CN111571619A - Life assisting system and method based on SSVEP brain-controlled mechanical arm grabbing - Google Patents
Life assisting system and method based on SSVEP brain-controlled mechanical arm grabbing Download PDFInfo
- Publication number
- CN111571619A CN111571619A CN202010310189.XA CN202010310189A CN111571619A CN 111571619 A CN111571619 A CN 111571619A CN 202010310189 A CN202010310189 A CN 202010310189A CN 111571619 A CN111571619 A CN 111571619A
- Authority
- CN
- China
- Prior art keywords
- ssvep
- robotic arm
- user
- computer
- eeg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
本发明公开了一种基于SSVEP脑控机械臂抓取的生活辅助系统与方法,本系统包括脑电帽、电脑、意图表达界面、SSVEP解码单元和机械臂。本发明方法是:首先由专业人员帮助使用者佩戴好脑电帽,其次打开电脑端的意图表达界面,在意图表达界面出现刺激闪烁时,使用者根据自己的需求,注视意图表达界面上的相应区块,脑电帽采集使用者此时的脑电信号,传输给电脑端的SSVEP解码单元,通过预处理和FBCCA算法进行解码,解码结果转换成控制指令发送给机械臂,机械臂执行控制指令,依据规划路径抓取相应物品,从而达到辅助使用者日常生活的目的,特别是为老年人和残障人士体更更多生活上的便利和安全。
The invention discloses a life assistance system and method based on SSVEP brain-controlled mechanical arm grasping. The system includes an EEG cap, a computer, an intention expression interface, an SSVEP decoding unit and a mechanical arm. The method of the invention is as follows: firstly, a professional helps the user to put on the EEG cap, and secondly, the intention expression interface on the computer terminal is opened, and when the intention expression interface flashes stimuli, the user pays attention to the corresponding area on the intention expression interface according to his own needs. block, the EEG cap collects the EEG signal of the user at this time, transmits it to the SSVEP decoding unit on the computer side, decodes it through preprocessing and FBCCA algorithm, and converts the decoding result into a control command and sends it to the robot arm, and the robot arm executes the control command. Plan the path to grab the corresponding items, so as to achieve the purpose of assisting the user's daily life, especially for the elderly and the disabled to provide more convenience and safety in their lives.
Description
技术领域technical field
本发明文针对老年人和残障人士设计了一种基于SSVEP(Steady-State VisualEvoked Potentials,稳态视觉诱发电位)脑控机械臂抓取的生活辅助系统与方法,系统包括脑电帽、电脑、意图表达界面、SSVEP解码单元和机械臂,以实现在无人帮助的情况下,辅助老年人和残障人士自主对所需物品的抓取,辅助日常生活,解决生活不方便问题,提高生活质量。The present invention designs a life assistance system and method based on SSVEP (Steady-State Visual Evoked Potentials, Steady-State Visual Evoked Potentials) brain-controlled robotic arm grasping for the elderly and the disabled. The system includes an EEG cap, a computer, an intention The expression interface, the SSVEP decoding unit and the robotic arm are used to assist the elderly and the disabled to grasp the required items independently, assist the daily life, solve the problem of inconvenience in life, and improve the quality of life.
背景技术Background technique
据2019年报导中国有8500万残疾人,还有4400万失能和半失能老年人。他们很多人都需要辅助器具。辅助器具是指补偿和替代人体功能的产品,是帮助残疾人和老年人提高生活质量、增强社会参与能力的手段。中国残障人士数量很多,残疾导致的障碍会造成残疾人生活中的各种困难,包括更加不良的健康状况、更低的教育接受能力、更差的经济参与、更高的贫困率和更高的依赖性等。尤其对于语言沟通障碍和肢体活动能力的丧失的特殊人群,参与正常的生活成了最大的挑战。因此,开发一种可以辅助老年人或残障人士日常生活的脑控机械臂系统,尤其对肢体活动能力有障碍人群,提高他们的生活质量和主动参与能力,解决生活不方便的问题十分必要,成为亟待解决的技术问题。According to a 2019 report, there are 85 million disabled people in China, and 44 million disabled and semi-disabled elderly people. Many of them need assistive devices. Assistive devices refer to products that compensate and replace human body functions, and are means to help the disabled and the elderly improve their quality of life and enhance their ability to participate in society. There are a large number of disabled people in China, and the obstacles caused by disability can lead to various difficulties in the lives of disabled people, including poorer health status, lower educational acceptance, poorer economic participation, higher poverty rates and higher dependencies, etc. Participating in normal life has become the biggest challenge, especially for special groups with language and communication barriers and loss of physical activity. Therefore, it is very necessary to develop a brain-controlled robotic arm system that can assist the elderly or disabled people in their daily lives, especially for people with physical disabilities, to improve their quality of life and active participation, and to solve the problem of inconvenience in life. Technical problems to be solved urgently.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种基于SSVEP脑控机械臂抓取的生活辅助系统与方法,其基本原理是意图表达界面上的每个区块代表特定的物品,且这些区块以不同的频率闪烁,使用者根据自己的需求,即想要抓取的物品,注视意图表达界面上的相应的代表该物品区块,脑电帽采集此时使用者脑电信号,通过有线或无线的方式,传输至电脑端的SSVEP解码单元,进行滤波和FBCCA滤波器组典型相关分析。解码出使用者被视觉刺激诱发的大脑电位对应的频率,通过该频率找到意图表达界面对应的区块即知道使用者想要抓取的物品,进而电脑发送指令控制机械臂抓取相应物品,这样即实现了辅助老年人和残障人抓取所需物品的操作。In order to solve the problems of the prior art, the purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a life assistance system and method based on the grasping of the SSVEP brain-controlled robotic arm. Blocks represent specific items, and these blocks flash at different frequencies. According to their own needs, that is, the item they want to grab, the user looks at the corresponding block representing the item on the intent expression interface, and the EEG cap collects this item. When the user's EEG signal is transmitted to the SSVEP decoding unit on the computer side by wired or wireless means, filtering and FBCCA filter bank canonical correlation analysis are performed. Decode the frequency corresponding to the user's brain potential induced by visual stimuli, find the block corresponding to the intention expression interface through this frequency, and then know the item the user wants to grab, and then the computer sends instructions to control the robotic arm to grab the corresponding item, so that That is, the operation of assisting the elderly and the handicapped to grab the required items is realized.
