率输出机构7可以由电能驱动,且功率输出机构7可以以反馈调节的方式为主加热板2供电,如此能够确保功率输出机构7输出恒定功率,以便于加快被测热流计1的平衡速度,同时便于以下的数据采集操作和校准计算。进一步地,功率输出机构7还以低噪声和低波纹的方式为主加热板2供电,因此减小了数据采集过程中的不确定度,作为一种较优的选择,下述数据采集机构对数据采集的不确定度被限定为小于或者等于3%,如此在被测热流计1的背面开放的情况下,尽可能将其他造成数据采集不确定度增加的可能削减到最低,确保校准计算的结果可靠。The
在实施例中,主加热板2的下方可以设置有第一绝热构件3,第一绝热构件3可以形成为多层结构,这些多层结构可以分别由多种绝热材料形成。如图1所示,第一绝热构件3包覆于主加热板2的除上表面以外的其他表面(即第一绝热构件3形成有容纳主加热板2的槽部),如此配合第一绝热构件3的绝热性质,尽可能地降低了主加热板2经由其侧表面和下表面流失的热量,同样有利于加快被测热流计1的平衡速度。In an embodiment, a first
进一步地,在第一绝热构件3的下方,还可以设置有保护加热器4,保护加热器4的形状可以与第一绝热构件3相似,即保护加热器4也可以形成有用于容纳第一绝热构件3的槽部,因此,第一绝热构件3的除上表面以外的其他表面均可以被保护加热器4包覆并进行加热(此外,保护加热构件也包括上述导热部,设置方式也大致与以上导热部相同,区别在于保护加热构件的槽部的内侧部也同样均匀分布用导热部)。这样设置的目的在于,第一绝热构件3的下表面和侧表面在主加热板2提供较高的加热温度时,难免会与外界环境存在温差,而出现换热的情况,这仍然会导致主加热板2的热量损失。Further, under the first
因此,当保护加热器4的槽部的内部的温度与主加热板2的下表面的温度相同时,上述热量损失为零,如此同样有利于有效缩短平衡时间,提高校准效率。这里所说的“热量损失为零”是一种理想状态,实际上由于不可避免的仪器误差以及加热设备之间可能存在的装配误差等原因,热量损失只能够趋近于零,因此“热量损失趋近于零”同样可以视为“热量损失为零”。Therefore, when the temperature inside the groove of the
以上保护加热器4的加热方式,可以通过以下设置方式实现。在实施例中,第一温度传感器6a可以设置于主加热板2的下表面与第一绝热构件3之间,并向温度控制机构8输送第一温度信号,第一温度信号即为以上所提及的主加热板2的下表面的温度的信号。第二温度传感器6b可以设置于第一绝热构件3与保护加热构件之间,并向温度控制机构8输送第二温度信号,第二温度信号即为保护加热器4的槽部的内部的温度。温度控制机构8可以比对第一温度信号和第二温度信号,以控制使得保护加热构件的温度与主加热构件的温度一致。The above heating method of the
在以上设置方式的基础上,保护加热器4的下侧还设置有第二绝热构件5,第二绝热构件5同样包覆于保护加热器4的除其上表面以外的其他表面,进一步减少热量损失。此外,第二绝热构件5可以采用与上述第一绝热构件3相同的层结构,在此不再赘述。On the basis of the above arrangement, the lower side of the
在实施例中,校准装置还包括图1中未示出的数据采集机构。数据采集机构可以与功率输出机构7和被测热流计1二者均通讯连接,以进行数据采集。即数据采集机构采集功率输出机构7所输出的恒定功率和被测热流计1输出的电动势。在以上的描述的特征的基础上,当被测热流计1输出的电动势稳定在标准范围内时,即可视为被测热流计1达到平衡状态,此时以数据采集机构通过预定的数据采集频率采集前述数据,利用恒定功率计算出热流密度,再通过黎曼积分的方法对偏差进行修正,得到热流计系数,完成被测热流计1的校准。In an embodiment, the calibration device further includes a data acquisition mechanism not shown in FIG. 1 . The data acquisition mechanism may be connected in communication with both the
作为一种较优的选择,本实施例中的加热机构能够以大于500摄氏度的温度对传导式热流计进行加热,并且传导式热流计的热流密度能够达到10000W/m2,如此特别有利于提高校准的温度范围和热流范围,从而增加校准装置的适用性。As a preferred choice, the heating mechanism in this embodiment can heat the conduction heat flow meter at a temperature greater than 500 degrees Celsius, and the heat flow density of the conduction heat flow meter can reach 10000W/m 2 , which is particularly beneficial to improve Calibrated temperature range and heat flow range, thus increasing the applicability of the calibration device.
本实施例提供的校准装置采用单热板以及冷侧开放式设计,并采用黎曼积分方法进行偏差修正,进而能够在传导式热流计的背面为非平面的情况下也能够进行校准,因此具备良好的适用性。The calibration device provided in this embodiment adopts a single hot plate and an open cold side design, and uses the Riemann integration method for deviation correction, so that calibration can also be performed even when the back of the conduction heat flow meter is non-planar. Therefore, it has good applicability.
以上仅为本申请的优选实施例,并非因此限制本申请的保护范围,凡是在本申请的创新构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的保护范围内。The above are only the preferred embodiments of the present application, and are not intended to limit the scope of protection of the present application. Under the innovative conception of the present application, the equivalent structure transformation made by using the contents of the description and drawings of the present application, or directly/indirectly applied to other Relevant technical fields are all included within the protection scope of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010576201.1A CN111579131B (en) | 2020-06-22 | 2020-06-22 | Calibration device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010576201.1A CN111579131B (en) | 2020-06-22 | 2020-06-22 | Calibration device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111579131A true CN111579131A (en) | 2020-08-25 |
CN111579131B CN111579131B (en) | 2025-07-04 |
Family
ID=72125774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010576201.1A Active CN111579131B (en) | 2020-06-22 | 2020-06-22 | Calibration device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111579131B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112362196A (en) * | 2020-12-04 | 2021-02-12 | 中国科学院力学研究所 | Construction method for heat flow static calibration |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07209222A (en) * | 1994-01-26 | 1995-08-11 | Eikou Seiki Kk | Method and apparatus for measuring thermal conductivity of thermal insulating material lapped with skin material |
CN105659832B (en) * | 2008-11-27 | 2013-04-03 | 北京空间飞行器总体设计部 | A kind of power back-off formula transient heat flow measurement mechanism and method |
CN103196949A (en) * | 2013-04-26 | 2013-07-10 | 上海市计量测试技术研究院 | Heat resistance heat flow meter calibration method and implementation device thereof |
CN109781309A (en) * | 2018-12-26 | 2019-05-21 | 西安交通大学 | A high-precision calibration device and method for a thin-film heat flow meter |
CN212059189U (en) * | 2020-06-22 | 2020-12-01 | 辽宁省计量科学研究院 | Calibration device |
-
2020
- 2020-06-22 CN CN202010576201.1A patent/CN111579131B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07209222A (en) * | 1994-01-26 | 1995-08-11 | Eikou Seiki Kk | Method and apparatus for measuring thermal conductivity of thermal insulating material lapped with skin material |
CN105659832B (en) * | 2008-11-27 | 2013-04-03 | 北京空间飞行器总体设计部 | A kind of power back-off formula transient heat flow measurement mechanism and method |
CN103196949A (en) * | 2013-04-26 | 2013-07-10 | 上海市计量测试技术研究院 | Heat resistance heat flow meter calibration method and implementation device thereof |
CN109781309A (en) * | 2018-12-26 | 2019-05-21 | 西安交通大学 | A high-precision calibration device and method for a thin-film heat flow meter |
CN212059189U (en) * | 2020-06-22 | 2020-12-01 | 辽宁省计量科学研究院 | Calibration device |
Non-Patent Citations (1)
Title |
---|
杨家健 等: "热流计校准装置测量控制系统的建立", 电子测量与仪器学报, vol. 25, no. 07, 31 July 2011 (2011-07-31), pages 620 - 625 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112362196A (en) * | 2020-12-04 | 2021-02-12 | 中国科学院力学研究所 | Construction method for heat flow static calibration |
Also Published As
Publication number | Publication date |
---|---|
CN111579131B (en) | 2025-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101290299B (en) | Variable thermal conductivity factor measuring apparatus and method | |
US10948358B2 (en) | Fixing element, use of a sensor integrated in the fixing element and method for detecting the heat flow inside mechanical elements | |
CN102384928B (en) | Method for measuring thermal conductivity of high-conductivity thermal solid material | |
CN108474692A (en) | The measurement structure of function control for rechargeable battery | |
CN113588137B (en) | Heat flow sensor calibration device and calibration method | |
CN109507229A (en) | Thin plate thin-film material heat conductivity measuring device and measurement method | |
CN102830134B (en) | Up-and-down constant-temperature parameter identifying method for testing thermal interface material performance | |
CN107421980B (en) | Heating impedance compensation type thermo-resistance measurement method | |
CN111579131A (en) | Calibration device | |
JP2009244084A (en) | Apparatus and method for measuring thermal conductivity of thermally joined material | |
CN109781780A (en) | A Simple Steady-State Test System for Thermal Conductivity of High Thermal Conductivity Materials | |
CN212059189U (en) | Calibration device | |
KR101889818B1 (en) | Thermal conductivity mearsuring device and measuring method thereof | |
CN110530927A (en) | A kind of thermoelectric material Seebeck coefficient test device and method | |
CN118466634B (en) | Multifunctional temperature control device based on semiconductor refrigeration chip | |
CN111487282B (en) | Device and method for measuring heterogeneous content in porous material with limited thickness | |
KR102257190B1 (en) | Thermal conductivity measurement system and thermal conductivity measurement method thereof | |
JP4083127B2 (en) | Thermal conductivity measuring device and thermal conductivity measuring method | |
CN206212423U (en) | One kind heating detection soft board | |
KR101261627B1 (en) | Apparutus and system for measuring heat flux | |
Meng et al. | A novel steady-state method for measuring thermal conductivity of thermal interface materials with miniaturized thermal test chips | |
CN217901039U (en) | Temperature measuring device and temperature measuring system | |
CN114609177B (en) | Application method of thermoelectric generator in thermal flow parameter measurement equipment | |
CN212904622U (en) | Device for measuring heterogeneous content in porous material with limited thickness | |
CN114609179A (en) | Heat flow high-precision measuring device and method suitable for wearable equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |