CN111569875A - Copper/porous carbon nanorod material, preparation method and application - Google Patents
Copper/porous carbon nanorod material, preparation method and application Download PDFInfo
- Publication number
- CN111569875A CN111569875A CN202010296293.8A CN202010296293A CN111569875A CN 111569875 A CN111569875 A CN 111569875A CN 202010296293 A CN202010296293 A CN 202010296293A CN 111569875 A CN111569875 A CN 111569875A
- Authority
- CN
- China
- Prior art keywords
- copper
- porous carbon
- carbon nanorod
- aqueous solution
- nanorod material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 71
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 71
- 239000010949 copper Substances 0.000 title claims abstract description 71
- 239000002073 nanorod Substances 0.000 title claims abstract description 60
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 55
- 239000000463 material Substances 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title abstract description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 39
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000007864 aqueous solution Substances 0.000 claims abstract description 32
- 239000002243 precursor Substances 0.000 claims abstract description 23
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims abstract description 21
- 239000002105 nanoparticle Substances 0.000 claims abstract description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 16
- -1 amine compounds Chemical class 0.000 claims abstract description 14
- 238000003756 stirring Methods 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 230000015556 catabolic process Effects 0.000 claims abstract description 8
- 238000006731 degradation reaction Methods 0.000 claims abstract description 8
- 150000001879 copper Chemical class 0.000 claims abstract description 7
- 239000012298 atmosphere Substances 0.000 claims abstract description 6
- 230000001681 protective effect Effects 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract description 3
- 239000013148 Cu-BTC MOF Substances 0.000 claims abstract 2
- NOSIKKRVQUQXEJ-UHFFFAOYSA-H tricopper;benzene-1,3,5-tricarboxylate Chemical compound [Cu+2].[Cu+2].[Cu+2].[O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1.[O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1 NOSIKKRVQUQXEJ-UHFFFAOYSA-H 0.000 claims abstract 2
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 claims description 11
- 238000001354 calcination Methods 0.000 claims description 10
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 claims description 8
- TYMLOMAKGOJONV-UHFFFAOYSA-N 4-nitroaniline Chemical compound NC1=CC=C([N+]([O-])=O)C=C1 TYMLOMAKGOJONV-UHFFFAOYSA-N 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 7
- 239000003054 catalyst Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 4
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- QPGJEXWQNJCCSN-UHFFFAOYSA-K [Cu+3].[O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1 Chemical compound [Cu+3].[O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1 QPGJEXWQNJCCSN-UHFFFAOYSA-K 0.000 claims 1
- 239000012621 metal-organic framework Substances 0.000 abstract description 7
- 230000003197 catalytic effect Effects 0.000 abstract description 5
- 239000003960 organic solvent Substances 0.000 abstract description 4
- 239000002351 wastewater Substances 0.000 abstract description 3
- DHOBEDGRIOTEBA-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid;copper Chemical compound [Cu].OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 DHOBEDGRIOTEBA-UHFFFAOYSA-N 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 239000002131 composite material Substances 0.000 description 10
- 239000008367 deionised water Substances 0.000 description 9
- 229910021641 deionized water Inorganic materials 0.000 description 9
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 4
- AHADSRNLHOHMQK-UHFFFAOYSA-N methylidenecopper Chemical compound [Cu].[C] AHADSRNLHOHMQK-UHFFFAOYSA-N 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000013084 copper-based metal-organic framework Substances 0.000 description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 description 3
- 239000012279 sodium borohydride Substances 0.000 description 3
- 150000001721 carbon Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 2
- 239000013110 organic ligand Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明提供了一种铜/多孔碳纳米棒材料、制备方法和应用,所述铜/多孔碳纳米棒材料由多孔碳纳米棒包覆的铜纳米颗粒组成。首先将均苯三甲酸和氢氧化钠或氢氧化钾溶解于水溶液中,加入可溶性金属铜盐的水溶液,常温下搅拌制得均苯三甲酸合铜(Cu‑BTC)前驱体;再将Cu‑BTC前驱体在保护气氛下进行煅烧,冷却后得到所述的铜/多孔碳纳米棒材料。摒弃现有MOF制备工艺中所需的有机溶剂、高温、高压等手段,采用常温水溶液法制备,制备工艺简易且环保。所制备的铜/多孔碳纳米棒材料对废水中的酚类、胺类化合物具有优异的催化降解效果。
The invention provides a copper/porous carbon nanorod material, a preparation method and an application, wherein the copper/porous carbon nanorod material is composed of copper nanoparticles coated by porous carbon nanorods. First, dissolving trimesic acid and sodium hydroxide or potassium hydroxide in an aqueous solution, adding an aqueous solution of a soluble metal copper salt, and stirring at room temperature to prepare a copper trimesic acid (Cu-BTC) precursor; The BTC precursor is calcined in a protective atmosphere, and the copper/porous carbon nanorod material is obtained after cooling. The organic solvent, high temperature, high pressure and other means required in the existing MOF preparation process are abandoned, and the normal temperature aqueous solution method is used for preparation, and the preparation process is simple and environmentally friendly. The prepared copper/porous carbon nanorod material has excellent catalytic degradation effect on phenolic and amine compounds in wastewater.
Description
技术领域technical field
本发明属于水处理材料的制备技术领域,涉及一种铜/多孔碳纳米棒复合材料、制备方法和应用。The invention belongs to the technical field of preparation of water treatment materials, and relates to a copper/porous carbon nanorod composite material, a preparation method and application.
背景技术Background technique
含酚类化合物和胺类化合物的废水是当今世界上危害大、污染范围广的工业废水之一。这些废水若不经过处理,直接排放、灌溉农田则可污染大气、水、土壤和食品。因此酚类、胺类化合物受到了越来越多的关注。当前,已有很多种方法被用于酚类、胺类化合物,如吸附法,催化法,膜分离法,萃取法,沉淀法,活性污泥法和生物膜法等等。其中,硼氢化钠辅助的催化还原法因其简单快速的优点而被认为是一种有发展前景的方法。但是一些传统的催化剂材料,比如Au、Ag等贵金属,受到价格、催化性能等限制,无法得到实际应用。因此,我们提出制备一种铜基金属有机骨架材料衍生的铜/碳纳米棒材料用于酚类、胺类化合物降解。Wastewater containing phenolic compounds and amine compounds is one of the most harmful and polluting industrial wastewaters in the world today. If these wastewaters are not treated, they can pollute the atmosphere, water, soil and food when they are directly discharged and irrigated to farmland. Therefore, phenolic and amine compounds have received more and more attention. At present, many methods have been used for phenolic and amine compounds, such as adsorption, catalysis, membrane separation, extraction, precipitation, activated sludge and biofilm, etc. Among them, the sodium borohydride-assisted catalytic reduction method is considered to be a promising method due to its simplicity and rapidity. However, some traditional catalyst materials, such as noble metals such as Au and Ag, cannot be practically applied due to the limitations of price and catalytic performance. Therefore, we propose to prepare a copper-based metal-organic framework-derived copper/carbon nanorod material for the degradation of phenolic and amine compounds.
金属有机骨架(MOF)是由无机金属中心(金属离子或者金属簇)与有机配体通过自我组装相互连接,形成的一类具有周期性网状结构的晶体多孔材料。MOF材料由于其结构稳定,存在大量有机配体,而且金属离子均匀分布,许多研究工作者将其作为模板来合成不同结构和组分的衍生材料,一般包括碳材料,金属化合物,金属化合物碳复合材料。现在MOF衍生材料已经被广泛应用于能量存储和转化的领域,例如锂离子电池、锂硫电池、超级电容器和电催化,但是在废水处理的领域中,尤其在去除水中酚类化合物的应用方面的报道还较少。如Zhao等人和Niu等人利用溶剂热法制备的Cu-MOF作为前躯体,煅烧后获得铜基碳复合材料。研究发现这两种铜基碳复合材料作为催化剂,能够催化4-硝基苯酚(4-NP)还原为4-氨基苯酚(4-AP)(X.Zhao,Y.Tan,F.Wu,H.Niu,Z.Tang,Y.Cai,J.P.Giesy,Sci.TotalEnviron,2016,571,380-387;H.Niu,S.Liu,Y.Cai,F.Wu,X.Zhao,Micropo.Mesopo.Mater.,2016,2019,48-53)。然而,这些已报道的Cu-MOF前躯体的制备多需要采用有机溶剂、高温、高压等手段,对环境有害,且不利于工业上大体积生产。为了解决这些问题,我们采用价廉易得的均苯三甲酸配体,在水相中通过常温沉淀法,与金属铜盐反应获得均苯三甲酸合铜前躯体。Metal-organic frameworks (MOFs) are a class of crystalline porous materials with periodic network structure formed by the self-assembly of inorganic metal centers (metal ions or metal clusters) and organic ligands. Due to the stable structure of MOF materials, the existence of a large number of organic ligands, and the uniform distribution of metal ions, many researchers use it as a template to synthesize derivative materials with different structures and components, generally including carbon materials, metal compounds, metal compound carbon composites Material. MOF-derived materials have now been widely used in the fields of energy storage and conversion, such as lithium-ion batteries, lithium-sulfur batteries, supercapacitors and electrocatalysis, but in the field of wastewater treatment, especially in the removal of phenolic compounds from water. There are fewer reports. For example, Zhao et al. and Niu et al. used Cu-MOF prepared by solvothermal method as a precursor, and obtained copper-based carbon composites after calcination. It was found that these two copper-based carbon composites can be used as catalysts to catalyze the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) (X.Zhao, Y.Tan, F.Wu,H .Niu,Z.Tang,Y.Cai,J.P.Giesy,Sci.TotalEnviron,2016,571,380-387; H.Niu,S.Liu,Y.Cai,F.Wu,X.Zhao,Micropo.Mesopo.Mater. , 2016, 2019, 48-53). However, the preparation of these reported Cu-MOF precursors mostly requires the use of organic solvents, high temperature, high pressure and other means, which are harmful to the environment and unfavorable for industrial mass production. In order to solve these problems, we use cheap and easily available trimesic acid ligands, and react with metallic copper salts in aqueous phase to obtain copper trimesic acid precursors by precipitation at room temperature.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是克服现有大部分的MOF制备工艺中所需要用到的有机溶剂、高温、高压等手段,提出一种简便、高效的、新型的铜/多孔碳纳米棒材料及其制备方法,用于酚类、胺类化合物的降解。The technical problem to be solved by the present invention is to overcome the organic solvents, high temperature, high pressure and other means required in most of the existing MOF preparation processes, and to propose a simple, efficient and novel copper/porous carbon nanorod material and The preparation method thereof is used for the degradation of phenolic and amine compounds.
为了实现上述目的,本发明提出的技术方案为:In order to achieve the above object, the technical scheme proposed by the present invention is:
一种铜/多孔碳纳米棒材料,其特征在于,包括铜纳米颗粒和多孔碳纳米棒,铜纳米颗粒分布于多孔碳纳米棒基质中,所述碳纳米棒的平均长度是200-1500nm,平均直径是50-200nm,铜纳米颗粒的平均尺寸是20-80nm,该铜/多孔碳纳米棒材料的比表面积是50-200m2/g。A copper/porous carbon nanorod material is characterized in that it comprises copper nanoparticles and porous carbon nanorods, the copper nanoparticles are distributed in the porous carbon nanorod matrix, and the average length of the carbon nanorods is 200-1500nm, and the average length is 200-1500 nm. The diameter is 50-200 nm, the average size of the copper nanoparticles is 20-80 nm, and the specific surface area of the copper/porous carbon nanorod material is 50-200 m 2 /g.
所述铜/多孔碳纳米棒材料的制备方法,包括以下步骤:The preparation method of the copper/porous carbon nanorod material comprises the following steps:
(1)将均苯三甲酸(H3BTC)和氢氧化钠或氢氧化钾溶解于水溶液中,加入可溶性金属铜盐的水溶液,常温下进行混合搅拌,然后经离心洗涤、干燥后得到均苯三甲酸合铜(Cu-BTC)前驱体;(1) dissolving trimesic acid (H 3 BTC) and sodium hydroxide or potassium hydroxide in an aqueous solution, adding an aqueous solution of a soluble metal copper salt, mixing and stirring at room temperature, and then centrifugal washing and drying to obtain isobenzene Copper triformate (Cu-BTC) precursor;
(2)将步骤(1)得到的Cu-BTC前驱体在保护气氛下进行煅烧,冷却后得到所述的铜/多孔碳纳米棒材料。(2) calcining the Cu-BTC precursor obtained in step (1) under a protective atmosphere, and cooling to obtain the copper/porous carbon nanorod material.
进一步地,在所述步骤(1)中,所述均苯三甲酸和氢氧化钠或氢氧化钾的物质的量比为1:3;所述均苯三甲酸的水溶液浓度为0.01-0.1mol/L。Further, in the step (1), the material ratio of the trimesic acid and sodium hydroxide or potassium hydroxide is 1:3; the aqueous solution concentration of the trimesic acid is 0.01-0.1mol /L.
进一步地,在所述步骤(1)中,所述可溶性金属铜盐为硫酸铜、醋酸铜、硝酸铜、氯化铜中的一种或几种。Further, in the step (1), the soluble metal copper salt is one or more of copper sulfate, copper acetate, copper nitrate, and copper chloride.
进一步地,在所述步骤(1)中,所述金属铜盐水溶液浓度为0.01-0.1mol/L。Further, in the step (1), the concentration of the metal copper salt aqueous solution is 0.01-0.1 mol/L.
进一步地,在所述步骤(1)中,所述混合搅拌时间是5-120min。所述干燥条件为70℃,12h。Further, in the step (1), the mixing time is 5-120min. The drying conditions were 70°C, 12h.
进一步地,在所述步骤(2)中,所述保护气氛为氮气或者氩气;所述煅烧的升温速率为1~10℃/min,煅烧时间为1~24小时,煅烧温度为500~1000℃。Further, in the step (2), the protective atmosphere is nitrogen or argon; the heating rate of the calcination is 1-10°C/min, the calcination time is 1-24 hours, and the calcination temperature is 500-1000°C °C.
所述铜/多孔碳纳米棒材料的应用,用于酚类或胺类化合物降解的催化剂。The application of the copper/porous carbon nanorod material is used as a catalyst for the degradation of phenolic or amine compounds.
进一步地,所述酚类或胺类化合物为对硝基苯酚、邻硝基苯酚或对硝基苯胺。Further, the phenolic or amine compound is p-nitrophenol, o-nitrophenol or p-nitroaniline.
与已有技术相比,本发明的优点在于:Compared with the prior art, the advantages of the present invention are:
(1)利用较为廉价的配体和金属盐作为原料,价格便宜。(1) Using relatively cheap ligands and metal salts as raw materials, the price is cheap.
(2)摒弃大部分的MOF制备工艺中所需要用到的有机溶剂、高温、高压等手段,采用常温水溶液法制备,制备工艺简易且环保。(2) Abandoning most of the organic solvents, high temperature, high pressure and other means required in the MOF preparation process, and adopting the normal temperature aqueous solution method for preparation, the preparation process is simple and environmentally friendly.
(3)可实现大批量制备多孔的铜碳纳米棒,具有很高的应用前景。(3) Porous copper-carbon nanorods can be prepared in large quantities, which has a high application prospect.
(4)所制备的铜碳纳米棒材料因其独有的形貌和结构特征,对废水处理中难以降解的酚类、胺类化合物具有优异的催化降解性能。(4) The prepared copper-carbon nanorods have excellent catalytic degradation performance for phenolic and amine compounds that are difficult to degrade in wastewater treatment due to their unique morphology and structural characteristics.
附图说明Description of drawings
图1中(a)为实施例1的Cu-BTC前驱体的SEM图;(b)为实施例1制得的Cu-BTC前驱体的XRD图。In FIG. 1 (a) is the SEM image of the Cu-BTC precursor of Example 1; (b) is the XRD pattern of the Cu-BTC precursor prepared in Example 1.
图2为实施例1制得的铜/碳纳米棒的SEM图。FIG. 2 is an SEM image of the copper/carbon nanorods prepared in Example 1. FIG.
图3为实施例1制得的铜/碳纳米棒的TEM图谱。FIG. 3 is the TEM spectrum of the copper/carbon nanorods prepared in Example 1. FIG.
图4为实施例1制得的铜/碳纳米棒的XRD图。FIG. 4 is the XRD pattern of the copper/carbon nanorods prepared in Example 1. FIG.
图5为实施例1制得的铜/碳纳米棒的氮气吸附-脱附等温线。5 is the nitrogen adsorption-desorption isotherm of the copper/carbon nanorods prepared in Example 1.
图6中(a)、(b)、(c)分别为实施例1制得的铜/碳纳米棒催化降解4-NP、O-NP和4-NA的UV-vis光谱。(a), (b) and (c) in Figure 6 are the UV-vis spectra of the copper/carbon nanorods prepared in Example 1 for the catalytic degradation of 4-NP, O-NP and 4-NA, respectively.
具体实施方式Detailed ways
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。The present invention will be further described below with reference to the accompanying drawings and specific embodiments, but the protection scope of the present invention is not limited thereto.
实施例1:Example 1:
本实施例的铜/碳纳米棒材料的制备过程如下:The preparation process of the copper/carbon nanorod material of the present embodiment is as follows:
(1)将2mmol均苯三甲酸和6mmol氢氧化钠溶解于25mL水溶液中,在室温下搅拌至完全溶解;将3mmol乙酸铜溶于25mL去离子水中,并在室温下持续搅拌一段时间直至完全溶解,获得乙酸铜水溶液;将均苯三甲酸和氢氧化钠的水溶液与乙酸铜水溶液混合,在常温搅拌下5min;离心处理,并用去离子水或乙醇洗涤3次;在鼓风干燥箱中60℃烘干12h,即可获得Cu-BTC前驱体;(1) dissolve 2mmol trimesic acid and 6mmol sodium hydroxide in 25mL aqueous solution, stir at room temperature until completely dissolved; dissolve 3mmol copper acetate in 25mL deionized water, and continue stirring at room temperature for a period of time until completely dissolved , to obtain copper acetate aqueous solution; mix the aqueous solution of trimesic acid and sodium hydroxide with copper acetate aqueous solution, stir at room temperature for 5 min; centrifuge, and wash 3 times with deionized water or ethanol; After drying for 12h, the Cu-BTC precursor can be obtained;
(2)将步骤(1)获得的Cu-BTC前驱体在氮气气氛的管式炉中,以5℃/min升温至800℃煅烧2小时,得到铜/碳纳米棒材料。(2) The Cu-BTC precursor obtained in step (1) was heated to 800°C for 2 hours at a temperature of 5°C/min in a tube furnace in a nitrogen atmosphere to obtain a copper/carbon nanorod material.
所制备的铜/碳纳米棒材料中,铜纳米颗粒分布于多孔碳纳米棒基质中,碳纳米棒的平均长度是500nm,平均直径是100nm,铜纳米颗粒的平均尺寸是26nm,该铜/多孔碳纳米棒材料的比表面积是103m2/g。In the prepared copper/carbon nanorod material, the copper nanoparticles are distributed in the porous carbon nanorod matrix, the average length of the carbon nanorods is 500 nm, the average diameter is 100 nm, and the average size of the copper nanoparticles is 26 nm. The specific surface area of the carbon nanorod material was 103 m 2 /g.
图1为本实施例制备得到的Cu-BTC前驱体的SEM图和XRD图谱,从图1中可以看出获得了Cu-BTC纳米棒。图2、图3、图4、图5为本实施例制备得到的铜/碳纳米棒复合材料的SEM图、TEM图、XRD图和氮气吸附-脱附等温线,从测试结果可以看出,煅烧后获得了铜/碳纳米棒复合材料,并且铜碳复合材料保持了Cu-BTC前驱体的纳米棒形貌,铜纳米颗粒分散在碳纳米棒基质中。FIG. 1 is an SEM image and an XRD pattern of the Cu-BTC precursor prepared in this example, and it can be seen from FIG. 1 that Cu-BTC nanorods are obtained. Fig. 2, Fig. 3, Fig. 4, Fig. 5 are the SEM images, TEM images, XRD images and nitrogen adsorption-desorption isotherms of the copper/carbon nanorod composites prepared in the present embodiment. It can be seen from the test results that, After calcination, copper/carbon nanorod composites were obtained, and the copper-carbon composites maintained the nanorod morphology of the Cu-BTC precursor, and the copper nanoparticles were dispersed in the carbon nanorod matrix.
将本实施例制得的铜/碳纳米棒材料的催化降解对硝基苯酚,邻硝基苯酚及对硝基苯胺的方法,其步骤如下:The method for the catalytic degradation of p-nitrophenol, o-nitrophenol and p-nitroaniline by the copper/carbon nanorod material obtained in the present embodiment, the steps are as follows:
(1)将对硝基苯酚、邻硝基苯酚及对硝基苯胺分别溶于去离子水中,分别配制0.01mol/L的对硝基苯酚、邻硝基苯酚及对硝基苯胺水溶液;将硼氢化钠溶于水中,配制0.1mol/L的硼氢化钠水溶液;将铜/碳纳米棒复合材料超声分散于水中,配置2mg/mL的铜/碳纳米棒材料水分散液。(1) p-nitrophenol, o-nitrophenol and p-nitroaniline were dissolved in deionized water respectively, and 0.01mol/L aqueous solutions of p-nitrophenol, o-nitrophenol and p-nitroaniline were prepared respectively; Dissolve sodium hydride in water to prepare a 0.1 mol/L sodium borohydride aqueous solution; ultrasonically disperse the copper/carbon nanorod composite material in water to prepare a 2 mg/mL copper/carbon nanorod material aqueous dispersion.
(2)向具有1.0cm光径和4mL体积的标准石英比色皿中依次加入2.5mL硼氢化钠水溶液和25μL对硝基苯酚、邻硝基苯酚或对硝基苯胺水溶液,然后加入10μL铜/碳纳米棒材料水分散液。加入铜/碳纳米棒材料后,间隔一段时间测量紫外可见吸收光谱;(2) To a standard quartz cuvette with a 1.0 cm optical path and a volume of 4 mL, 2.5 mL of sodium borohydride aqueous solution and 25 μL of p-nitrophenol, o-nitrophenol or p-nitroaniline aqueous solution were sequentially added, and then 10 μL of copper/ Aqueous dispersion of carbon nanorod material. After adding the copper/carbon nanorod material, measure the UV-Vis absorption spectrum at intervals;
图6为本实施例制备得到的铜/碳纳米棒材料作为催化剂降解对硝基苯酚,邻硝基苯酚及对硝基苯胺的紫外可见吸收光谱曲线。从图6中可以看出,加入本实施例制备的铜碳纳米棒催化剂后,对硝基苯酚,邻硝基苯酚及对硝基苯胺能够被完全降解。FIG. 6 is an ultraviolet-visible absorption spectrum curve of the copper/carbon nanorod material prepared in this example as a catalyst to degrade p-nitrophenol, o-nitrophenol and p-nitroaniline. As can be seen from Figure 6, after adding the copper-carbon nanorod catalyst prepared in this example, p-nitrophenol, o-nitrophenol and p-nitroaniline can be completely degraded.
实施例2:Example 2:
本实施例的铜/碳纳米棒材料的制备过程如下:The preparation process of the copper/carbon nanorod material of the present embodiment is as follows:
(1)将2mmol均苯三甲酸和6mmol氢氧化钠溶解于25mL水溶液中,在室温下搅拌至完全溶解;将3mmol硫酸铜溶于去25mL离子水中,并在室温下持续搅拌一段时间直至完全溶解,将均苯三甲酸和氢氧化钠水溶液与硫酸铜水溶液混合,在常温搅拌下1.5小时;离心处理,并用去离子水或乙醇洗涤3次;在鼓风干燥箱中70℃烘干12h,即可获得Cu-BTC前驱体;(1) 2mmol trimesic acid and 6mmol sodium hydroxide were dissolved in 25mL aqueous solution, stirred at room temperature until completely dissolved; 3mmol copper sulfate was dissolved in 25mL deionized water, and continued stirring at room temperature for a period of time until completely dissolved , mix trimesic acid and sodium hydroxide aqueous solution with copper sulfate aqueous solution, stir at room temperature for 1.5 hours; centrifuge, and wash 3 times with deionized water or ethanol; Cu-BTC precursor can be obtained;
(2)将获得的Cu-BTC前驱体在氮气气氛的管式炉中以10℃/min升温至800℃煅烧1.5小时,得到铜/碳纳米棒材料。(2) The obtained Cu-BTC precursor was calcined in a tube furnace in nitrogen atmosphere at a temperature of 10°C/min to 800°C for 1.5 hours to obtain a copper/carbon nanorod material.
本实施例制备的铜/碳纳米棒材料中,铜纳米颗粒分布于多孔碳纳米棒基质中,碳纳米棒的平均长度是1000nm,平均直径是80nm,铜纳米颗粒的平均尺寸是20nm,该铜/多孔碳纳米棒材料的比表面积是65m2/g。In the copper/carbon nanorod material prepared in this example, the copper nanoparticles are distributed in the porous carbon nanorod matrix, the carbon nanorods have an average length of 1000 nm, an average diameter of 80 nm, and an average size of copper nanoparticles The specific surface area of the porous carbon nanorod material was 65 m 2 /g.
实施例3:Example 3:
本实施例的铜/碳纳米棒复合材料的制备过程如下:The preparation process of the copper/carbon nanorod composite material of the present embodiment is as follows:
(1)将2mmol均苯三甲酸和6mmol氢氧化钾溶解于100mL水溶液中,在室温下搅拌至完全溶解;将3mmol硝酸铜溶于去50mL离子水中,并在室温下持续搅拌一段时间直至完全溶解;将均苯三甲酸和氢氧化钠水溶液与硝酸铜水溶液混合,在常温搅拌下1.5小时;离心处理,并用去离子水或乙醇洗涤3次;在鼓风干燥箱中70℃烘干12h,即可获得Cu-BTC前驱体;(1) 2mmol trimesic acid and 6mmol potassium hydroxide were dissolved in 100mL aqueous solution, and stirred at room temperature until completely dissolved; 3mmol copper nitrate was dissolved in 50mL ionized water, and continued stirring at room temperature for a period of time until completely dissolved ; Mix trimesic acid and sodium hydroxide aqueous solution with copper nitrate aqueous solution, stir at room temperature for 1.5 hours; centrifuge, and wash with deionized water or
(2)将获得的Cu-BTC前驱体在氮气气氛的管式炉中以8℃/min升温至700℃煅烧3小时,得到铜/碳纳米棒材料。(2) The obtained Cu-BTC precursor was heated up to 700°C for 3 hours in a tube furnace in nitrogen atmosphere at 8°C/min to obtain a copper/carbon nanorod material.
本实施例制备的铜/碳纳米棒复合材料中,铜纳米颗粒分布于多孔碳纳米棒基质中,碳纳米棒的平均长度是800nm,平均直径是70nm,铜纳米颗粒的平均尺寸是40nm,该铜/多孔碳纳米棒材料的比表面积是74m2/g。In the copper/carbon nanorod composite material prepared in this example, copper nanoparticles are distributed in the porous carbon nanorod matrix, the average length of the carbon nanorods is 800 nm, the average diameter is 70 nm, and the average size of the copper nanoparticles is 40 nm. The specific surface area of the copper/porous carbon nanorod material was 74 m 2 /g.
实施例4:Example 4:
本实施例的铜/碳纳米棒复合材料的制备过程如下:The preparation process of the copper/carbon nanorod composite material of the present embodiment is as follows:
(1)将4mmol均苯三甲酸和12mmol氢氧化钾溶解于50mL水溶液中,在室温下搅拌至完全溶解;将4mmol氯化铜溶于去50mL离子水中,并在室温下持续搅拌一段时间直至完全溶解;将均苯三甲酸和氢氧化钠水溶液与氯化铜水溶液混合,在常温搅拌下2小时;离心处理,并用去离子水或乙醇洗涤3次;在鼓风干燥箱中70℃烘干12h,即可获得Cu-BTC前驱体;(1) 4mmol trimesic acid and 12mmol potassium hydroxide were dissolved in 50mL aqueous solution, stirred at room temperature until completely dissolved; 4mmol copper chloride was dissolved in 50mL deionized water, and at room temperature, stirring was continued for a period of time until completely Dissolve; mix trimesic acid and sodium hydroxide aqueous solution with copper chloride aqueous solution, stir at room temperature for 2 hours; centrifuge, and wash 3 times with deionized water or ethanol; dry at 70°C for 12 hours in a blast drying oven , the Cu-BTC precursor can be obtained;
(2)将获得的Cu-BTC前驱体在氮气气氛的管式炉中以4℃/min升温至1000℃煅烧1小时,得到铜/碳纳米棒材料。(2) The obtained Cu-BTC precursor was calcined in a tube furnace in nitrogen atmosphere at 4°C/min to 1000°C for 1 hour to obtain a copper/carbon nanorod material.
本实施例制备的铜/碳纳米棒复合材料中,铜纳米颗粒分布于多孔碳纳米棒基质中,碳纳米棒的平均长度是1200nm,平均直径是80nm,铜纳米颗粒的平均尺寸是60nm,该铜/多孔碳纳米棒材料的比表面积是90m2/g。In the copper/carbon nanorod composite material prepared in this example, copper nanoparticles are distributed in the porous carbon nanorod matrix, the average length of the carbon nanorods is 1200 nm, the average diameter is 80 nm, and the average size of the copper nanoparticles is 60 nm. The specific surface area of the copper/porous carbon nanorod material was 90 m 2 /g.
实施例5:Example 5:
本实施例的铜/碳纳米棒复合材料的制备过程如下:The preparation process of the copper/carbon nanorod composite material of the present embodiment is as follows:
(1)将4mmol均苯三甲酸和6mmol氢氧化钠溶解于50mL水溶液中,在室温下搅拌至完全溶解;将2mmol硝酸铜和2mmol乙酸铜溶于去50mL离子水中,并在室温下持续搅拌一段时间直至完全溶解;将均苯三甲酸和氢氧化钠水溶液与乙酸铜水溶液混合,在常温搅拌下0.5小时;离心处理,并用去离子水或乙醇洗涤3次;在鼓风干燥箱中70℃烘干12h,即可获得Cu-BTC前驱体;(1) 4mmol trimesic acid and 6mmol sodium hydroxide were dissolved in 50mL aqueous solution, and stirred at room temperature until completely dissolved; 2mmol copper nitrate and 2mmol copper acetate were dissolved in 50mL ionized water, and continued stirring for a period at room temperature time until completely dissolved; mix trimesic acid and sodium hydroxide aqueous solution with copper acetate aqueous solution, stir at room temperature for 0.5 hours; centrifuge, and wash 3 times with deionized water or ethanol; dry in a blast drying oven at 70°C After drying for 12h, the Cu-BTC precursor can be obtained;
(2)将获得的Cu-BTC前驱体在氮气气氛的管式炉中以3℃/min升温至850℃煅烧2小时,得到铜/碳纳米棒材料。(2) The obtained Cu-BTC precursor was heated up to 850°C for 2 hours in a tube furnace in nitrogen atmosphere at 3°C/min to obtain a copper/carbon nanorod material.
本实施例制备的铜/碳纳米棒复合材料中,铜纳米颗粒分布于多孔碳纳米棒基质中,碳纳米棒的平均长度是800nm,平均直径是50nm,铜纳米颗粒的平均尺寸是25nm,该铜/多孔碳纳米棒材料的比表面积是80m2/g。In the copper/carbon nanorod composite material prepared in this example, copper nanoparticles are distributed in the porous carbon nanorod matrix, the average length of the carbon nanorods is 800 nm, the average diameter is 50 nm, and the average size of the copper nanoparticles is 25 nm. The specific surface area of the copper/porous carbon nanorod material was 80 m 2 /g.
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。The embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above-mentioned embodiments, and any obvious improvement, replacement or All modifications belong to the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010296293.8A CN111569875A (en) | 2020-04-15 | 2020-04-15 | Copper/porous carbon nanorod material, preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010296293.8A CN111569875A (en) | 2020-04-15 | 2020-04-15 | Copper/porous carbon nanorod material, preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111569875A true CN111569875A (en) | 2020-08-25 |
Family
ID=72114912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010296293.8A Pending CN111569875A (en) | 2020-04-15 | 2020-04-15 | Copper/porous carbon nanorod material, preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111569875A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112264064A (en) * | 2020-10-09 | 2021-01-26 | 浙江大学 | Preparation method of copper single-atom carbon-based catalyst and application of degrading phenolic organic pollutants |
CN112657464A (en) * | 2020-11-26 | 2021-04-16 | 中国农业科学院油料作物研究所 | Cu-BTC MOF carbonized porous material and preparation method and application thereof |
CN113871617A (en) * | 2021-09-15 | 2021-12-31 | 西安热工研究院有限公司 | Graphene oxide doped porous coordination polymer high-performance lithium ion battery negative electrode material and preparation method thereof |
CN114068907A (en) * | 2021-11-16 | 2022-02-18 | 江苏科技大学 | CuO @ Cu-BTC composite electrode with rod-shaped structure and preparation method thereof |
CN115050585A (en) * | 2022-07-05 | 2022-09-13 | 南京晓庄学院 | Copper-based nanostructure, and preparation method and application thereof |
CN116986595A (en) * | 2023-06-21 | 2023-11-03 | 中国农业科学院油料作物研究所 | Quantitative detection kit and detection method for total amount of phytosterol in rapeseeds |
CN118651884A (en) * | 2024-05-29 | 2024-09-17 | 西昌学院 | A carbon copper oxygen crystal nano-layered porous material and its preparation method and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105664944A (en) * | 2016-02-19 | 2016-06-15 | 中国环境科学研究院 | Cu catalyst based on metal organic framework, preparation method and application |
CN108176364A (en) * | 2017-12-06 | 2018-06-19 | 江苏大学 | Preparation method of cobalt/carbon nanocomposite derived from metal organic framework |
CN109759134A (en) * | 2019-01-24 | 2019-05-17 | 湖北大学 | MOF-derived Cu@C catalyst and its preparation and application |
CN110152664A (en) * | 2019-05-15 | 2019-08-23 | 北京化工大学 | Preparation method and application of a one-dimensional cuprous oxide/carbon nanocomposite catalyst |
CN112657464A (en) * | 2020-11-26 | 2021-04-16 | 中国农业科学院油料作物研究所 | Cu-BTC MOF carbonized porous material and preparation method and application thereof |
-
2020
- 2020-04-15 CN CN202010296293.8A patent/CN111569875A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105664944A (en) * | 2016-02-19 | 2016-06-15 | 中国环境科学研究院 | Cu catalyst based on metal organic framework, preparation method and application |
WO2017140176A1 (en) * | 2016-02-19 | 2017-08-24 | 中国环境科学研究院 | Cu catalyst based on metal organic framework, preparation method and use |
CN108176364A (en) * | 2017-12-06 | 2018-06-19 | 江苏大学 | Preparation method of cobalt/carbon nanocomposite derived from metal organic framework |
CN109759134A (en) * | 2019-01-24 | 2019-05-17 | 湖北大学 | MOF-derived Cu@C catalyst and its preparation and application |
CN110152664A (en) * | 2019-05-15 | 2019-08-23 | 北京化工大学 | Preparation method and application of a one-dimensional cuprous oxide/carbon nanocomposite catalyst |
CN112657464A (en) * | 2020-11-26 | 2021-04-16 | 中国农业科学院油料作物研究所 | Cu-BTC MOF carbonized porous material and preparation method and application thereof |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112264064A (en) * | 2020-10-09 | 2021-01-26 | 浙江大学 | Preparation method of copper single-atom carbon-based catalyst and application of degrading phenolic organic pollutants |
CN112657464A (en) * | 2020-11-26 | 2021-04-16 | 中国农业科学院油料作物研究所 | Cu-BTC MOF carbonized porous material and preparation method and application thereof |
CN113871617A (en) * | 2021-09-15 | 2021-12-31 | 西安热工研究院有限公司 | Graphene oxide doped porous coordination polymer high-performance lithium ion battery negative electrode material and preparation method thereof |
CN114068907A (en) * | 2021-11-16 | 2022-02-18 | 江苏科技大学 | CuO @ Cu-BTC composite electrode with rod-shaped structure and preparation method thereof |
CN115050585A (en) * | 2022-07-05 | 2022-09-13 | 南京晓庄学院 | Copper-based nanostructure, and preparation method and application thereof |
CN116986595A (en) * | 2023-06-21 | 2023-11-03 | 中国农业科学院油料作物研究所 | Quantitative detection kit and detection method for total amount of phytosterol in rapeseeds |
CN118651884A (en) * | 2024-05-29 | 2024-09-17 | 西昌学院 | A carbon copper oxygen crystal nano-layered porous material and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111569875A (en) | Copper/porous carbon nanorod material, preparation method and application | |
CN105664944B (en) | A kind of Cu catalyst, Preparation method and use based on metal organic frame | |
CN108671953B (en) | A kind of transition metal nitride/carbon electrocatalyst and its preparation and application | |
CN109126849A (en) | A method of preparing the monatomic catalyst of Ni-N-C | |
CN104353481B (en) | Nitrogen-doped mesoporous carbon catalyst for wastewater degradation as well as preparation method and application thereof | |
WO2023274269A1 (en) | Noble metal-loaded covalent organic framework composite material, and preparation method therefor | |
CN107175125A (en) | A kind of activation method of MOFs bases oxygen reduction electro-catalyst | |
CN106824279A (en) | A kind of metal-organic framework material of energy photocatalytic cleavage water and preparation method thereof | |
CN108435177A (en) | A kind of porous carbon coating nano metal cobalt composite catalyst and its preparation and application | |
CN105129835B (en) | Hexacosahedral cuprous oxide nanometer particle preparation method | |
CN111715254A (en) | A kind of preparation method of nitrogen-modified porous carbon-coated cobalt nanoparticle catalyst | |
CN111822055A (en) | A kind of preparation method and application of BiOBr/COF composite photocatalyst | |
CN111604053A (en) | Ternary hydrotalcite photocatalyst and preparation method and application thereof | |
CN109046450B (en) | A kind of preparation method and application of BiOCl/(BiO)2CO3 loaded cellulose acetate/silk fibroin hybrid membrane | |
CN110756203A (en) | Ni2P/Mn0.3Cd0.7S photocatalytic water splitting composite catalyst and preparation method and application thereof | |
CN108246334A (en) | A kind of functionalization tri compound catalysis material and preparation method thereof and purposes | |
CN112264040B (en) | Carbon sphere-graphene oxide catalyst and preparation method and application thereof | |
CN107930670B (en) | A self-supporting homogeneous heterogeneous catalytic material and its preparation method and application | |
CN107936247A (en) | A kind of difficulty soluble salt and polyimide aerogels composite photo-catalyst and preparation method thereof | |
CN109908884B (en) | Integrated honeycomb zinc-based composite material ((ZnO @ C)/C) and preparation method and application thereof | |
CN116726925A (en) | An Fe-based metal-organic framework-derived metal nanoparticle/single atom composite catalyst and its preparation method and application | |
CN101081367A (en) | Metal catalyst for producing hydrogen by the hydrolyzing of boron azote alkane and method for preparing the same | |
CN101804346B (en) | Nanometer palladium catalyst for hydrogenation of anthraquinone and preparation method thereof | |
CN112264102B (en) | A kind of preparation method of cellulose-based copper source organic framework composite silver phosphate photocatalyst | |
CN107978763A (en) | A kind of silver-iron-nitrogen-carbon oxygen reduction catalyst for fuel cell and preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200825 |
|
RJ01 | Rejection of invention patent application after publication |