CN111575239A - A method and device for enriching circulating tumor cells - Google Patents
A method and device for enriching circulating tumor cells Download PDFInfo
- Publication number
- CN111575239A CN111575239A CN202010568268.0A CN202010568268A CN111575239A CN 111575239 A CN111575239 A CN 111575239A CN 202010568268 A CN202010568268 A CN 202010568268A CN 111575239 A CN111575239 A CN 111575239A
- Authority
- CN
- China
- Prior art keywords
- tumor cells
- circulating tumor
- sample
- filter membrane
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 208000005443 Circulating Neoplastic Cells Diseases 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 49
- 210000004027 cell Anatomy 0.000 claims abstract description 57
- 238000000926 separation method Methods 0.000 claims abstract description 42
- 210000000265 leukocyte Anatomy 0.000 claims abstract description 35
- 239000011324 bead Substances 0.000 claims abstract description 34
- 238000005374 membrane filtration Methods 0.000 claims abstract description 31
- 238000007885 magnetic separation Methods 0.000 claims abstract description 26
- 239000007788 liquid Substances 0.000 claims abstract description 22
- 210000003743 erythrocyte Anatomy 0.000 claims abstract description 11
- 238000011534 incubation Methods 0.000 claims abstract description 4
- 239000012528 membrane Substances 0.000 claims description 86
- 239000000243 solution Substances 0.000 claims description 30
- 239000012192 staining solution Substances 0.000 claims description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 17
- 238000010186 staining Methods 0.000 claims description 17
- 230000000903 blocking effect Effects 0.000 claims description 13
- 239000004417 polycarbonate Substances 0.000 claims description 12
- 239000002033 PVDF binder Substances 0.000 claims description 11
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 11
- 238000005406 washing Methods 0.000 claims description 11
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 claims description 7
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 claims description 7
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 claims description 7
- 238000002372 labelling Methods 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 7
- 239000000834 fixative Substances 0.000 claims description 6
- 229920000515 polycarbonate Polymers 0.000 claims description 6
- 239000007853 buffer solution Substances 0.000 claims description 3
- 239000013592 cell lysate Substances 0.000 claims description 3
- 238000011084 recovery Methods 0.000 abstract description 13
- 210000004369 blood Anatomy 0.000 abstract description 10
- 239000008280 blood Substances 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 8
- 230000008901 benefit Effects 0.000 abstract description 7
- 238000005119 centrifugation Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 6
- 239000012535 impurity Substances 0.000 abstract description 6
- 238000012546 transfer Methods 0.000 abstract description 5
- 230000005779 cell damage Effects 0.000 abstract description 4
- 208000037887 cell injury Diseases 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 239000006166 lysate Substances 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 210000005266 circulating tumour cell Anatomy 0.000 abstract 4
- 238000007865 diluting Methods 0.000 abstract 1
- 230000002572 peristaltic effect Effects 0.000 description 17
- 210000005259 peripheral blood Anatomy 0.000 description 16
- 239000011886 peripheral blood Substances 0.000 description 16
- 238000010790 dilution Methods 0.000 description 11
- 239000012895 dilution Substances 0.000 description 11
- 238000000799 fluorescence microscopy Methods 0.000 description 10
- 206010028980 Neoplasm Diseases 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 8
- 239000000872 buffer Substances 0.000 description 6
- 230000003833 cell viability Effects 0.000 description 6
- 230000009089 cytolysis Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000004043 dyeing Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000000967 suction filtration Methods 0.000 description 5
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 4
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 230000035899 viability Effects 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 238000011158 quantitative evaluation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- -1 EphB4 Proteins 0.000 description 1
- 102100031983 Ephrin type-B receptor 4 Human genes 0.000 description 1
- 108010013709 Leukocyte Common Antigens Proteins 0.000 description 1
- 102000017095 Leukocyte Common Antigens Human genes 0.000 description 1
- 102100021768 Phosphoserine aminotransferase Human genes 0.000 description 1
- 102100022019 Pregnancy-specific beta-1-glycoprotein 2 Human genes 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 230000007705 epithelial mesenchymal transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 238000002991 immunohistochemical analysis Methods 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011528 liquid biopsy Methods 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007479 molecular analysis Methods 0.000 description 1
- 229940125645 monoclonal antibody drug Drugs 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000004882 non-tumor cell Anatomy 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0693—Tumour cells; Cancer cells
- C12N5/0694—Cells of blood, e.g. leukemia cells, myeloma cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/04—Filters; Permeable or porous membranes or plates, e.g. dialysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/06—Magnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/30—Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2509/00—Methods for the dissociation of cells, e.g. specific use of enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2509/00—Methods for the dissociation of cells, e.g. specific use of enzymes
- C12N2509/10—Mechanical dissociation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/30—Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
- G01N2001/302—Stain compositions
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Cell Biology (AREA)
- Oncology (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
技术领域technical field
本发明涉及分子生物学领域,具体涉及一种循环肿瘤细胞的富集方法及其装置。The invention relates to the field of molecular biology, in particular to a method for enriching circulating tumor cells and a device thereof.
背景技术Background technique
1869年Thomas Ashworth首先发现了循环肿瘤细胞,伴随着重复性检测技术的发展,循环肿瘤细胞受到越来越多的重视。循环肿瘤细胞(CTCs),是外周血中各种类型肿瘤细胞的统称,它们从原发性肿瘤组织中脱落并释放到血液中,并在远处发展成新的肿瘤从而实现转移。因此,CTCs被认为是肿瘤能够发生转移的必要前提,进而可以作为肿瘤疾病诊断、预后评估以及个性化单抗药物筛选的核心研究对象,成为转移性肿瘤的“液体活检”。然而,由于CTCs的极度稀有性和高度异质性,将其从全血中分离并检测存在着巨大挑战。因此,开发高效、高回收率和高纯度的CTC分离技术是未来的发展方向。Circulating tumor cells were first discovered by Thomas Ashworth in 1869. With the development of repetitive detection technology, circulating tumor cells have received more and more attention. Circulating tumor cells (CTCs), a collective term for various types of tumor cells in the peripheral blood, are shed from the primary tumor tissue and released into the blood, and develop into new tumors in distant places to achieve metastasis. Therefore, CTCs are considered to be a necessary prerequisite for tumor metastasis, and can then be used as the core research objects for tumor disease diagnosis, prognosis evaluation, and personalized monoclonal antibody drug screening, and become a "liquid biopsy" of metastatic tumors. However, due to their extreme rarity and high heterogeneity, the isolation and detection of CTCs from whole blood presents great challenges. Therefore, the development of high-efficiency, high-recovery and high-purity CTC separation technology is the future direction of development.
目前,已开发的有效分离和检测技术主要基于特定肿瘤标志物和物理性质,在CTCs捕获的背景下,根据分离是否基于亲和力,将这些方法分为“基于亲和力的策略”和“无标记策略”。基于亲和力的捕获取决于抗原抗体之间的免疫化学相互作用,例如在细胞表面表达的EpCAM和CD45抗原及其固定在磁珠或有图案的结构的相应抗体,如使用阳性(正向)选择通过靶向结合肿瘤相关生物标记物(EpCAM,CEA,EphB4,EGFR,PSA等)来捕获CTCs,或使用阴性(反向)选择通过靶向结合未在CTCs上表达的CD45消耗血细胞。阴性耗竭方法将去除“正常”细胞,包括红细胞、白细胞和血小板,保留“异常细胞”如CTCs,再进行进一步分析,如中国专利文献CN106635995B中公开的一种循环肿瘤细胞阴性富集方法,采用淋巴细胞分离管基础上的密度梯度离心对血样进行前处理,简化了白细胞分离操作步骤,缩短了循环肿瘤细胞的富集时间,整个操作在2.5h内即可完成。上述方案中为涉及典型的阴性富集方法,通过化学裂解红细胞或梯度离心去除白细胞,然后进行免疫组化或分子分析以鉴定“异常细胞”。然而,上述阴性富集技术涉及多个步骤,例如RBC裂解和离心将会增加失去CTCs的风险并对目标细胞影响不利。Currently, the developed effective separation and detection techniques are mainly based on specific tumor markers and physical properties. In the context of CTCs capture, these methods are divided into "affinity-based strategies" and "label-free strategies" according to whether the separation is affinity-based or not. . Affinity-based capture depends on immunochemical interactions between antigen-antibodies, such as EpCAM and CD45 antigens expressed on the cell surface and their corresponding antibodies immobilized on magnetic beads or patterned structures, such as using positive (forward) selection by Target binding to tumor-associated biomarkers (EpCAM, CEA, EphB4, EGFR, PSA, etc.) to capture CTCs, or use negative (reverse) selection to deplete blood cells by targeting binding to CD45 not expressed on CTCs. The negative depletion method will remove "normal" cells, including red blood cells, white blood cells and platelets, and retain "abnormal cells" such as CTCs for further analysis, such as a circulating tumor cell negative enrichment method disclosed in Chinese patent document CN106635995B, using lymphocytes The density gradient centrifugation based on the cell separation tube pre-processes the blood sample, which simplifies the operation steps of leukocyte separation and shortens the enrichment time of circulating tumor cells. The whole operation can be completed within 2.5 hours. The protocol described above involves a typical negative enrichment method, which involves chemical lysis of red blood cells or gradient centrifugation to remove white blood cells, followed by immunohistochemical or molecular analysis to identify "abnormal cells". However, the aforementioned negative enrichment techniques involve multiple steps, such as RBC lysis and centrifugation, which will increase the risk of losing CTCs and adversely affect target cells.
到目前为止,基于亲和力的策略的CellSearch是唯一获得FDA批准的乳腺癌、前列腺癌和结肠直肠癌CTC检测平台,已成为CTC领域的金标准。在CellSearch系统中,由抗EpCAM涂层的磁珠可以正向选择稀有CTC。但是最近研究显示,基于EpCAM的方法可能会显着低估CTCs的数量,因为正在经历上皮间质转化的CTCs可能会下调EpCAM的表达。So far, CellSearch with affinity-based strategies is the only FDA-approved platform for CTC detection in breast, prostate, and colorectal cancers, and has become the gold standard in the field of CTCs. In the CellSearch system, magnetic beads coated with anti-EpCAM positively select rare CTCs. However, recent studies have shown that EpCAM-based methods may significantly underestimate the number of CTCs, as CTCs undergoing epithelial-mesenchymal transition may downregulate EpCAM expression.
相比之下,无标记策略,包括离心偏转、介电泳分离和基于大小的过滤等物理方法,能够分离上皮和间充质表型,更适合于分析肿瘤异质性。然而,上述方法在技术上仍然存在不足,即通常很难在捕获效率、纯度和细胞活力之间进行权衡,而这些都是基础和临床研究的重要标准。例如,基于细胞大小的过滤技术存在的主要问题是:如果孔的尺寸足够小以达到高的肿瘤细胞捕获效率,则通常具有高的非肿瘤细胞保留率,即纯度不高。In contrast, label-free strategies, including physical methods such as centrifugal deflection, dielectrophoretic separation, and size-based filtration, enable separation of epithelial and mesenchymal phenotypes and are more suitable for analyzing tumor heterogeneity. However, the above methods still suffer from technical limitations, namely, it is often difficult to make trade-offs between capture efficiency, purity and cell viability, which are important criteria for basic and clinical research. For example, a major problem with cell size-based filtration techniques is that if the pore size is small enough to achieve high tumor cell capture efficiency, there is usually a high retention rate of non-tumor cells, ie, low purity.
发明内容SUMMARY OF THE INVENTION
因此,本发明要解决的技术问题在于克服现有技术中的循环肿瘤细胞的富集方法难以兼具高回收率、高纯度和高活力的缺陷,从而提供一种循环肿瘤细胞的富集方法及装置,能够获得同时具备高回收率、高纯度和高活力的循环肿瘤细胞。Therefore, the technical problem to be solved by the present invention is to overcome the defects of high recovery rate, high purity and high viability in the enrichment method of circulating tumor cells in the prior art, so as to provide a method for enriching circulating tumor cells and a method for enriching circulating tumor cells. The device can obtain circulating tumor cells with high recovery rate, high purity and high viability at the same time.
为此,本发明提供了如下的技术方案:For this reason, the invention provides the following technical solutions:
本发明提供了一种循环肿瘤细胞的富集方法,包括:The present invention provides a method for enriching circulating tumor cells, comprising:
将样本和可与白细胞结合的免疫磁珠混合孵育;Incubate the sample with immunomagnetic beads that can bind to leukocytes;
向所述样本中加入红细胞裂解液进行孵育;adding red blood cell lysate to the sample for incubation;
将孵育后的所述样本进行稀释,然后依次进行磁分离、膜过滤。The incubated samples were diluted, followed by magnetic separation and membrane filtration in sequence.
优选的,所述样本以1/12ml/min-1/4ml/min的流速依次进行磁分离和膜过滤。Preferably, the sample is subjected to magnetic separation and membrane filtration in sequence at a flow rate of 1/12ml/min-1/4ml/min.
优选的,将所述样本稀释至原始体积的5-10倍。Preferably, the sample is diluted to 5-10 times the original volume.
进一步的,还包括利用缓冲液清洗滤膜的步骤,清洗体积10-15ml。Further, it also includes the step of washing the filter membrane with a buffer solution, and the washing volume is 10-15ml.
进一步的,膜过滤后,还包括对滤膜中富集的循环肿瘤细胞进行染色标记的步骤。Further, after the membrane filtration, the step of staining and marking the enriched circulating tumor cells in the filter membrane is also included.
在所述染色标记的步骤中,在染色标记前,向富集循环肿瘤细胞的滤膜中加入封闭液进行封闭,然后清洗并抽干液体。In the step of staining and marking, before staining and marking, a blocking solution is added to the filter membrane enriched in circulating tumor cells for blocking, and then the liquid is washed and drained.
在所述染色标记的步骤中,在染色标记时,向富集循环肿瘤细胞的滤膜中加入细胞染色液,避光孵育,然后清洗并抽干液体;细胞染色液体积与滤膜直径的比例为100-150:13(μl:mm)。In the step of staining and marking, during staining and marking, adding cell staining solution to the filter membrane enriched with circulating tumor cells, incubating in the dark, then washing and draining the liquid; the ratio of the volume of cell staining solution to the diameter of the filter membrane was 100-150:13 (μl:mm).
在所述染色标记的步骤中,染色标记两次,第一次染色标记时使用细胞染色液A,于4℃避光孵育30-40分钟;第二次染色标记时使用细胞染色液B,于4℃避光孵育10分钟;In the dyeing and labeling step, the dyeing and labeling are performed twice. For the first dyeing and labeling, cell staining solution A is used, and the cells are incubated at 4°C for 30-40 minutes in the dark; Incubate at 4°C for 10 minutes in the dark;
优选的,所述细胞染色液A中为含有CD45-FITC和EpCAM-PE,CD45-FITC的体积百分比为3.33%~5.00%,优选的3.85%;EpCAM-PE的体积百分比为0.67%~1.00%,优选的为0.77%;Preferably, the cell staining solution A contains CD45-FITC and EpCAM-PE, and the volume percentage of CD45-FITC is 3.33%-5.00%, preferably 3.85%; the volume percentage of EpCAM-PE is 0.67%-1.00% , preferably 0.77%;
优选的,所述细胞染色液B中含有1/15ug/ml DAPI。Preferably, the cell staining solution B contains 1/15ug/ml DAPI.
进一步的,膜过滤步骤中的滤膜选自聚碳酸酯膜(PC膜)或PVDF膜(聚偏二氟乙烯膜);所述滤膜的孔径为0.65μm-8μm。优选的,为8μm。Further, the filter membrane in the membrane filtration step is selected from polycarbonate membrane (PC membrane) or PVDF membrane (polyvinylidene fluoride membrane); the pore size of the filter membrane is 0.65 μm-8 μm. Preferably, it is 8 μm.
所述红细胞裂解液中含有固定液成分。The erythrocyte lysate contains fixative components.
所述免疫磁珠上偶联CD45抗体。CD45 antibody is coupled to the immunomagnetic beads.
本发明你提供了一种循环肿瘤细胞的富集装置,包括:The present invention provides an enrichment device for circulating tumor cells, including:
样本收集器,顶端设有样本进口,底端设有样本出口;The sample collector has a sample inlet at the top and a sample outlet at the bottom;
分离柱,位于所述样本收集器下方,包括顶端开口和底端开口,顶端开口可与样本出口密封连接;a separation column, located below the sample collector, comprising a top opening and a bottom opening, and the top opening can be sealedly connected with the sample outlet;
过滤器,位于所述分离柱下方;所述过滤器具有空腔,所述空腔顶端设有入口可与所述分离柱的底端开口密封连接,所述空腔底端设有出口;所述空腔内水平设置有滤膜,所述滤膜边缘与所述空腔内壁紧密连接。The filter is located below the separation column; the filter has a cavity, the top of the cavity is provided with an inlet, which can be sealedly connected with the bottom end of the separation column, and the bottom end of the cavity is provided with an outlet; A filter membrane is horizontally arranged in the cavity, and the edge of the filter membrane is tightly connected with the inner wall of the cavity.
进一步的,所述滤膜选自聚碳酸酯膜或PVDF膜;所述滤膜的孔径为0.65μm-8μm。优选的,为8μm。Further, the filter membrane is selected from polycarbonate membrane or PVDF membrane; the pore size of the filter membrane is 0.65 μm-8 μm. Preferably, it is 8 μm.
进一步的,所述滤膜的直径为13mm-25mm。Further, the diameter of the filter membrane is 13mm-25mm.
进一步的,所述滤膜将所述空腔分割成上腔室和下腔室,所述上腔室容积≤300μl。Further, the filter membrane divides the cavity into an upper chamber and a lower chamber, and the volume of the upper chamber is less than or equal to 300 μl.
进一步的,所述分离柱的外部设有磁力装置。优选的,所述分离柱的内部填充有微铁珠。进一步优选的,所述微铁珠的直径为100μm。进一步优选的,相邻的两个所述微铁珠之间的间隙为200μm。进一步优选的,所述微铁珠为经亲水包被层处理的微铁珠,以保证其能溶解于溶液内。Further, a magnetic device is provided outside the separation column. Preferably, the interior of the separation column is filled with micro-iron beads. Further preferably, the diameter of the micro-iron beads is 100 μm. Further preferably, the gap between two adjacent micro-iron beads is 200 μm. Further preferably, the micro-iron beads are micro-iron beads treated with a hydrophilic coating layer to ensure that they can be dissolved in the solution.
进一步的,所述空腔底端的出口可与泵紧密连接。Further, the outlet at the bottom end of the cavity can be tightly connected with the pump.
本发明技术方案,具有如下优点:The technical scheme of the present invention has the following advantages:
1.本发明提供的一种循环肿瘤细胞的富集方法,包括:将样本和可与白细胞结合的免疫磁珠混合孵育;向所述样本中加入红细胞裂解液进行孵育;将孵育后的所述样本进行稀释,然后依次磁分离、膜过滤;上述方法将阴性富集技术与膜过滤技术结合,综合了阴性富集和膜过滤的优势,在保证CTCs的高回收率同时又能保证CTCs的纯度和活力,避免因离心、转移液体等步骤造成CTCs回收率降低和细胞破损活力降低,同时使用膜过滤截留循环肿瘤细胞去除其他杂质和细胞,尽可能的保留循环肿瘤细胞,并且流程简化,能够在2h内完成5ml全血的分离,实现90%以上CTC的捕获和95%以上的白细胞去除。1. A method for enriching circulating tumor cells provided by the present invention, comprising: mixing and incubating a sample with immunomagnetic beads that can bind to leukocytes; adding erythrocyte lysate to the sample for incubation; The sample is diluted, followed by magnetic separation and membrane filtration in sequence; the above method combines negative enrichment technology with membrane filtration technology, and combines the advantages of negative enrichment and membrane filtration to ensure high recovery rate of CTCs while ensuring the purity of CTCs and viability, avoiding the reduction of CTCs recovery rate and cell damage and viability caused by steps such as centrifugation and liquid transfer. At the same time, membrane filtration is used to retain circulating tumor cells to remove other impurities and cells, and to retain circulating tumor cells as much as possible. The separation of 5ml of whole blood is completed within 2h, and the capture of more than 90% of CTCs and the removal of more than 95% of leukocytes can be achieved.
2.本发明提供的一种循环肿瘤细胞的富集方法,所述样本以1/12ml/min-1/4ml/min的流速依次进行磁分离和膜过滤,在研究中发现样本磁分离和膜过滤的流速是影响循环肿瘤细胞捕获效率(即回收率)的一个重要因素,在上述范围内的流速,能够获得较高的捕获效率。2. A method for enriching circulating tumor cells provided by the present invention, the sample is subjected to magnetic separation and membrane filtration at a flow rate of 1/12ml/min-1/4ml/min in turn. The flow rate of filtration is an important factor affecting the capture efficiency (ie, the recovery rate) of circulating tumor cells, and within the above-mentioned range, a higher capture efficiency can be obtained.
3.本发明提供的一种循环肿瘤细胞的富集方法,将所述样本稀释至原始体积的5-10倍,在研究中发现样本的稀释度是影响循环肿瘤细胞捕获效率(即回收率)的一个重要因素,在上述范围内的稀释倍数,能够获得较高的捕获效率。3. A method for enriching circulating tumor cells provided by the present invention, the sample is diluted to 5-10 times of the original volume, and it is found in the study that the dilution of the sample affects the capture efficiency (ie recovery rate) of circulating tumor cells. An important factor is that the dilution factor within the above range can obtain higher capture efficiency.
4.本发明提供的一种循环肿瘤细胞的富集方法,还包括利用缓冲液清洗滤膜的步骤,清洗体积10-15ml,在研究中发现在样本流速为0.25ml/min时,清洗体积控制在10-15ml时,能够获得较高的捕获效率。4. A method for enriching circulating tumor cells provided by the present invention further includes the step of washing the filter membrane with a buffer solution, and the washing volume is 10-15ml. In the study, it was found that when the sample flow rate was 0.25ml/min, the washing volume was controlled. At 10-15ml, higher capture efficiency can be obtained.
5.本发明提供的一种循环肿瘤细胞的富集方法,膜过滤后,还包括对滤膜中富集的循环肿瘤细胞进行染色标记的步骤,由于经过前述的步骤,直接在滤膜上进行染色,自动化程度高,无需转移液体和离心,节省步骤,效率高。5. A method for enriching circulating tumor cells provided by the present invention, after membrane filtration, further includes the step of dyeing and labeling the circulating tumor cells enriched in the filter membrane, since the aforementioned steps are carried out directly on the filter membrane. Dyeing, high degree of automation, no need to transfer liquid and centrifugation, save steps and high efficiency.
6、本发明提供的一种循环肿瘤细胞的富集方法,在染色标记时,向富集循环肿瘤细胞的滤膜中加入细胞染色液,避光孵育,然后清洗并抽干液体;细胞染色液体积与滤膜直径的比例为100-150:13(μl:mm);通过控制细胞染色液体积与滤膜直径的比例使得得到的染色图具有低背景干扰和高特异性的优势。6. In a method for enriching circulating tumor cells provided by the present invention, when staining and labeling, a cell staining solution is added to the filter membrane for enriching circulating tumor cells, incubated in the dark, and then washed and drained; the cell staining solution The ratio of volume to filter membrane diameter is 100-150:13 (μl:mm); by controlling the ratio of cell staining solution volume to filter membrane diameter, the resulting staining pattern has the advantages of low background interference and high specificity.
7、本发明提供的一种循环肿瘤细胞的富集方法,染色标记两次,所述细胞染色液A中为含有CD45-FITC和EpCAM-PE,CD45-FITC的体积百分比为3.33%~5.00%,EpCAM-PE的体积百分比为0.67%~1.00%;所述细胞染色液B中含有1/15ug/ml DAPI;通过选择上述细胞染色液A和B使得得到的染色图进一步具有低背景干扰和高特异性的优势。7. A method for enriching circulating tumor cells provided by the present invention, staining and marking twice, the cell staining solution A contains CD45-FITC and EpCAM-PE, and the volume percentage of CD45-FITC is 3.33%-5.00% , the volume percentage of EpCAM-PE is 0.67% to 1.00%; the cell staining solution B contains 1/15ug/ml DAPI; by selecting the above cell staining solutions A and B, the obtained staining map further has low background interference and high specificity advantage.
8、本实施例提供了一种循环肿瘤细胞的富集装置,包括:样本收集器,顶端设有样本进口,底端设有样本出口;分离柱,位于所述样本收集器下方,包括顶端开口和底端开口,顶端开口可与样本出口密封连接;过滤器,位于所述分离柱下方;所述过滤器具有空腔,所述空腔顶端设有入口可与所述分离柱的底端开口密封连接,所述空腔底端设有出口;所述空腔内水平设置有滤膜,所述滤膜边缘与所述空腔内壁紧密连接。在上述的循环肿瘤细胞的富集装置中,在使用时出口紧密连接蠕动泵,样本收集器收集样本后,开启蠕动泵进行抽滤,样本以恒定的流速流经分离柱,分离柱在磁力装置配合下样本中的免疫磁珠被吸附到分离柱的内侧壁上,达到去除样本中的与免疫磁珠结合的细胞的目的,分离后的样本以恒定的流速进入过滤器中通过所述滤膜,样本中的循环肿瘤细胞被截留在所述滤膜上,其余杂细胞或杂质被去除。上述装置将阴性富集策略和膜过滤结合,综合了阴性富集和膜过滤的优势,兼顾了回收率、纯度和细胞活力,获得了高回收率、高纯度和高细胞活力的效果,具体的,所述装置可实现直接在装置中进行红细胞裂解、磁分离去除白细胞,实现了样本中非循环肿瘤细胞的去除,同时避免了在离心和转移样品过程中失去CTCs或细胞破损的缺陷,同时使用膜过滤截留循环肿瘤细胞去除其他杂质和细胞,尽可能的保留循环肿瘤细胞,并且流程简化,能够在2h内完成5ml全血的分离,实现90%以上CTC的捕获和95%以上的白细胞去除。8. This embodiment provides a device for enriching circulating tumor cells, including: a sample collector, with a sample inlet at the top and a sample outlet at the bottom; a separation column, located below the sample collector, including an opening at the top and the bottom opening, the top opening can be sealed with the sample outlet; the filter is located below the separation column; the filter has a cavity, and the top of the cavity is provided with an inlet to be open to the bottom end of the separation column The bottom end of the cavity is provided with an outlet; a filter membrane is horizontally arranged in the cavity, and the edge of the filter membrane is tightly connected with the inner wall of the cavity. In the above-mentioned enrichment device for circulating tumor cells, the outlet is tightly connected to the peristaltic pump during use. After the sample collector collects the sample, the peristaltic pump is turned on to perform suction filtration. The sample flows through the separation column at a constant flow rate, and the separation column is placed in the magnetic device. The immunomagnetic beads in the sample are adsorbed on the inner side wall of the separation column to achieve the purpose of removing the cells bound to the immunomagnetic beads in the sample. The separated sample enters the filter at a constant flow rate and passes through the filter membrane , the circulating tumor cells in the sample are trapped on the filter, and the remaining foreign cells or impurities are removed. The above device combines the negative enrichment strategy with membrane filtration, and combines the advantages of negative enrichment and membrane filtration, taking into account the recovery rate, purity and cell viability, and obtains the effects of high recovery rate, high purity and high cell viability. The device can realize red blood cell lysis and magnetic separation to remove leukocytes directly in the device, realize the removal of non-circulating tumor cells in the sample, and avoid the defects of losing CTCs or cell damage during centrifugation and sample transfer. Membrane filtration retains circulating tumor cells to remove other impurities and cells, and retains circulating tumor cells as much as possible. The process is simplified, and the separation of 5ml of whole blood can be completed within 2 hours, achieving the capture of more than 90% of CTCs and the removal of more than 95% of white blood cells.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the specific embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the specific embodiments or the prior art. Obviously, the accompanying drawings in the following description The drawings are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without creative efforts.
图1是本发明实施例1中循环肿瘤细胞的富集装置结构示意图;FIG. 1 is a schematic structural diagram of an enrichment device for circulating tumor cells in Example 1 of the present invention;
图2是本发明实施例1中循环肿瘤细胞的富集装置富集细胞的原理示意图;2 is a schematic diagram of the principle of enriching cells by the enrichment device for circulating tumor cells in Example 1 of the present invention;
图3是本发明实验例中不同待检样本的荧光成像结果(比例尺:均为50μm);Fig. 3 is the fluorescence imaging results of different samples to be tested in the experimental example of the present invention (scale bar: all are 50 μm);
图4是本发明实验例中不同稀释倍数对捕获效率的影响结果;Fig. 4 is the influence result of different dilution times on capture efficiency in the experimental example of the present invention;
图5是本发明实验例中不同流速对捕获效率的影响结果;Fig. 5 is the influence result of different flow velocity on capture efficiency in the experimental example of the present invention;
图6是本发明实验例中不同清洗体积对捕获效率和白细胞数量的影响结果;Fig. 6 is the influence result of different washing volumes on the capture efficiency and the number of leukocytes in the experimental example of the present invention;
图7是本发明实验例中含有不同A549细胞个数的血液样本在最佳条件下富集后回收的A549细胞数;Fig. 7 is the number of A549 cells recovered after enrichment under optimal conditions for blood samples containing different numbers of A549 cells in the experimental example of the present invention;
图8是本发明实验例中未进行磁分离和进行磁分离的荧光成像结果(比例尺:图(a)–图(b)均为100μm);Fig. 8 shows the results of fluorescence imaging without magnetic separation and with magnetic separation in the experimental example of the present invention (scale bar: Figures (a) to (b) are all 100 μm);
图9是本发明实验例中使用不同滤膜的白细胞耗竭效果的定量评估结果;Fig. 9 is the quantitative evaluation result of the leukocyte depletion effect of using different filters in the experimental example of the present invention;
图10是本发明实验例中在最佳条件下循环肿瘤细胞捕获性能综合评估结果。FIG. 10 is a comprehensive evaluation result of the capture performance of circulating tumor cells under optimal conditions in the experimental example of the present invention.
附图标记:1-样本收集器;11-样本进口;12-样本出口;Reference numerals: 1 - sample collector; 11 - sample inlet; 12 - sample outlet;
2-分离柱;21-顶端开口;22-底端开口;23-微铁珠;2-separation column; 21-top opening; 22-bottom opening; 23-micro iron beads;
3-过滤器;31-空腔;32-入口;33-出口;34-滤膜;35-橡胶垫;36-凸起;3-filter; 31-cavity; 32-inlet; 33-outlet; 34-filter membrane; 35-rubber pad; 36-protrusion;
4-磁力装置;5-蠕动泵。4-magnetic device; 5-peristaltic pump.
具体实施方式Detailed ways
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。The following examples are provided for a better understanding of the present invention, and are not limited to the best embodiments, and do not limit the content and protection scope of the present invention. Any product identical or similar to the present invention obtained by combining with the features of other prior art shall fall within the protection scope of the present invention.
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。If the specific experimental steps or conditions are not indicated in the examples, it can be carried out according to the operations or conditions of the conventional experimental steps described in the literature in this field. The reagents or instruments used without the manufacturer's indication are all conventional reagent products that can be obtained from the market.
下述实施例中涉及的一步裂解固定液购自eBioscienceTM1-step Fix/LyseSolution(10X)。JEG细胞购自上海冠导生物工程有限公司;CD45标记的免疫磁珠(直径50nm)溶液选自美天旎品牌(货号:130-045-801);亲水包被层处理的微铁珠(直径100μm)购自选自美天旎品牌。The one-step lysis fixatives involved in the following examples were purchased from eBioscience ™ 1-step Fix/LyseSolution (10X). JEG cells were purchased from Shanghai Guandao Bioengineering Co., Ltd.; CD45-labeled immunomagnetic beads (50nm in diameter) solution were selected from Miltenyi brand (Item No.: 130-045-801); Micro-iron beads treated with hydrophilic coating (
实施例1Example 1
本实施例提供了一种循环肿瘤细胞的富集装置,如图1所示,包括:This embodiment provides an enrichment device for circulating tumor cells, as shown in FIG. 1 , including:
样本收集器1,顶端设有样本进口11,底端设有样本出口12;The
分离柱2,位于所述样本收集器1下方,包括顶端开口21和底端开口22,顶端开口21可与样本出口12密封连接;The
过滤器3,位于所述分离柱2下方;所述过滤器3具有空腔31,所述空腔31顶端设有入口32可与所述分离柱2的底端开口22密封连接,所述空腔底端设有出口33;所述空腔31内水平设置有滤膜34,所述滤膜34边缘与所述空腔31内壁紧密连接。The
在上述的循环肿瘤细胞的富集装置中,如图2所示,在使用时出口33紧密连接蠕动泵,样本收集器1收集样本后,开启蠕动泵进行抽滤,样本以恒定的流速流经分离柱2,分离柱2在磁力装置配合下样本中的免疫磁珠被吸附到分离柱2的内侧壁上,达到去除样本中的与免疫磁珠结合的细胞的目的,分离后的样本以恒定的流速进入过滤器3中通过所述滤膜34,样本中的循环肿瘤细胞被截留在所述滤膜34上,其余杂细胞或杂质被去除。上述装置将阴性富集策略和膜过滤结合,综合了阴性富集和膜过滤的优势,兼顾了回收率、纯度和细胞活力,获得了高回收率、高纯度和高细胞活力的效果,具体的,所述装置可实现直接在装置中进行红细胞裂解、磁分离去除白细胞,实现了样本中非循环肿瘤细胞的去除,同时避免了在离心和转移样品过程中失去CTCs或细胞破损的缺陷,同时使用膜过滤截留循环肿瘤细胞去除其他杂质和细胞,尽可能的保留循环肿瘤细胞,并且流程简化,能够在2h内完成5ml全血的分离,实现90%以上CTC的捕获和95%以上的白细胞去除。In the above-mentioned enrichment device for circulating tumor cells, as shown in FIG. 2 , the
进一步的,所述滤膜选自聚碳酸酯膜或PVDF膜;所述滤膜的孔径为0.65μm-8μm,在本实施例中选择孔径为5μm的聚碳酸酯膜(PC膜)。Further, the filter membrane is selected from polycarbonate membrane or PVDF membrane; the pore size of the filter membrane is 0.65 μm-8 μm, and in this embodiment, a polycarbonate membrane (PC membrane) with a pore size of 5 μm is selected.
进一步的,所述滤膜34的直径为13mm-25mm,在本实施例中,滤膜的直径为13mm。Further, the diameter of the
进一步的,所述滤膜34将所述空腔31分割成上腔室和下腔室。在本实施例中,所述过滤器3的上腔室和下腔室可拆卸连接,所述上腔室底部内侧壁上设有橡胶垫35用于压所述滤膜34,所述下腔室顶部内侧壁上设有凸起36用于支撑滤膜,所述滤膜34通过橡胶垫35和凸起36的配合紧密连接在所述过滤器34的侧壁上。Further, the
进一步的,所述上腔室容积≤300μl,在本实施例中,所述上腔室的容积为300微升,可以进行小体积免疫荧光染色。Further, the volume of the upper chamber is less than or equal to 300 μl. In this embodiment, the volume of the upper chamber is 300 μl, which can perform immunofluorescence staining in a small volume.
进一步的,所述分离柱2的外部设有磁力装置,在本实施例中,选择在分离柱2的外部两侧分别设有N磁极和S磁极。Further, a magnetic device is provided on the outside of the
进一步的,所述分离柱2的内部填充有微铁珠23,相邻的两个所述微铁珠23的间隙为200μm,所述微铁珠23的直径为100μm,所述微铁珠23为经亲水包被层处理的微铁珠,所述微铁珠23本身无磁性,微铁珠23起到扩大磁场的作用,外加的磁场可以被填充后的分离柱2放大1000-10000倍,不需要过多的免疫磁珠结合白细胞即可分离不同细胞,同时在高效率去除白细胞的同时又能使CTCs流过进行后续连续操作。Further, the interior of the
进一步的,所述空腔31底端的出口33与蠕动泵紧密连接。Further, the
实施例2Example 2
本实施例提供了一种循环肿瘤细胞的富集方法,包括如下步骤:This embodiment provides a method for enriching circulating tumor cells, comprising the following steps:
(1)取5ml新鲜的外周血样本与500μl的CD45标记的免疫磁珠溶液混合,4℃孵育0.5h;(1) Mix 5ml of fresh peripheral blood sample with 500μl of CD45-labeled immunomagnetic bead solution, and incubate at 4°C for 0.5h;
(2)向步骤(1)中孵育后的外周血样本中加入15ml一步裂解固定液孵育15min;(2) adding 15ml of one-step lysis fixative to the peripheral blood sample incubated in step (1) and incubating for 15min;
(3)向步骤(2)孵育后的外周血样本中加入PBS缓冲液(pH7.2)进行稀释,稀释至所述外周血样本原始体积(5ml)的5倍,然后加载到实施例1的循环肿瘤细胞的富集装置中的样本收集器1,然后开启蠕动泵进行抽滤,所述样本以0.25ml/min的流速依次进行磁分离和膜过滤;(3) Add PBS buffer (pH 7.2) to the peripheral blood sample incubated in step (2) for dilution, dilute to 5 times the original volume (5ml) of the peripheral blood sample, and then load it into the sample of Example 1. The
(4)当装置中的样本液面达到所述分离柱2上方时,加入PBS缓冲液(pH7.2)作为清洗液,清洗体积为10-15ml,在本实施例中选择10ml,继续以0.25ml/min的流速流经所述滤膜34;(4) When the sample liquid level in the device reaches the top of the
(5)待液体过滤完后,关掉蠕动泵,对滤膜中富集的循环肿瘤细胞进行染色标记,首先取下所述分离柱2,向所述过滤器3中加入封闭液封闭所述滤膜34上富集的循环肿瘤细胞,在本实施例中,封闭液选择300μl的1wt%BSA溶液,封闭时间为15min,然后用1ml的PBS溶液清洗并抽干液体;(5) After the liquid has been filtered, turn off the peristaltic pump, stain and label the circulating tumor cells enriched in the filter membrane, first remove the
(6)关闭蠕动泵,向所述滤膜34上加入100-150ul(在本实施例中选择130ul)的细胞染色液A,于4℃避光孵育30-40分钟(在本实施例中选择35分钟),然后用1ml的PBS溶液清洗并抽干液体;所述细胞染色液A为含有CD45-FITC和EpCAM-PE,CD45-FITC的体积百分比为3.33%~5.00%,本实施例中选择3.85%,EpCAM-PE的体积百分比为0.67%~1.00%,本实施例中选择0.77%;(6) Turn off the peristaltic pump, add 100-150ul (130ul in this embodiment) of cell staining solution A to the
(7)关闭蠕动泵,向所述滤膜34上加入100-150ul(在本实施例中选择130ul)的细胞染色液B,于4℃避光孵育10分钟,然后用1ml的PBS溶液清洗并抽干液体;所述细胞染色液B中含有1/15ug/ml DAPI;(7) Turn off the peristaltic pump, add 100-150ul (130ul in this embodiment) of cell staining solution B to the
(8)取下滤膜34进行封装,然后利用高通量多色荧光成像系统进行荧光成像与结果分析,最终确定循环肿瘤细胞数量。(8) Remove the
实施例3Example 3
本实施例提供了一种循环肿瘤细胞的富集方法,包括如下步骤:This embodiment provides a method for enriching circulating tumor cells, comprising the following steps:
(1)取5ml新鲜的外周血样本与500μl的CD45标记的免疫磁珠溶液混合,4℃孵育0.5h;(1) Mix 5ml of fresh peripheral blood sample with 500μl of CD45-labeled immunomagnetic bead solution, and incubate at 4°C for 0.5h;
(2)向步骤(1)中孵育后的外周血样本中加入15ml一步裂解固定液孵育15min;(2) adding 15ml of one-step lysis fixative to the peripheral blood sample incubated in step (1) and incubating for 15min;
(3)向步骤(2)孵育后的外周血样本中加入PBS缓冲液(pH7.2)进行稀释,稀释至所述外周血样本原始体积(5ml)的10倍,然后加载到实施例1的循环肿瘤细胞的富集装置中的样本收集器1,然后开启蠕动泵进行抽滤,所述样本以1/12ml/min的流速依次进行磁分离和膜过滤;(3) Add PBS buffer (pH 7.2) to the peripheral blood sample incubated in step (2) for dilution, dilute to 10 times the original volume (5 ml) of the peripheral blood sample, and then load it into the sample of Example 1. The
(4)当装置中的样本液面达到所述分离柱2上方时,加入PBS缓冲液(pH7.2)作为清洗液,清洗体积为10-15ml,在本实施例中选择15ml,继续以1/12ml/min的流速流经所述滤膜34;(4) When the sample liquid level in the device reaches the top of the
(5)待液体过滤完后,关掉蠕动泵,对滤膜中富集的循环肿瘤细胞进行染色标记,首先取下所述分离柱2,向所述过滤器3中加入封闭液封闭所述滤膜34上富集的循环肿瘤细胞,在本实施例中,封闭液选择300μl的1wt%BSA溶液,封闭时间为15min,然后用1ml的PBS溶液清洗并抽干液体;(5) After the liquid has been filtered, turn off the peristaltic pump, stain and label the circulating tumor cells enriched in the filter membrane, first remove the
(6)关闭蠕动泵,向所述滤膜34上加入100-150ul(在本实施例中选择100ul)的细胞染色液A,于4℃避光孵育30-40分钟(在本实施例中选择30分钟),然后用1ml的PBS溶液清洗并抽干液体;所述细胞染色液A为含有CD45-FITC和EpCAM-PE,CD45-FITC的体积百分比为3.33%~5.00%,本实施例中选择3.33%,EpCAM-PE的体积百分比为0.67%~1.00%,本实施例中选择0.67%;(6) Turn off the peristaltic pump, add 100-150 ul (100 ul in this embodiment) of cell staining solution A to the
(7)关闭蠕动泵,向所述滤膜34上加入100-150ul(在本实施例中选择100ul)的细胞染色液B,于4℃避光孵育10分钟,然后用1ml的PBS溶液清洗并抽干液体;所述细胞染色液B中含有1/15ug/ml DAPI;(7) Turn off the peristaltic pump, add 100-150 ul (100 ul in this embodiment) of cell staining solution B to the
(8)取下滤膜34进行封装,然后利用高通量多色荧光成像系统进行荧光成像与结果分析,最终确定循环肿瘤细胞数量。(8) Remove the
实施例4Example 4
本实施例提供了一种循环肿瘤细胞的富集方法,包括如下步骤:This embodiment provides a method for enriching circulating tumor cells, comprising the following steps:
(1)取5ml新鲜的外周血样本与500μl的CD45标记的免疫磁珠溶液混合,4℃孵育0.5h;(1) Mix 5ml of fresh peripheral blood sample with 500μl of CD45-labeled immunomagnetic bead solution, and incubate at 4°C for 0.5h;
(2)向步骤(1)中孵育后的外周血样本中加入15ml一步裂解固定液孵育15min;(2) adding 15ml of one-step lysis fixative to the peripheral blood sample incubated in step (1) and incubating for 15min;
(3)向步骤(2)孵育后的外周血样本中加入PBS缓冲液(pH7.2)进行稀释,稀释至所述外周血样本原始体积(5ml)的8倍,然后加载到实施例1的循环肿瘤细胞的富集装置中的样本收集器1,然后开启蠕动泵进行抽滤,所述样本以1/8ml/min的流速依次进行磁分离和膜过滤;(3) Add PBS buffer (pH 7.2) to the peripheral blood sample incubated in step (2) for dilution, dilute to 8 times the original volume (5 ml) of the peripheral blood sample, and then load it into the sample of Example 1. The
(4)当装置中的样本液面达到所述分离柱2上方时,加入PBS缓冲液(pH7.2)作为清洗液,清洗体积为10-15ml,在本实施例中选择13ml,继续以1/8ml/min的流速流经所述滤膜34;(4) When the sample liquid level in the device reaches the top of the
(5)待液体过滤完后,关掉蠕动泵,对滤膜中富集的循环肿瘤细胞进行染色标记,首先取下所述分离柱2,向所述过滤器3中加入封闭液封闭所述滤膜34上富集的循环肿瘤细胞,在本实施例中,封闭液选择300μl的1wt%BSA溶液,封闭时间为15min,然后用1ml的PBS溶液清洗并抽干液体;(5) After the liquid has been filtered, turn off the peristaltic pump, stain and label the circulating tumor cells enriched in the filter membrane, first remove the
(6)关闭蠕动泵,向所述滤膜34上加入100-150ul(在本实施例中选择150ul)的细胞染色液A,于4℃避光孵育30-40分钟(在本实施例中选择40分钟),然后用1ml的PBS溶液清洗并抽干液体;所述细胞染色液A为含有CD45-FITC和EpCAM-PE,CD45-FITC的体积百分比为3.33%~5.00%,本实施例中选择5%,EpCAM-PE的体积百分比为0.67%~1.00%,本实施例中选择1%;(6) Turn off the peristaltic pump, add 100-150ul (select 150ul in this embodiment) of cell staining solution A to the
(7)关闭蠕动泵,向所述滤膜34上加入100-150ul(在本实施例中选择150ul)的细胞染色液B,于4℃避光孵育10分钟,然后用1ml的PBS溶液清洗并抽干液体;所述细胞染色液B中含有1/15ug/ml DAPI;(7) Turn off the peristaltic pump, add 100-150ul (150ul in this embodiment) of cell staining solution B to the
(8)取下滤膜34进行封装,然后利用高通量多色荧光成像系统进行荧光成像与结果分析,最终确定循环肿瘤细胞数量。(8) Remove the
实验例Experimental example
1、荧光成像与结果分析1. Fluorescence imaging and result analysis
待检样本:A阴性对照:外周血中不带有任何癌细胞;B:外周血红掺有A549细胞;C:外周血红掺有JEG细胞。Samples to be tested: A negative control: no cancer cells in peripheral blood; B: peripheral blood red mixed with A549 cells; C: peripheral blood red mixed with JEG cells.
将上述待检样本分别按照实施例2实施,荧光成像结果如图3所示,CD45-FITC对白细胞染色,EpCAM-PE对CTCs染色,DAPI对细胞核染色,由上图可以得出本发明的循环肿瘤细胞的富集方法可行,染色清晰,背景干扰低,能够准确鉴定出CTCs并完成计数。The above-mentioned samples to be tested were respectively implemented according to Example 2. The results of fluorescence imaging are shown in Figure 3. CD45-FITC stains leukocytes, EpCAM-PE stains CTCs, and DAPI stains cell nuclei. From the above figure, the cycle of the present invention can be drawn. The tumor cell enrichment method is feasible, with clear staining and low background interference, and can accurately identify and count CTCs.
2、不同因素的捕获效率和白细胞污染以及在最佳条件下对CTC的灵敏度测试2. Different factors of capture efficiency and leukocyte contamination and sensitivity test for CTC under optimal conditions
2.1稀释倍数对捕获效率的影响2.1 Influence of dilution factor on capture efficiency
按照实施例2实施,在步骤(3)中,稀释倍数分别选择1、3、5、7、10,其余步骤均相同,考察捕获效率,捕获效率=鉴定的循环肿瘤细胞个数/原始样本中循环肿瘤细胞总数。According to Example 2, in step (3), the dilution ratios were selected as 1, 3, 5, 7, and 10, respectively, and the rest of the steps were the same. The capture efficiency was investigated. Capture efficiency = the number of identified circulating tumor cells/in the original sample Total number of circulating tumor cells.
结果如图4所示(误差棒代表三个独立实验的标准偏差),稀释倍数为5-10,捕获效率高。The results are shown in Fig. 4 (error bars represent the standard deviation of three independent experiments), with a dilution factor of 5-10 and a high capture efficiency.
2.2流速对捕获效率的影响2.2 Influence of flow rate on capture efficiency
按照实施例2实施,在步骤(3)中,所述样本分别以1/12、1/8、1/4、1/2、1ml/min的流速依次进行磁分离和膜过滤,考察捕获效率。According to Example 2, in step (3), the samples were subjected to magnetic separation and membrane filtration at the flow rates of 1/12, 1/8, 1/4, 1/2, and 1 ml/min, respectively, to investigate the capture efficiency. .
结果如图5所示(误差棒代表三个独立实验的标准偏差),流速为1/12-1/4之间时,捕获效率高。The results are shown in Figure 5 (error bars represent the standard deviation of three independent experiments), and the capture efficiency was high when the flow rate was between 1/12-1/4.
2.3清洗体积对捕获效率的影响2.3 Influence of cleaning volume on capture efficiency
按照实施例2实施,在步骤(4)中,清洗体积分别选择1、5、10、15、20ml,其余步骤均相同,考察捕获效率和白细胞数量。According to Example 2, in step (4), the washing volume was selected as 1, 5, 10, 15, and 20 ml, and the rest of the steps were the same, and the capture efficiency and the number of leukocytes were investigated.
结果如图6所示(误差棒代表三个独立实验的标准偏差),当清洗体积为10ml时,捕获效率高,白细胞数量低。The results are shown in Figure 6 (error bars represent the standard deviation of three independent experiments), when the wash volume was 10 ml, the capture efficiency was high and the number of leukocytes was low.
2.4在最佳条件下对CTC的灵敏度测试2.4 Sensitivity test to CTC under optimal conditions
分别在1ml血液中掺入的1、10、100、200个A549细胞,将上述血液样本按照实施例2实施,在步骤(3)中稀释倍数为5倍,样以0.25ml/min的流速依次进行磁分离和膜过滤,在步骤(4)中,清洗体积选择10ml,其余步骤相同,测定A549细胞个数。1, 10, 100, and 200 A549 cells were mixed into 1ml of blood respectively, and the above blood samples were carried out according to Example 2. In step (3), the dilution factor was 5 times, and the samples were sequentially performed at a flow rate of 0.25ml/min. Perform magnetic separation and membrane filtration. In step (4), the washing volume is selected to be 10 ml, and the remaining steps are the same to determine the number of A549 cells.
结果如图7(每个样本进行平行3次试验)所示,得到本发明的循环肿瘤细胞的富集方法检测CTCs的灵敏度能达到1个/ml。The results are shown in Figure 7 (three parallel experiments were performed for each sample), and the sensitivity of the CTCs enrichment method of the present invention to detect CTCs can reach 1 cell/ml.
3、白细胞耗竭效果的定性和定量评估以及细胞捕获性能的综合评估3. Qualitative and quantitative evaluation of leukocyte depletion effect and comprehensive evaluation of cell capture performance
3.1白细胞耗竭效果的定性评估3.1 Qualitative evaluation of leukocyte depletion effect
按照实施例2实施,分别进行磁分离和不进行磁分离,所述滤膜选择0.65μm的PVDF膜,其余步骤均相同。According to Example 2, magnetic separation is performed and magnetic separation is not performed, respectively, the filter membrane is a PVDF membrane of 0.65 μm, and the rest of the steps are the same.
结果如图8所示,图8中(a)为未进行白细胞磁分离,(b)为进行白细胞磁分离,由(a)中显示大量的白细胞,而在(b)中只显示少量的白细胞,说明本发明的循环肿瘤细胞的富集方法能够去除样本中的白细胞,且从图中可以看到大约白细胞去除率达到95%以上。The results are shown in Figure 8. In Figure 8, (a) is without magnetic separation of leukocytes, and (b) is magnetic separation of leukocytes. A large number of leukocytes are shown in (a), and only a small amount of leukocytes are shown in (b). , indicating that the method for enriching circulating tumor cells of the present invention can remove leukocytes in the sample, and it can be seen from the figure that the leukocyte removal rate reaches more than 95%.
3.2白细胞耗竭效果的定量评估3.2 Quantitative assessment of leukocyte depletion effect
按照实施例2实施,所述滤膜分别选择0.65μm的PVDF膜、5μm的PVDF膜、5μm的PC膜和8μm的PC膜,分别未进行白细胞磁分离和进行白细胞磁分离,其余步骤均相同。According to Example 2, 0.65 μm PVDF film, 5 μm PVDF film, 5 μm PC film and 8 μm PC film were selected for the filter membrane, respectively, without magnetic separation of leukocytes and magnetic separation of leukocytes, and the remaining steps were the same.
结果如图9所示,得到在相同类型和尺寸的膜上,经过白细胞磁分离的白细胞去除率比未经过白细胞磁分离的均要高。The results are shown in Fig. 9. It is obtained that on the same type and size of membrane, the removal rate of leukocytes with magnetic separation of leukocytes is higher than that without magnetic separation of leukocytes.
3.3循环肿瘤细胞捕获性能综合评估3.3 Comprehensive evaluation of the capture performance of circulating tumor cells
按照实施例2实施,其中在步骤(3)中稀释倍数为5倍,样以0.25ml/min的流速依次进行磁分离和膜过滤,在步骤(4)中,清洗体积选择10ml;使用的滤膜分别选择5μm的PVDF膜、5μm的PC膜和8μm的PC膜;其余步骤相同。Implemented according to Example 2, wherein in step (3), the dilution factor was 5 times, and the sample was subjected to magnetic separation and membrane filtration at a flow rate of 0.25ml/min in turn, and in step (4), the cleaning volume was selected 10ml; 5μm PVDF film, 5μm PC film and 8μm PC film were selected for the membrane respectively; the rest of the steps were the same.
结果如图10所示,得到在经过磁分离和膜过滤后,5μm的PVDF膜的CTC捕获率能达到90%以上。The results are shown in Fig. 10. After magnetic separation and membrane filtration, the CTC capture rate of the 5 μm PVDF membrane can reach more than 90%.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation manner. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. And the obvious changes or changes derived from this are still within the protection scope of the present invention.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010568268.0A CN111575239A (en) | 2020-06-19 | 2020-06-19 | A method and device for enriching circulating tumor cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010568268.0A CN111575239A (en) | 2020-06-19 | 2020-06-19 | A method and device for enriching circulating tumor cells |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111575239A true CN111575239A (en) | 2020-08-25 |
Family
ID=72124007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010568268.0A Pending CN111575239A (en) | 2020-06-19 | 2020-06-19 | A method and device for enriching circulating tumor cells |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111575239A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112608820A (en) * | 2020-12-15 | 2021-04-06 | 北京大学 | Method and device for separating and enriching high-cell-activity rare cells and application |
CN112834308A (en) * | 2021-03-18 | 2021-05-25 | 南京九川科学技术有限公司 | A kind of pretreatment tube and pretreatment method of liquid-based cell sample |
CN113252428A (en) * | 2021-04-28 | 2021-08-13 | 北京大学第三医院(北京大学第三临床医学院) | Filter device and liquid sample processing system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103869060A (en) * | 2014-03-07 | 2014-06-18 | 复旦大学附属中山医院 | Circulating tumor stem cell detection kit based on magnetic beads and microfluidic chip |
CN104178454A (en) * | 2013-05-24 | 2014-12-03 | 益善生物技术股份有限公司 | Enrichment and analysis method for circulating tumor cells |
CN105331516A (en) * | 2015-12-01 | 2016-02-17 | 苏州浚惠生物科技有限公司 | Rare cell enrichment device and method |
CN106701684A (en) * | 2016-12-19 | 2017-05-24 | 毕国明 | High-efficiency circulating tumor cell enrichment method |
CN107402296A (en) * | 2017-08-22 | 2017-11-28 | 亚能生物技术(深圳)有限公司 | The immunofluorescence dyeing and interpretation method of a kind of circulating tumor cell |
CN107402303A (en) * | 2016-05-20 | 2017-11-28 | 益善生物技术股份有限公司 | Circulating tumor cell separation and concentration micro-fluidic chip and its enrichment method |
CN109342369A (en) * | 2018-10-26 | 2019-02-15 | 中国科学院苏州生物医学工程技术研究所 | Large Field of View Bioimaging, Scanning, and Analysis Device for Rapid Detection of Circulating Tumor Cells |
CN111019901A (en) * | 2019-12-20 | 2020-04-17 | 江苏为真生物医药技术股份有限公司 | Method for capturing intestinal cancer circulating tumor cells |
-
2020
- 2020-06-19 CN CN202010568268.0A patent/CN111575239A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104178454A (en) * | 2013-05-24 | 2014-12-03 | 益善生物技术股份有限公司 | Enrichment and analysis method for circulating tumor cells |
CN103869060A (en) * | 2014-03-07 | 2014-06-18 | 复旦大学附属中山医院 | Circulating tumor stem cell detection kit based on magnetic beads and microfluidic chip |
CN105331516A (en) * | 2015-12-01 | 2016-02-17 | 苏州浚惠生物科技有限公司 | Rare cell enrichment device and method |
CN107402303A (en) * | 2016-05-20 | 2017-11-28 | 益善生物技术股份有限公司 | Circulating tumor cell separation and concentration micro-fluidic chip and its enrichment method |
CN106701684A (en) * | 2016-12-19 | 2017-05-24 | 毕国明 | High-efficiency circulating tumor cell enrichment method |
CN107402296A (en) * | 2017-08-22 | 2017-11-28 | 亚能生物技术(深圳)有限公司 | The immunofluorescence dyeing and interpretation method of a kind of circulating tumor cell |
CN109342369A (en) * | 2018-10-26 | 2019-02-15 | 中国科学院苏州生物医学工程技术研究所 | Large Field of View Bioimaging, Scanning, and Analysis Device for Rapid Detection of Circulating Tumor Cells |
CN111019901A (en) * | 2019-12-20 | 2020-04-17 | 江苏为真生物医药技术股份有限公司 | Method for capturing intestinal cancer circulating tumor cells |
Non-Patent Citations (1)
Title |
---|
生物通: "生物通2008技术点评:磁式细胞分选[选购宝典]", pages 4, Retrieved from the Internet <URL:https://www.ebiotrade.com/newsf/2008-8/2008721103751.htm> * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112608820A (en) * | 2020-12-15 | 2021-04-06 | 北京大学 | Method and device for separating and enriching high-cell-activity rare cells and application |
CN112834308A (en) * | 2021-03-18 | 2021-05-25 | 南京九川科学技术有限公司 | A kind of pretreatment tube and pretreatment method of liquid-based cell sample |
CN113252428A (en) * | 2021-04-28 | 2021-08-13 | 北京大学第三医院(北京大学第三临床医学院) | Filter device and liquid sample processing system |
CN113252428B (en) * | 2021-04-28 | 2023-11-17 | 北京大学第三医院(北京大学第三临床医学院) | Filter device and liquid sample processing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9506927B2 (en) | Method for detecting low concentrations of specific cell from high concentrations of cell populations, and method for collecting and analyzing detected cell | |
CN106635995B (en) | Negative enrichment method for circulating tumor cells | |
CN107338185B (en) | The catching method of biomolecule in a kind of cell or solution | |
CN106093392B (en) | The integrated testing method and detection chip of a kind of urine excretion body separation, enrichment and detection | |
US11280792B2 (en) | Apparatus for detecting the degree of malignancy of each of circulating tumor cells | |
CN111575239A (en) | A method and device for enriching circulating tumor cells | |
CN103869060A (en) | Circulating tumor stem cell detection kit based on magnetic beads and microfluidic chip | |
US20100047766A1 (en) | Analyte manipulation and detection | |
WO2015101163A1 (en) | Application in tumor cell sorting of coupling anti-hla-g monoclonal antibody to immunomagnetic beads | |
JP2008200037A (en) | High throughput cell-based assay, method of use and kit thereof | |
US20210170409A1 (en) | Microfluidic chip for circulating tumor cell separation, circulating tumor cell separation method and counting method | |
CN207276609U (en) | A kind of device for being used to capture biomolecule in cell or solution | |
JP2022509369A (en) | Particle capture system and method | |
Kim et al. | Cancer marker-free enrichment and direct mutation detection in rare cancer cells by combining multi-property isolation and microfluidic concentration | |
CN206082559U (en) | A microfluid chip that outside being used for, secretes body separation, enrichment and detection | |
CN111812071A (en) | A novel technique for the identification of circulating tumor cells | |
CN212560306U (en) | An enrichment device for circulating tumor cells | |
Ji et al. | Detection of circulating tumor cells using a novel immunomagnetic bead method in lung cancer patients | |
CN113125738A (en) | Method for detecting circulating tumor cells | |
CN109781975B (en) | Reagent and method for enriching circulating rare cells | |
US11525829B2 (en) | Method for capturing target cells or molecules in solution | |
CN111019901A (en) | Method for capturing intestinal cancer circulating tumor cells | |
CN114214177B (en) | Microfluidic chip, detection kit and exosome detection method | |
CN117187183A (en) | Enrichment method and analysis method of circulating tumor cells and kit | |
CN112662613A (en) | Magnetic cell separation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200825 |
|
RJ01 | Rejection of invention patent application after publication |