为达到上述发明创造目的,本发明采用如下技术方案:In order to achieve the above-mentioned purpose of invention and creation, the present invention adopts the following technical solutions:
一种基于SSVEP脑控机械臂抓取的生活辅助系统,包括脑电帽、电脑、意图表达界面、SSVEP解码单元和机械臂,所述脑电帽通过有线或者无线方式与电脑连接,电脑包含意图表达界面和SSVEP解码单元,机械臂通过有线连接与电脑连接;由专业人员帮助使用者佩戴好脑电帽,打开电脑端的意图表达界面,在意图表达界面出现刺激闪烁时,使用者根据自己的需求,注视意图表达界面上的相应区块,脑电帽采集使用者此时的脑电信号,传输给电脑端的SSVEP解码单元,通过预处理和滤波器组典型相关分析FBCCA算法进行解码,解码结果转换成控制指令发送给机械臂,机械臂执行控制指令,依据规划的路径抓取相应物品。A life assistance system based on SSVEP brain-controlled robotic arm grasping, comprising an EEG cap, a computer, an intent expression interface, a SSVEP decoding unit and a robotic arm, the EEG cap is connected to a computer by wired or wireless means, and the computer contains an intent Expression interface and SSVEP decoding unit, the robotic arm is connected to the computer through a wired connection; a professional helps the user to wear the EEG cap, open the intention expression interface on the computer side, and when the intention expression interface flashes stimuli, the user can follow his own needs. , focus on the corresponding block on the intent expression interface, the EEG cap collects the user's EEG signal at this time, and transmits it to the SSVEP decoding unit on the computer side, which is decoded by the FBCCA algorithm through preprocessing and filter bank canonical correlation analysis, and the decoding result is converted. The completed control command is sent to the robotic arm, and the robotic arm executes the control command and grabs the corresponding item according to the planned path.
作为本发明优选的技术方案,所述脑电帽,采用博瑞康24导联干电极帽,使用者头皮无需打脑电膏,即可进行脑电信号采集。通过有线串口通讯方式与电脑连接,或者通过无线蓝牙方式与电脑连接;所述电脑包含意图表达界面和SSVEP解码单元;所述机械臂采用Kinova6轴仿生机械臂,机械臂通过有线方式与电脑连接。As a preferred technical solution of the present invention, the EEG cap adopts the 24-lead dry electrode cap of Boruikang, and the user can collect EEG signals without applying EEG cream on the scalp. Connect with the computer through wired serial communication, or connect with the computer through wireless bluetooth; the computer includes an intent expression interface and an SSVEP decoding unit; the robotic arm adopts the Kinova 6-axis bionic robotic arm, and the robotic arm is wired with the computer.
作为本发明优选的技术方案,所述意图表达界面包含12个区块,12个区块代表12条指令:苹果1、香蕉1、绿茶、橙子、可乐、苹果2、香蕉2、矿泉水、橘子、七喜、取消和确认;使用者先注视所需物品,然后注视取消或确认区块,确认区块激发后,机械臂执行抓取物品动作。As a preferred technical solution of the present invention, the intention expression interface includes 12 blocks, and the 12 blocks represent 12 instructions: apple 1,
作为本发明优选的技术方案,所述SSVEP解码单元对使用者的脑电信号首先进行预处理,即滤波,然后采用FBCCA滤波器组典型相关分析,最终解码识别出使用者想要发送的指令,从而实现使用者大脑控制机械臂抓取相应物品操作。As a preferred technical solution of the present invention, the SSVEP decoding unit first preprocesses the user's EEG signal, that is, filtering, and then uses the FBCCA filter bank canonical correlation analysis, and finally decodes and identifies the command that the user wants to send, Thus, the user's brain controls the robotic arm to grab the corresponding item.
作为本发明优选的技术方案,机械臂通过正逆运动学原理进行路径规划,并且采用连续轨迹规划避免出现卡顿现象。As a preferred technical solution of the present invention, the manipulator performs path planning through the principle of forward and inverse kinematics, and adopts continuous trajectory planning to avoid the stuck phenomenon.
一种基于SSVEP脑控机械臂抓取的生活辅助方法,采用本发明基于SSVEP脑控机械臂抓取的生活辅助系统进行操作,操作步骤如下:A life assistance method based on the grasping of the SSVEP brain-controlled robotic arm, using the living assistance system of the present invention based on the grasping of the SSVEP brain-controlled robotic arm to operate, and the operation steps are as follows:
1)专业人员帮助使用者佩戴脑电帽;1) Professionals help users wear EEG caps;
2)打开意图表达界面;2) Open the intent expression interface;
3)当意图表达界面出现刺激闪烁时,使用者根据自己需求,注视相应区块;同时脑电帽采集脑电信号,通过有线或者无线方式传输给电脑端的SSVEP解码单元;3) When a stimulus flickers occurs on the intention expression interface, the user looks at the corresponding block according to his own needs; at the same time, the EEG cap collects the EEG signal and transmits it to the SSVEP decoding unit on the computer side by wired or wireless means;
4)SSVEP解码单元通过FBCCA算法解码;4) The SSVEP decoding unit is decoded by the FBCCA algorithm;
5)SSVEP解码单元通过FBCCA算法解码后,发送控制指令给机械臂;5) After the SSVEP decoding unit is decoded by the FBCCA algorithm, it sends a control command to the robotic arm;
6)机械臂依据规划路径,抓取相应物品。6) The robotic arm grabs the corresponding item according to the planned path.
作为本发明优选的技术方案,在所述步骤2)中,设计的意图表达界面包含12个区块,12个区块代表12条指令,苹果1、香蕉1、绿茶、橙子、可乐、苹果2、香蕉2、矿泉水、橘子、七喜、取消和确认。As a preferred technical solution of the present invention, in the step 2), the designed intention expression interface includes 12 blocks, 12 blocks represent 12 instructions, apple 1,
作为本发明优选的技术方案,在所述步骤3)中,使用者先注视意图表达界面中所需物品对应区块,然后注视取消或确认区块。注视期间,其脑电信号通过有线或无线的方式,传输给电脑端的SSVEP解码单元处理。As a preferred technical solution of the present invention, in the step 3), the user first looks at the block corresponding to the desired item in the intention expression interface, and then looks at the cancel or confirmation block. During fixation, the EEG signal is transmitted to the SSVEP decoding unit on the computer side for processing by wired or wireless means.
作为本发明优选的技术方案,在所述步骤4)中,SSVEP解码单元对使用者的脑电信号进行预处理即滤波,FBCCA滤波器组典型相关分析,解码识别出使用者想要发送的指令,从而实现使用者大脑控制机械臂抓取相应物品操作。As a preferred technical solution of the present invention, in the step 4), the SSVEP decoding unit preprocesses or filters the EEG signal of the user, performs a typical correlation analysis of the FBCCA filter bank, and decodes and identifies the command that the user wants to send. , so as to realize the operation of the user's brain to control the robotic arm to grab the corresponding item.
作为本发明优选的技术方案,在所述步骤5)中FBCCA算法实现脑电信号解码步骤如下:As the preferred technical solution of the present invention, in the described step 5), the FBCCA algorithm realizes the EEG signal decoding steps as follows:
5-1)进行滤波器组分析,通过滤波器的多个不同通带将SSVEP脑电信号分解,得到通过滤波器各子带后的子带信号;5-1) carry out filter bank analysis, decompose the SSVEP EEG signal by a plurality of different passbands of the filter, obtain the subband signal after each subband of the filter;
5-2)将滤波所得各子带成分与标准正余弦参考信号进行相关性分析;5-2) Correlation analysis is carried out with each subband component obtained by filtering and the standard sine and cosine reference signal;
5-3)最大相关性对应频率即为识别结果;依据算法识别结果,判断确认区块激发后,发送控制指令给机械臂,机械臂执行抓取物品动作。5-3) The frequency corresponding to the maximum correlation is the identification result; according to the algorithm identification result, after the confirmation block is activated, the control command is sent to the robotic arm, and the robotic arm executes the action of grabbing the item.
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:Compared with the prior art, the present invention has the following obvious outstanding substantive features and significant advantages:
1.本发明采用脑机接口技术,在使用者的大脑和计算机或其它电子设备之间建立通道,不依赖于外围神经和肌肉组织,实现大脑控制外部设备;SSVEP稳态视觉诱发电位为脑机接口技术的一种,通过不同频率的视觉刺激诱发大脑产生不同频率电位,利用脑电帽采集和处理这些脑电信号,解码出所对应的视觉刺激频率,便解码出使用者的意图,进而输出控制命令控制机械臂运动,即实现了使用者通过大脑控制机械臂的操作;1. The present invention adopts the brain-computer interface technology to establish a channel between the user's brain and a computer or other electronic equipment, and does not rely on peripheral nerves and muscle tissue to realize brain control of external equipment; SSVEP steady-state visual evoked potential is a brain-computer A kind of interface technology, which induces the brain to generate different frequency potentials through visual stimulation of different frequencies, uses the EEG cap to collect and process these EEG signals, decodes the corresponding visual stimulation frequency, decodes the user's intention, and then outputs the control The command controls the movement of the robotic arm, that is, the user controls the operation of the robotic arm through the brain;
2.本发明使用方便,无需繁琐的头皮打脑电膏;更加人性化的交互界面,能够让用户清晰明了表达自己的意图;扩展了抓取物品的机械臂,辅助老人和残疾人在无人帮助的情况下抓取自己所需的物品;2. The present invention is easy to use and does not require tedious scalp massage; a more user-friendly interactive interface enables users to express their intentions clearly; expands the robotic arm for grabbing items, assisting the elderly and the disabled when unmanned. Grab the items you need without help;
3.本发明系统易于扩展,实现更多功能,操作方法简单,成本低廉。3. The system of the present invention is easy to expand, realizes more functions, simple operation method and low cost.
附图说明Description of drawings
图1是本发明的系统结构框图。FIG. 1 is a block diagram of the system structure of the present invention.
图2是本发明的整体实验流程图。Fig. 2 is the overall experiment flow chart of the present invention.
图3是本发明的电脑端程序流程图。FIG. 3 is a flow chart of a computer terminal program of the present invention.
图4是本发明的意图表达界面刺激画面。Figure 4 is an intent expression interface stimulus screen of the present invention.
图5是本发明的意图表达界面反馈画面。FIG. 5 is an intent expression interface feedback screen of the present invention.
具体实施方式Detailed ways
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:The above scheme will be further described below in conjunction with specific embodiments, and preferred embodiments of the present invention are described in detail as follows:
实施例一:Example 1:
在本实施例中,如图1所示,一种基于SSVEP脑控机械臂抓取的生活辅助系统,包括脑电帽1、电脑2、意图表达界面3、SSVEP解码单元4和机械臂5,所述脑电帽1通过有线或者无线方式与电脑2连接,电脑2包含意图表达界面3和SSVEP解码单元4,机械臂5通过有线连接与电脑2连接;由专业人员帮助使用者佩戴好脑电帽1,打开电脑2端的意图表达界面3,在意图表达界面3出现刺激闪烁时,使用者根据自己的需求,注视意图表达界面3上的相应区块,脑电帽1采集使用者此时的脑电信号,传输给电脑2端的SSVEP解码单元4,通过预处理和滤波器组典型相关分析FBCCA算法进行解码,解码结果转换成控制指令发送给机械臂5,机械臂5执行控制指令,依据规划的路径抓取相应物品。In this embodiment, as shown in FIG. 1 , a life assistance system based on SSVEP brain-controlled robotic arm grasping includes an
实施例二:Embodiment 2:
本实施例与实施例一基本相同,特别之处在于:This embodiment is basically the same as the first embodiment, and the special features are:
在本实施例中,所述意图表达界面3包含12个区块,12个区块代表12条指令:苹果1、香蕉1、绿茶、橙子、可乐、苹果2、香蕉2、矿泉水、橘子、七喜、取消和确认;使用者先注视所需物品,然后注视取消或确认区块,确认区块激发后,机械臂执行抓取物品动作。In this embodiment, the
所述SSVEP解码单元4对使用者的脑电信号首先进行预处理,即滤波,然后采用FBCCA滤波器组典型相关分析,最终解码识别出使用者想要发送的指令,从而实现使用者大脑控制机械臂5抓取相应物品操作。The SSVEP decoding unit 4 first preprocesses the user's EEG signal, that is, filtering, and then uses the FBCCA filter bank canonical correlation analysis, and finally decodes and identifies the command that the user wants to send, thereby realizing the user's brain to control the machine. The arm 5 grabs the corresponding item for operation.
机械臂5通过正逆运动学原理进行路径规划,并且采用连续轨迹规划避免出现卡顿现象。The robotic arm 5 performs path planning based on the principle of forward and inverse kinematics, and adopts continuous trajectory planning to avoid the stuck phenomenon.
实施例三
本实施例与前述实施例基本相同,特别之处在于:This embodiment is basically the same as the previous embodiment, and the special features are:
在本实施例中,如图2所示,一种基于SSVEP脑控机械臂抓取的生活辅助方法,采用前述实施例所述基于SSVEP脑控机械臂抓取的生活辅助系统进行操作,操作步骤如下:In this embodiment, as shown in FIG. 2 , a life assistance method based on SSVEP brain-controlled robotic arm grasping uses the living assistance system based on SSVEP brain-controlled robotic arm grasping described in the previous embodiment to operate. The operation steps as follows:
1)帽1采集脑电信号,通过有线或者无线方式传输给电脑2端的SSVEP解码单元4;1)
4)SSVEP解码单元4通过FBCCA算法解码;4) SSVEP decoding unit 4 decodes by FBCCA algorithm;
5)SSVEP解码单元4通过FBCCA算法解码后,发送控制指令给机械臂5;5) After the SSVEP decoding unit 4 is decoded by the FBCCA algorithm, it sends a control command to the robotic arm 5;
6)机械臂5依据规划路径,抓取相应物品。6) The robotic arm 5 grabs the corresponding item according to the planned path.
实施例四Embodiment 4
本实施例与前述实施例基本相同,特别之处在于:This embodiment is basically the same as the previous embodiment, and the special features are:
在本实施例中,如图1所示,一种基于SSVEP脑控机械臂抓取的生活辅助系统与方法,包括脑电帽、电脑、意图表达界面、SSVEP解码单元和机械臂。所述脑电帽,采用博瑞康24导联干电极帽,使用者头皮无需打脑电膏,即可进行脑电信号采集。干电极帽将采集的微伏级脑电信号进行放大,并且通过A/D模数转换,将脑电模拟信号转换成数字信号,所用采样率为250Hz。可以通过有线串口通讯方式与电脑连接,也可以通过无线蓝牙方式与电脑连接;所述电脑包含意图表达界面和SSVEP解码单元;所述意图表达界面用于用户交互;所述SSVEP解码单元对使用者的脑电信号进行预处理即滤波,FBCCA滤波器组典型相关分析,解码识别出使用者想要发送的指令;所述机械臂采用Kinova6轴仿生机械臂,机械臂通过有线方式与电脑连接;所述操作步骤如下:首先由专业人员帮助使用者佩戴好脑电帽,其次打开电脑端的意图表达界面,在意图表达界面出现刺激闪烁时,使用者根据自己的需求,注视意图表达界面上的相应区块,脑电帽采集使用者此时的脑电信号,传输给电脑端的SSVEP解码单元通过FBCCA算法进行解码,解码结果转换成控制指令发送给机械臂,机械臂执行控制指令抓取相应物品。In this embodiment, as shown in FIG. 1 , a life assistance system and method based on SSVEP brain-controlled robotic arm grasping includes an EEG cap, a computer, an intent expression interface, an SSVEP decoding unit, and a robotic arm. The EEG cap adopts the 24-lead dry electrode cap of Boruikang, and the user can collect EEG signals without applying EEG cream on the scalp. The dry electrode cap amplifies the collected microvolt-level EEG signals, and converts the EEG analog signals into digital signals through A/D analog-to-digital conversion, with a sampling rate of 250Hz. It can be connected to a computer through wired serial communication, or can be connected to a computer through wireless Bluetooth; the computer includes an intention expression interface and an SSVEP decoding unit; the intention expression interface is used for user interaction; the SSVEP decoding unit is used for user interaction. The EEG signal is preprocessed, that is, filtered, and the FBCCA filter bank can be used for typical correlation analysis to decode and identify the instructions that the user wants to send; the robotic arm adopts Kinova 6-axis bionic robotic arm, and the robotic arm is connected to the computer by wire; The above operation steps are as follows: firstly, a professional helps the user to wear the EEG cap, and secondly, open the intention expression interface on the computer side. When the intention expression interface flashes stimuli, the user pays attention to the corresponding area on the intention expression interface according to his own needs. block, the EEG cap collects the user's EEG signal at this time, and transmits it to the SSVEP decoding unit on the computer for decoding through the FBCCA algorithm. The decoding result is converted into a control command and sent to the robotic arm. The robotic arm executes the control command to grab the corresponding item.
如图2所示,一种基于SSVEP脑控机械臂抓取的生活辅助系统与方法的实验流程:首先由专业人员帮助使用者佩戴好博瑞康24导联干电极帽,其次打开电脑端的意图表达界面,在意图表达界面出现刺激闪烁时,使用者根据自己的需求,注视意图表达界面上的相应区块,脑电帽采集使用者此时的脑电信号,通过有线或无线的方式传输给电脑端的SSVEP解码单元进行解码,解码成功后,发送控制指令给Kinova6轴仿生机械臂,机械臂执行控制指令抓取相应物品。As shown in Figure 2, the experimental process of a living assistance system and method based on SSVEP brain-controlled robotic arm grasping: first, a professional helps the user to wear the 24-lead dry electrode cap of Boruikang, and secondly, the intention to open the computer terminal In the expression interface, when the stimulus flickers appears on the intention expression interface, the user can focus on the corresponding block on the intention expression interface according to their own needs. The SSVEP decoding unit on the computer performs decoding. After the decoding is successful, it sends control commands to the Kinova 6-axis bionic robotic arm, and the robotic arm executes the control commands to grab the corresponding items.
如图3所示,一种基于SSVEP脑控机械臂抓取的生活辅助系统与方法的电脑端程序流程,电脑端程序分为SSVEP解码单元和意图表达界面两个部分。这里称SSVEP解码单元为处理器,意图表达界面为刺激器。脑电信号通过脑电帽采集后发送至电脑端的处理器(SSVEP解码单元),处理器和刺激器通过TCP/IP通讯,交互数据。As shown in Figure 3, a computer-side program flow of a living assistance system and method based on SSVEP brain-controlled robotic arm grasping, the computer-side program is divided into two parts: the SSVEP decoding unit and the intention expression interface. Here, the SSVEP decoding unit is called the processor, and the intent expression interface is called the stimulator. The EEG signal is collected by the EEG cap and sent to the processor (SSVEP decoding unit) on the computer side. The processor and the stimulator communicate through TCP/IP to exchange data.
处理器(SSVEP解码单元)程序流程:Processor (SSVEP decoding unit) program flow:
1)初始化各脑电参数,脑电数据采集频率,所需要提取数据通道,数据处理所需时间。1) Initialize the EEG parameters, EEG data acquisition frequency, the required data channel extraction, and the time required for data processing.
2)初始化机械臂通讯接口,与机械臂建立通讯,方便之后发送控制信息。2) Initialize the communication interface of the manipulator, and establish communication with the manipulator, which is convenient for sending control information later.
3)建立TCP/IP通讯,以便为刺激器提供传输数据通道。3) Establish TCP/IP communication to provide a transmission data channel for the stimulator.
4)接收脑电帽脑电信号,进行滤波、FBCCA滤波器组典型相关分析,解码出使用者所注视区块频率。4) Receive the EEG signal of the EEG cap, perform filtering and FBCCA filter group canonical correlation analysis, and decode the frequency of the block that the user is watching.
5)发送处理所得数据至刺激器。5) Send the processed data to the stimulator.
6)发送处理所得数据至机械臂,机械臂抓取物品。6) Send the processed data to the robotic arm, and the robotic arm grabs the item.
刺激器(意图表达界面)程序流程:Stimulator (intent expression interface) program flow:
1)连接处理器程序所产生的TCP/IP,以便接收处理器所处理的数据1) Connect the TCP/IP generated by the processor program to receive the data processed by the processor
2)初始化刺激范式界面参数,界面大小、界面频率参数2) Initialize stimulation paradigm interface parameters, interface size, interface frequency parameters
3)绘制刺激范式界面,即绘制需要机械臂抓取物品的界面3) Draw the stimulus paradigm interface, that is, draw the interface that requires the robotic arm to grasp the object
4)刺激范式界面产生刺激信号4) The stimulation paradigm interface generates stimulation signals
5)接收处理器处理所得数据5) Receive the data processed by the processor
6)刺激界面显示所处理的结果6) The stimulus interface displays the processed results
处理器和刺激器二者协调配合,即刺激器产生意图表达界面,使用者通过意图表达界面的刺激范式,产生对应的脑电信号,脑电信号通过脑电帽采集传输至处理器,处理器中SSVEP解码单元解码分析脑电信号,最终将脑电信号发送至刺激器,意图表达界面显示处理结果,并发送控制信号给机械臂,最终机械臂抓取所需物品。The processor and the stimulator coordinate and cooperate, that is, the stimulator generates an intention expression interface, and the user generates the corresponding EEG signal through the stimulation paradigm of the intention expression interface. The EEG signal is collected and transmitted to the processor through the EEG cap. The middle SSVEP decoding unit decodes and analyzes the EEG signal, and finally sends the EEG signal to the stimulator. The intent expression interface displays the processing results, and sends control signals to the robotic arm, which finally grabs the desired item.
如图4所示,一种基于SSVEP脑控机械臂抓取的生活辅助系统与方法意图表达刺激器界面,界面包含12个区块,12个区块代表12条指令,苹果1、香蕉1、绿茶、橙子、可乐、苹果2、香蕉2、矿泉水、橘子、七喜、取消和确认。12个区块对应12个闪烁频率,9、9.25、9.5、9.75、10.25、10.5、10.75、11、11.25、11.5、11.75和12Hz。不同区块的频率不同,根据SSVEP稳态视觉诱发原理,使用者注视不同区块,即注视不同频率信号,大脑即产生不同的脑电信号,通过解码该脑电信号,即可知道使用者意图。As shown in Figure 4, a life assistance system and method based on SSVEP brain-controlled robotic arm grasping intends to express the stimulator interface. The interface includes 12 blocks, 12 blocks represent 12 instructions,
脑电解码采用FBCCA(Filter bank canonical correlation analysis,滤波器组典型相关分析)算法,此方法是对CCA(canonical correlation analysis,典型相关分析)算法的改进,在CCA的基础上加入了滤波器组,使得传统CCA算法中没有充分利用的脑电信号谐波成分加以利用,提高算法精度。算法解码步骤:EEG decoding adopts FBCCA (Filter bank canonical correlation analysis, filter bank canonical correlation analysis) algorithm, this method is an improvement of CCA (canonical correlation analysis, canonical correlation analysis) algorithm, on the basis of CCA, a filter bank is added, The harmonic components of the EEG signal that are not fully utilized in the traditional CCA algorithm are used to improve the accuracy of the algorithm. Algorithm decoding steps:
1)构造N个带通滤波器,所有的带通滤波器尽可能全覆盖所有的通带频率;1) Construct N bandpass filters, all bandpass filters cover all passband frequencies as fully as possible;
2)假设档次求解的是频率fk的信号与EEG信号X的最大相关系数。将EEG数据分别通入N个不同的带通滤波器,得到经过带通滤波器后的N组数据;2) It is assumed that the solution of the grade is the maximum correlation coefficient between the signal of frequency f k and the EEG signal X. Pass the EEG data into N different band-pass filters respectively to obtain N groups of data after passing through the band-pass filters;
3)利用CCA算法将每组数据与标准正余弦构成的参考信号求解最大相关系数,得到N个相关系数;3) using the CCA algorithm to solve the maximum correlation coefficient with the reference signal formed by each group of data and the standard sine and cosine to obtain N correlation coefficients;
4)根据公式w(n)=ae-bn+c求解谐波权重,将求得的结果代入公式4) Calculate the harmonic weight according to the formula w(n)=ae -bn +c, and substitute the obtained result into the formula
求解权重总和作为频率fk的信号与EEG信号X的最大相关系数ρk;Solve the sum of the weights as the maximum correlation coefficient ρ k of the signal of frequency f k and the EEG signal X;
5)将12个频率的参考信号分别代入步骤2)~4),在其中找到最大的相关系数,此时对应的频率为SSVEP信号的频率,即得到识别结果;5) Substitute the reference signals of 12 frequencies into steps 2) to 4) respectively, and find the largest correlation coefficient therein, and the corresponding frequency is the frequency of the SSVEP signal at this time, that is, the identification result is obtained;
如图5所示,一种基于SSVEP脑控机械臂抓取的生活辅助系统与方法意图表达界面反馈画面。若使用者想要抓取苹果2,则首先使用者在意图表达界面产生刺激闪烁时,注视界面上的第6个区块(苹果2),当界面出现反馈,界面上方会显示苹果2。意图表达界面再次出现刺激闪烁时,注视界面上的最后一个区块(确认),当界面出现反馈,界面上方会显示抓取,这样就完成了一次抓取指令输出。界面出现抓取后,电脑发送控制指令给机械臂,机械臂抓取对应物品。As shown in Figure 5, a life assistance system and method based on the grasping of the SSVEP brain-controlled robotic arm intends to express the interface feedback screen. If the user wants to grab the Apple 2, firstly, when the user produces a stimulus flickering on the intention expression interface, he gazes at the sixth block (Apple 2) on the interface, and when there is feedback on the interface, the Apple 2 will be displayed on the top of the interface. When the stimuli flicker again on the intent expression interface, look at the last block (confirm) on the interface. When feedback appears on the interface, grab will be displayed on the top of the interface, thus completing a grab command output. After the interface appears to grab, the computer sends control commands to the robotic arm, and the robotic arm grabs the corresponding item.
机械臂在抓取的过程中,为了抓取的效果更好,不在抓取的过程中碰到目标物体,设置了预抓取位姿。设置为抓取位姿Z轴负方向10cm处。因为设置了预抓取位姿,所以抓取的过程存在两段轨迹。In the process of grasping, in order to achieve a better grasping effect, the robotic arm does not touch the target object during the grasping process, and a pre-grabbing pose is set. Set it to 10cm in the negative direction of the Z axis of the grasping pose. Because the pre-grab pose is set, there are two trajectories in the grabbing process.
1)从起始位置到预抓取位姿1) From the starting position to the pre-grab pose
2)从预抓取位姿到抓取位姿2) From pre-grabbing pose to grasping pose
由于规划的每段路径都是从初速度0到末速度0,如果直接将两段轨迹合并那么运动过程中会出现频繁的停顿,因此涉及到轨迹重规划问题。Since each planned path is from the initial velocity 0 to the final velocity 0, if the two trajectories are directly merged, there will be frequent pauses during the movement, so the problem of trajectory re-planning is involved.
首先,分别规划这两次运动。在合并两次规划的轨迹点后调用IPTP时间最优算法的接口,重新规划这条新轨迹的速度、加速度、时间等信息,规划完成后就可以调用执行连续运动。First, plan the two movements separately. After merging the two planned trajectory points, the interface of the IPTP time optimization algorithm is called, and the speed, acceleration, time and other information of the new trajectory are re-planned. After the planning is completed, the continuous motion can be called.
综上所述,本发明上述实施例基于SSVEP脑控机械臂抓取的生活辅助系统与方法,本系统包括脑电帽1、电脑2、意图表达界面3、SSVEP解码单元4和机械臂5。本发明方法是:首先由专业人员帮助使用者佩戴好脑电帽1,其次打开电脑2端的意图表达界面3,在意图表达界面3出现刺激闪烁时,使用者根据自己的需求,注视意图表达界面3上的相应区块,脑电帽1采集使用者此时的脑电信号,传输给电脑2端的SSVEP解码单元4,通过预处理和FBCCA(Filter bank canonical correlation analysis,滤波器组典型相关分析)算法进行解码,解码结果转换成控制指令发送给机械臂5,机械臂5执行控制指令,依据规划路径抓取相应物品,从而达到辅助使用者日常生活的目的,特别是为老年人和残障人士体更更多生活上的便利和安全。To sum up, the above-mentioned embodiments of the present invention are based on the living assistance system and method for grasping by the SSVEP brain-controlled robotic arm. The method of the present invention is as follows: firstly, a professional helps the user to wear the
上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明一种基于SSVEP脑控机械臂抓取的生活辅助系统与方法的技术原理和发明构思,都属于本发明的保护范围。The embodiments of the present invention have been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned embodiments, and various changes can also be made according to the purpose of the invention and creation of the present invention. Changes, modifications, substitutions, combinations or simplifications should be equivalent substitution methods, as long as they meet the purpose of the invention, as long as they do not deviate from the invention of a living assistance system and method based on SSVEP brain-controlled robotic arm grasping. The technical principle and the inventive concept all belong to the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010310189.XA CN111571619A (en) | 2020-04-17 | 2020-04-17 | Life assisting system and method based on SSVEP brain-controlled mechanical arm grabbing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010310189.XA CN111571619A (en) | 2020-04-17 | 2020-04-17 | Life assisting system and method based on SSVEP brain-controlled mechanical arm grabbing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111571619A true CN111571619A (en) | 2020-08-25 |
Family
ID=72116796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010310189.XA Pending CN111571619A (en) | 2020-04-17 | 2020-04-17 | Life assisting system and method based on SSVEP brain-controlled mechanical arm grabbing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111571619A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113274032A (en) * | 2021-04-29 | 2021-08-20 | 上海大学 | Cerebral apoplexy rehabilitation training system and method based on SSVEP + MI brain-computer interface |
CN113359991A (en) * | 2021-06-10 | 2021-09-07 | 西安交通大学 | Intelligent brain-controlled mechanical arm auxiliary feeding system and method for disabled people |
CN114146283A (en) * | 2021-08-26 | 2022-03-08 | 上海大学 | An attention training system and method based on target detection and SSVEP |
CN114209343A (en) * | 2021-04-29 | 2022-03-22 | 上海大学 | A portable attention training system and method based on AR and SSVEP |
CN114489334A (en) * | 2022-01-21 | 2022-05-13 | 上海大学 | An asynchronous brain-computer interface system and asynchronous brain-computer interaction method based on SSVEP |
CN117718962A (en) * | 2023-12-21 | 2024-03-19 | 太原理工大学 | Multi-task-oriented brain-control composite robot control system and method |
CN118163115A (en) * | 2024-05-09 | 2024-06-11 | 安徽大学 | Robotic hand control method based on fusion of SSVEP-MI and facial key point detection |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106671084A (en) * | 2016-12-20 | 2017-05-17 | 华南理工大学 | Mechanical arm self-directed auxiliary system and method based on brain-computer interface |
CN107037889A (en) * | 2017-03-06 | 2017-08-11 | 南昌大学 | The natural written character input method and system of a kind of view-based access control model brain-computer interface |
CN109366508A (en) * | 2018-09-25 | 2019-02-22 | 中国医学科学院生物医学工程研究所 | A kind of advanced machine arm control system and its implementation based on BCI |
CN109992112A (en) * | 2019-04-02 | 2019-07-09 | 上海大学 | Intention expression system and method for critically ill patients based on SSVEP |
CN110850795A (en) * | 2019-12-18 | 2020-02-28 | 北京航空航天大学 | An instrument control system based on SSVEP brain-computer interface |
-
2020
- 2020-04-17 CN CN202010310189.XA patent/CN111571619A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106671084A (en) * | 2016-12-20 | 2017-05-17 | 华南理工大学 | Mechanical arm self-directed auxiliary system and method based on brain-computer interface |
WO2018113392A1 (en) * | 2016-12-20 | 2018-06-28 | 华南理工大学 | Brain-computer interface-based robotic arm self-assisting system and method |
CN107037889A (en) * | 2017-03-06 | 2017-08-11 | 南昌大学 | The natural written character input method and system of a kind of view-based access control model brain-computer interface |
CN109366508A (en) * | 2018-09-25 | 2019-02-22 | 中国医学科学院生物医学工程研究所 | A kind of advanced machine arm control system and its implementation based on BCI |
CN109992112A (en) * | 2019-04-02 | 2019-07-09 | 上海大学 | Intention expression system and method for critically ill patients based on SSVEP |
CN110850795A (en) * | 2019-12-18 | 2020-02-28 | 北京航空航天大学 | An instrument control system based on SSVEP brain-computer interface |
Non-Patent Citations (1)
Title |
---|
陈小刚等: "稳态视觉诱发电位脑-机接口控制机械臂系统的设计与实现", 《生物医学工程与临床》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113274032A (en) * | 2021-04-29 | 2021-08-20 | 上海大学 | Cerebral apoplexy rehabilitation training system and method based on SSVEP + MI brain-computer interface |
CN114209343A (en) * | 2021-04-29 | 2022-03-22 | 上海大学 | A portable attention training system and method based on AR and SSVEP |
CN113359991A (en) * | 2021-06-10 | 2021-09-07 | 西安交通大学 | Intelligent brain-controlled mechanical arm auxiliary feeding system and method for disabled people |
CN113359991B (en) * | 2021-06-10 | 2023-08-04 | 西安交通大学 | Intelligent brain-controlled mechanical arm auxiliary feeding system and method for disabled people |
CN114146283A (en) * | 2021-08-26 | 2022-03-08 | 上海大学 | An attention training system and method based on target detection and SSVEP |
CN114489334A (en) * | 2022-01-21 | 2022-05-13 | 上海大学 | An asynchronous brain-computer interface system and asynchronous brain-computer interaction method based on SSVEP |
CN117718962A (en) * | 2023-12-21 | 2024-03-19 | 太原理工大学 | Multi-task-oriented brain-control composite robot control system and method |
CN118163115A (en) * | 2024-05-09 | 2024-06-11 | 安徽大学 | Robotic hand control method based on fusion of SSVEP-MI and facial key point detection |
CN118163115B (en) * | 2024-05-09 | 2024-08-02 | 安徽大学 | Robotic hand control method based on fusion of SSVEP-MI and facial key point detection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111571619A (en) | Life assisting system and method based on SSVEP brain-controlled mechanical arm grabbing | |
Dipietro et al. | Customized interactive robotic treatment for stroke: EMG-triggered therapy | |
CN113274032A (en) | Cerebral apoplexy rehabilitation training system and method based on SSVEP + MI brain-computer interface | |
CN109366508A (en) | A kind of advanced machine arm control system and its implementation based on BCI | |
CN111150935B (en) | A myoelectric neck massage device and its control method | |
CN110400619B (en) | A hand function rehabilitation training method based on surface electromyography | |
CN107315478A (en) | A kind of Mental imagery upper limbs intelligent rehabilitation robot system and its training method | |
CN104997581B (en) | Artificial hand control method and apparatus for driving EEG signals on the basis of facial expressions | |
CN107957783A (en) | A kind of Multimode Intelligent control system and method based on brain electricity with myoelectric information | |
Wang et al. | Brain-controlled wheelchair review: From wet electrode to dry electrode, from single modal to hybrid modal, from synchronous to asynchronous | |
CN113805694A (en) | A kind of auxiliary grasping system and method based on brain-computer interface and computer vision | |
CN110354387B (en) | Multi-trigger intelligent electric stimulation hand trainer and method | |
CN101897640A (en) | A new type of intelligent wheelchair system based on motor imagery EEG control | |
CN113180992A (en) | Upper limb rehabilitation exoskeleton closed-loop control system and method based on electroencephalogram interaction and myoelectricity detection | |
CN115617180B (en) | Smart hand motion decoding method based on invasive brain-computer interface | |
CN113040791A (en) | Vibration trigger equipment, finger lifting device and touch finger motion rehabilitation system | |
CN107066091A (en) | A kind of brain-computer interface P300 signal characteristic body-sensing inducing devices and its application process | |
CN113359991B (en) | Intelligent brain-controlled mechanical arm auxiliary feeding system and method for disabled people | |
Jameel et al. | Electroencephalograph-based wheelchair controlling system for the people with motor disability using advanced brainwear | |
Champaty et al. | Development of wireless EMG control system for rehabilitation devices | |
CN110496308B (en) | Functional electric stimulation system capable of providing customized rehabilitation training and control method | |
Ferrez et al. | EEG-based brain-computer interaction: Improved accuracy by automatic single-trial error detection | |
Li et al. | Preliminary study of online real-time control system for lower extremity exoskeletons based on EEG and sEMG fusion | |
Ruhunage et al. | Eeg-ssvep based brain machine interface for controlling of a wheelchair and home appliances with bluetooth localization system | |
Abdel-Samei et al. | Control of robot arm based on EOG signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |