CN111579068A - A photoelectric imaging sensor - Google Patents
A photoelectric imaging sensor Download PDFInfo
- Publication number
- CN111579068A CN111579068A CN202010411277.9A CN202010411277A CN111579068A CN 111579068 A CN111579068 A CN 111579068A CN 202010411277 A CN202010411277 A CN 202010411277A CN 111579068 A CN111579068 A CN 111579068A
- Authority
- CN
- China
- Prior art keywords
- light
- imaging unit
- filter
- single photon
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2823—Imaging spectrometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J2003/1213—Filters in general, e.g. dichroic, band
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及光电探测技术领域,特别涉及一种光电成像传感器。The invention relates to the technical field of photoelectric detection, in particular to a photoelectric imaging sensor.
背景技术Background technique
随着社会对安防领域的重视程度不断加大,其所涉及的应用范围逐步增大,同时不同用户也对其相关设备与技术提出了更多更高的要求。图像传感器作为相机和监控设备的核心部件,对获取被摄场景的图像品质有着决定性的影响。用户对安防监控应用的需求往往要求监控相机能够24小时不间断工作,即使是在夜晚或极微弱光环境下,也必须能够获取到清晰、直观、准确的图像。As the society pays more and more attention to the security field, the scope of its application has gradually increased, and different users have also put forward more and higher requirements for its related equipment and technologies. As the core component of cameras and monitoring equipment, image sensors have a decisive impact on the image quality of the captured scene. Users' needs for security monitoring applications often require surveillance cameras to work 24 hours a day, even at night or in extremely weak light environments, they must be able to obtain clear, intuitive and accurate images.
图像传感器是利用光电器件的光电转换功能。将感光面上的光像转换为与光像成相应比例关系的电信号。与光敏二极管,光敏三极管等“点”光源的光敏元件相比,图像传感器是将其受光面上的光像,分成许多小单元,将其转换成可用的电信号的一种功能器件。图像传感器具有体积小、重量轻、集成度高、分辨率高、功耗低、寿命长、价格低等特点,得到了广泛应用。随着用户应用的升级,市场需要更高灵敏度的成像传感器,解决低照度、大动态、宽光谱等新型应用。Image sensors utilize the photoelectric conversion function of photoelectric devices. The light image on the photosensitive surface is converted into an electrical signal proportional to the light image. Compared with the photosensitive elements of "point" light sources such as photodiodes and phototransistors, the image sensor is a functional device that divides the light image on its light-receiving surface into many small units and converts them into usable electrical signals. Image sensors have the characteristics of small size, light weight, high integration, high resolution, low power consumption, long life and low price, and have been widely used. With the upgrade of user applications, the market needs imaging sensors with higher sensitivity to solve new applications such as low illumination, large dynamics, and wide spectrum.
单光子探测技术是一种弱光探测技术,将单个或少量光子激发的光电子信号放大,通过脉冲甄别和累计等技术识别提取极弱光电子信号,达到光电探测的超灵敏极限。单光子探测技术在高分辨率的光谱测量、非破坏性物质分析、高速现象检测、 精密分析、大气测污、生物发光、放射探测、高能物理、天文测光、光时域反射、量子密钥分发系统等领域有着广泛的应用。用于单光子探测的探测器主要有光电倍增管(PMT)、雪崩光电二极管(APD)、单光子雪崩二极管(SPAD)、硅光电倍增管(SIPM)、增强型光电极管(IPD)、电子倍增CCD(EMCCD)和科学级sCMOS等。但是目前现有的单光子探测器多存在一定的局限性,如PMT在红外波段的量子效率较低、体积较大、易受外磁场干扰;APD具有增益低、噪声大,外围控制电路及热电制冷电路较复杂等缺点。Single-photon detection technology is a weak light detection technology that amplifies the photoelectron signal excited by a single or a small number of photons, and identifies and extracts extremely weak photoelectron signals through techniques such as pulse discrimination and accumulation, reaching the ultra-sensitive limit of photoelectric detection. Single-photon detection technology is used in high-resolution spectral measurement, non-destructive material analysis, high-speed phenomenon detection, precision analysis, atmospheric pollution measurement, bioluminescence, radiation detection, high-energy physics, astronomical photometry, optical time domain reflectometry, quantum encryption Distribution systems and other fields have a wide range of applications. The detectors used for single photon detection mainly include photomultiplier tube (PMT), avalanche photodiode (APD), single photon avalanche diode (SPAD), silicon photomultiplier tube (SIPM), intensified photoelectrode tube (IPD), electronic Multiplying CCD (EMCCD) and scientific grade sCMOS, etc. However, most of the existing single-photon detectors have certain limitations. For example, PMT has low quantum efficiency in the infrared band, large size, and is susceptible to external magnetic field interference; APD has low gain, high noise, peripheral control circuits and thermoelectricity. The refrigeration circuit is more complex and other disadvantages.
发明内容SUMMARY OF THE INVENTION
本发明的目的提供一种光电成像传感器,兼容可见光和微光夜视成像,具有动态范围大、分辨率高、高灵敏、探测光谱范围宽等性能,具体技术方案如下:The purpose of the present invention is to provide a photoelectric imaging sensor, which is compatible with visible light and low-light night vision imaging, and has the properties of large dynamic range, high resolution, high sensitivity, and wide detection spectral range. The specific technical scheme is as follows:
一种光电成像传感器,包括滤光层和成像单元,滤光层由若干个滤光单元组成,每个滤光单元包括四个滤光区,四个所述滤光区分别允许通过红光、绿光、蓝光和宽光谱光;所述成像单元用于接收穿过滤光层的光线并进行成像,包括可见光成像单元和单光子成像单元,允许通过红光、绿光和蓝光的滤光区与可见光成像单元对应,允许通过宽光谱光线的滤光区与单光子成像单元对应,所述单光子成像单元用于接收透过宽光谱滤光区的弱光信号并将弱光信号高倍数放大处理生成图像。A photoelectric imaging sensor includes a filter layer and an imaging unit, the filter layer is composed of several filter units, each filter unit includes four filter areas, and the four filter areas respectively allow red light, Green light, blue light and broad-spectrum light; the imaging unit is used to receive light passing through the filter layer and perform imaging, including a visible light imaging unit and a single-photon imaging unit, allowing through the filter regions of red, green and blue light and Corresponding to the visible light imaging unit, the filter area that allows light to pass through the broad spectrum corresponds to the single-photon imaging unit, and the single-photon imaging unit is used to receive the weak light signal passing through the broad spectrum filter area and amplify the weak light signal with high multiples. Generate an image.
进一步地,单光子成像单元包括封装管壳和光学窗口,所述封装管壳与光学窗口结合形成真空密封腔体,所述真空密封腔体内设置感光阴极和单光子成像电路,所述感光阴极生长在光学窗口的下表面,所述单光子成像电路设置在感光阴极的相对面,感光阴极释放的光电子在外加高压的作用下移动到单光子成像电路。Further, the single-photon imaging unit includes a package tube and an optical window, the package tube and the optical window are combined to form a vacuum-sealed cavity, a photosensitive cathode and a single-photon imaging circuit are arranged in the vacuum-sealed cavity, and the photosensitive cathode grows. On the lower surface of the optical window, the single-photon imaging circuit is arranged on the opposite surface of the photosensitive cathode, and the photoelectrons released by the photosensitive cathode move to the single-photon imaging circuit under the action of an applied high voltage.
进一步地,单光子成像电路包括高压保护电路、采集电路、放大电路、ADC电路和接口电路,采用标准的CMOS工艺制备而成。Further, the single-photon imaging circuit includes a high-voltage protection circuit, an acquisition circuit, an amplifying circuit, an ADC circuit and an interface circuit, and is prepared by using a standard CMOS process.
优选地,感光阴极采用Si、Ge、GaAs、InGaAsP、InGaAs或InAs/GaAsSb II类超晶格中的一种或多种材料并以MEMS工艺制备而成。Preferably, the photosensitive cathode adopts one or more materials of type II superlattice of Si, Ge, GaAs, InGaAsP, InGaAs or InAs/GaAsSb and is prepared by MEMS technology.
优选地,感光阴极与单光子成像电路的垂直距离大于1mm。Preferably, the vertical distance between the photosensitive cathode and the single-photon imaging circuit is greater than 1 mm.
优选地,单光子成像单元采用晶圆级、陶瓷或金属高真空封装,真空密封腔体的真空度为1x10-3Pa 以上。Preferably, the single-photon imaging unit adopts wafer-level, ceramic or metal high-vacuum packaging, and the vacuum degree of the vacuum-sealed cavity is above 1×10 -3 Pa.
进一步地,单光子成像电路上采用MEMS工艺加工生长光子反射墙和电子吸收阱。Further, the single photon imaging circuit adopts the MEMS process to process the growth photon reflection wall and the electron absorption well.
进一步地,真空密封腔体内还设置吸气剂,用于维持腔体内的真空度。Further, a getter is also arranged in the vacuum-sealed cavity to maintain the vacuum degree in the cavity.
进一步地,光电成像传感器还包括偏振层,所述偏振层由若干个偏振单元组成,所述偏振单元由四个偏振角度互不相同的偏振片排成二行二列的矩阵,每个偏振片与一个滤光单元相对应,所述滤光层位于偏振层和成像单元之间或所述偏振层位于滤光层和成像单元之间。Further, the photoelectric imaging sensor also includes a polarizing layer, the polarizing layer is composed of several polarizing units, and the polarizing units are arranged in a matrix of two rows and two columns by four polarizers with different polarization angles. Corresponding to one filter unit, the filter layer is located between the polarizing layer and the imaging unit or the polarizing layer is located between the filter layer and the imaging unit.
优选地,四个偏振片的偏振轴的角度分别为0度、45度、90度和135度。Preferably, the angles of the polarization axes of the four polarizers are 0 degrees, 45 degrees, 90 degrees and 135 degrees, respectively.
与现有技术相比,本发明的有益效果:Compared with the prior art, the beneficial effects of the present invention:
(1)本发明通过设置红绿蓝和宽光谱四个滤光区,并将红绿蓝滤光区与可见光成像单元对应,宽光谱滤光区与单光子成像单元对应,生成彩色图像或黑白夜视图像,基于被测场景环境和用户选择模式,支持彩色或微光夜视成像;(1) The present invention generates a color image or a black and white image by setting four filter areas of red, green and blue and a wide spectrum, and corresponding the red, green and blue filter area to the visible light imaging unit, and the wide spectrum filter area to the single photon imaging unit. Night vision image, based on the tested scene environment and user-selected mode, supports color or low-light night vision imaging;
(2)本发明中的单光子成像单元接收透过宽光谱光滤光区的弱光信号,并将弱光信号高倍数放大处理达到光电探测灵敏范围生成图像,有效提高了传感器的灵敏度、信噪比和清晰度;(2) The single-photon imaging unit in the present invention receives the weak light signal passing through the wide-spectrum light filtering area, and amplifies the weak light signal with a high multiple to reach the photodetection sensitive range to generate an image, which effectively improves the sensitivity and reliability of the sensor. noise ratio and sharpness;
(3)本发明基于MEMS技术将感光阴极、单光子成像电路高真空封装,高集成度,显著缩小了传感器的体积;感光阴极可采用多种材料制作,通过换不同的材料实现300nm-14um波段电磁波的接收,因此光谱响应范围宽。(3) The present invention encapsulates the photosensitive cathode and single-photon imaging circuit in high vacuum based on MEMS technology, with high integration, which significantly reduces the size of the sensor; the photosensitive cathode can be made of various materials, and the 300nm-14um band can be realized by changing different materials. The reception of electromagnetic waves, so the spectral response range is wide.
附图说明Description of drawings
图1是本发明一个实施例的分解示意图;1 is an exploded schematic view of an embodiment of the present invention;
图2是本发明中滤光单元的结构示意图;Fig. 2 is the structural representation of filter unit in the present invention;
图3是本发明中单光子成像单元的结构示意图;3 is a schematic structural diagram of a single-photon imaging unit in the present invention;
图4是本发明中单光子成像电路的原理图;4 is a schematic diagram of a single-photon imaging circuit in the present invention;
图5a和图5b是本发明另一个实施例的分解示意图;5a and 5b are exploded schematic views of another embodiment of the present invention;
图6是本发明中偏振单元的结构示意图。FIG. 6 is a schematic structural diagram of a polarizing unit in the present invention.
具体实施方式Detailed ways
下面结合图1至图6 ,对本发明的实施方式和具体的操作过程作详细说明,但本发明的保护范围不限于下述的实施例。1 to 6, the embodiments of the present invention and the specific operation process will be described in detail, but the protection scope of the present invention is not limited to the following examples.
本发明公开了一种光电成像传感器,包括滤光层1和成像单元2,如图1所示,滤光层1由若干个滤光单元11组成,每个滤光单元11包括四个滤光区111,四个滤光区111分别允许通过红光、绿光、蓝光和宽光谱光,分别命名为R、G、B、BR滤光区,如图2所示。成像单元2用于接收穿过滤光层1的光线并进行成像,包括可见光成像单元21和单光子成像单元22(图1中的填充部分)。允许通过红光、绿光和蓝光的滤光区与可见光成像单元21对应,即可见光成像单元接收通过红、绿、蓝滤光区过滤的光线生成彩色图像,此种成像方式常用于白天强光场景。允许通过宽光谱光线的滤光区与单光子成像单元22对应,这里宽光谱包含可见光波段和不可见光波段,允许通过宽光谱光线的滤光区也可以为通过某一特定波段的滤光区,如允许通过红外波段的滤光区,宽光谱滤光区和单光子成像单元用于微光夜视场景,单光子成像单元22接收透过宽光谱光滤光区的弱光信号,并将弱光信号高倍数放大处理以达到光电探测灵敏范围生成黑白图像。这里四个滤光区可以一体成型,也可以通过胶合等方式将四个滤光区组合在一起形成一个滤光单元,在本实施例中,优选一体成型方式,以提高四个滤光区之间的紧密性。The present invention discloses a photoelectric imaging sensor, which includes a
本发明基于用户使用场景,可以选择白天模式或夜视模式,白天模式和夜视模式的实现方式可为在可见光成像单元和单光子成像单元上分别设置开关,根据用户使用场景选择开关的闭合与断开,实现不同模式的选择。不同的场景模式下,可见光成像单元21或单光子成像单元22生成相应的图像。当使用场景为白天强光时,可见光成像单元上的开关闭合,单光子成像单元上的开关断开,可见光成像单元接收通过红、绿、蓝滤光区的光线生成彩色图像,此种模式下的成像原理已普遍应用,如可见光相机,本发明不做赘述。当使用场景为微光夜视时,可见光成像单元上的开关断开,单光子成像单元上的开关闭合,单光子成像单元接收透过宽光谱光滤光区的弱光信号,并将弱光信号放大处理以达到光电探测灵敏范围生成黑白图像,当然在微光夜视场景下,用户也可以选择将可见光成像单元上的开关闭合,可见光成像单元和单光子成像单元同时工作,通过图像融合生成彩色夜视图像。需要注意的是,在微光夜视场景下,可见光成像单元是否工作,需要根据现场实际情况选择,当打开可见光成像单元引入的噪声较大时,则只选择单光子成像单元工作生成黑白图像。The present invention is based on user usage scenarios, and can select day mode or night vision mode. The implementation of day mode and night vision mode may be to set switches on the visible light imaging unit and the single photon imaging unit respectively, and select the closing and closing of the switch according to the user usage scenario. Disconnect to realize the selection of different modes. In different scene modes, the visible
具体地,单光子成像单元包括封装管壳221和光学窗口222,如图3所示,封装管壳221与光学窗口222结合形成真空密封腔体,光学窗口222用于投射光信号。真空密封腔体内设置感光阴极223和单光子成像电路224,感光阴极223生长在光学窗口222的下表面,单光子成像电路224设置在感光阴极223的相对面,感光阴极223释放的光电子在外加高压的作用下移动到单光子成像电路224。感光阴极223采用Si、Ge、GaAs、InGaAsP、InGaAs或InAs/GaAsSb II类超晶格中的一种或多种材料并以MEMS工艺制备而成。通过更换不同的材料,感光阴极223可实现300nm-14um波段电磁波的接收,因此本发明的光谱响应范围很宽。感光阴极223与单光子成像电路224的垂直距离大于1mm,根据偏置电压的不同,感光阴极223与单光子成像电路224的设置距离也不同。Specifically, the single-photon imaging unit includes a
在本发明中,单光子成像电路224用于接收光电信号,并对信号进行处理和输出,如图4所示,具体地由高压保护电路、采集电路、放大电路、ADC电路和接口电路组成,且采用标准的CMOS工艺制备而成。单个或多个光子通过光学窗口222进入感光阴极223后,触发光电效应产生光电子,光电子在高压电场的作用下被加速飞至采集电路上的像元结构阳极(即采集阳极), 在高能电子轰击下内部产生大量电子-空穴对从而将光电子信号实现高倍数放大,再经过放大电路和ADC电路处理,整体有效提高了信噪比、灵敏度和清晰度,接口电路用于实现信号的输出。整个单光子成像电路都处于超高真空工作状态。In the present invention, the single-
为了保持腔体内的真空度,真空密封腔体内还设置一个或多个吸气剂225,优选吸气剂225为薄膜型吸气剂,可以粘附在光学窗口222的下表面。In order to maintain the vacuum degree in the cavity, one or
单光子成像单元采用晶圆级、陶瓷或金属高真空封装,真空密封腔体的真空度为1x10-3Pa 以上。感光阴极采用MEMS工艺制备,单光子成像电路采用标准的CMOS工艺制备,整体采用晶圆级、陶瓷或金属高真空封装,集成度高,其体积较传统产品明显减小。The single-photon imaging unit adopts wafer-level, ceramic or metal high-vacuum packaging, and the vacuum degree of the vacuum-sealed cavity is more than 1x10 -3 Pa. The photosensitive cathode is prepared by MEMS process, and the single-photon imaging circuit is prepared by standard CMOS process. The overall use of wafer-level, ceramic or metal high vacuum packaging has high integration and its volume is significantly smaller than traditional products.
光是一种横波,在与光的传播方向垂直的二维空间中光矢量可能有各种振动状态,为了增强伪装/隐形目标与背景的差异性以及提高光电传感器的目标探测和识别能力,光电成像传感器还设置偏振层3,如图5a和图5b所示,偏振层3由若干个偏振单元31组成,所述偏振单元31由四个偏振角度互不相同的偏振片311排成二行二列的矩阵,如四个偏振片的偏振轴的角度分别为0度、45度、90度和135度,排成二行二列的矩阵,如图6所示。每个偏振片311与一个滤光单元11相对应,滤光层1位于偏振层3和成像单元2之间或偏振层3位于滤光层1和成像单元2之间,在实际使用过程中,可以根据需要灵活设置滤光层1和偏振层3的位置。另外,当滤光层1位于成像单元2和偏振层3之间时,由于偏振层1常采用间隔排列的金属光栅,偏振层3位于成像单元2和滤光层1之间会导致滤光层1的放置不平坦,因此优选选择将滤光层1设置在偏振层3和成像单元2之间,滤光效果较好。成像单元2接收经过对应的滤光区111且偏振角度不同的偏振光,能够获取被摄场景中四个不同偏振角度的偏振光,提高被摄场景利用范围。Light is a transverse wave, and the light vector may have various vibration states in the two-dimensional space perpendicular to the propagation direction of light. The imaging sensor is also provided with a polarizing layer 3. As shown in FIG. 5a and FIG. 5b, the polarizing layer 3 is composed of several
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention. within.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010411277.9A CN111579068A (en) | 2020-05-15 | 2020-05-15 | A photoelectric imaging sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010411277.9A CN111579068A (en) | 2020-05-15 | 2020-05-15 | A photoelectric imaging sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111579068A true CN111579068A (en) | 2020-08-25 |
Family
ID=72119097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010411277.9A Pending CN111579068A (en) | 2020-05-15 | 2020-05-15 | A photoelectric imaging sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111579068A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111896125A (en) * | 2020-07-09 | 2020-11-06 | 武汉大学 | A polarization denoising method for single photon counting imaging |
CN112652634A (en) * | 2020-12-21 | 2021-04-13 | 华中科技大学 | Bionic electronic eye and preparation method thereof |
CN113747142A (en) * | 2021-08-16 | 2021-12-03 | 合肥芯福传感器技术有限公司 | Passive single photon imaging 3D camera and shooting method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160037109A1 (en) * | 2014-08-01 | 2016-02-04 | Sri International | Imaging sensor and method for color night vision |
KR101649256B1 (en) * | 2015-12-09 | 2016-08-18 | (주)한일에스티엠 | Video Surveillance System Having Funtion for Image Quality Improvement |
CN107346089A (en) * | 2017-06-30 | 2017-11-14 | 广东欧珀移动通信有限公司 | Image sensor, camera module and electronic device |
CN110995968A (en) * | 2019-11-25 | 2020-04-10 | Oppo广东移动通信有限公司 | Image sensor, camera device, electronic device, and imaging method |
CN212320908U (en) * | 2020-05-15 | 2021-01-08 | 合肥芯福传感器技术有限公司 | Photoelectric imaging sensor |
-
2020
- 2020-05-15 CN CN202010411277.9A patent/CN111579068A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160037109A1 (en) * | 2014-08-01 | 2016-02-04 | Sri International | Imaging sensor and method for color night vision |
KR101649256B1 (en) * | 2015-12-09 | 2016-08-18 | (주)한일에스티엠 | Video Surveillance System Having Funtion for Image Quality Improvement |
CN107346089A (en) * | 2017-06-30 | 2017-11-14 | 广东欧珀移动通信有限公司 | Image sensor, camera module and electronic device |
CN110995968A (en) * | 2019-11-25 | 2020-04-10 | Oppo广东移动通信有限公司 | Image sensor, camera device, electronic device, and imaging method |
CN212320908U (en) * | 2020-05-15 | 2021-01-08 | 合肥芯福传感器技术有限公司 | Photoelectric imaging sensor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111896125A (en) * | 2020-07-09 | 2020-11-06 | 武汉大学 | A polarization denoising method for single photon counting imaging |
CN112652634A (en) * | 2020-12-21 | 2021-04-13 | 华中科技大学 | Bionic electronic eye and preparation method thereof |
CN113747142A (en) * | 2021-08-16 | 2021-12-03 | 合肥芯福传感器技术有限公司 | Passive single photon imaging 3D camera and shooting method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nomerotski | Imaging and time stamping of photons with nanosecond resolution in timepix based optical cameras | |
CN111579068A (en) | A photoelectric imaging sensor | |
JP6057217B2 (en) | Electromagnetic radiation detector with gain range selection | |
Siegmund et al. | Large area and high efficiency photon counting imaging detectors with high time and spatial resolution for night time sensing and astronomy | |
Ye et al. | Ultraviolet photon-counting single-pixel imaging | |
US10976450B2 (en) | Combined scintillation crystal, combined scintillation detector and radiation detection device | |
US9086493B2 (en) | High-sensitivity X-ray detector | |
CN104048765A (en) | Infrared imaging device based on coding bore diameters | |
Bouvier et al. | Photosensor characterization for the Cherenkov Telescope Array: silicon photomultiplier versus multi-anode photomultiplier tube | |
Dolgoshein et al. | Silicon photomultipliers in particle physics: possibilities and limitations | |
CN212320908U (en) | Photoelectric imaging sensor | |
WO2007098493A2 (en) | Large-area flat-panel photon detector with hemispherical pixels and full area coverage | |
Marras et al. | Percival: A soft x-ray imager for synchrotron rings and free electron lasers | |
Siegmund et al. | Large Area flat panel Photon Counting Imaging Detectors for Astronomy and Night Time Sensing | |
JPWO2007113899A1 (en) | Radiation detector | |
CN108760049B (en) | Ultraviolet imager based on ultraviolet electron bombardment active pixel sensor | |
Intermite et al. | Enhancing the fill-factor of CMOS SPAD arrays using microlens integration | |
Sakurai et al. | The calibration of the first large-sized telescope of the Cherenkov telescope array | |
Chakaberia et al. | Time stamping of single optical photons with 10 ns resolution | |
Nell et al. | Characterization of an ultraviolet imaging detector with high event rate ROIC (HEROIC) readout | |
CN222029040U (en) | A detection system and image intensifier | |
Ferenc et al. | The novel light amplifier concept | |
Yang et al. | Imaging performance comparison of novel CMOS low-light-level image sensor and electron multiplying CCD sensor | |
Tao | Photoelectronic Detectors | |
Fukasawa | Hybrid Photodetectors (HPDs) for Single-Photon Detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |