CN111569856B - In-Ga2O3复合光催化剂及其制备方法和应用 - Google Patents
In-Ga2O3复合光催化剂及其制备方法和应用 Download PDFInfo
- Publication number
- CN111569856B CN111569856B CN202010258762.7A CN202010258762A CN111569856B CN 111569856 B CN111569856 B CN 111569856B CN 202010258762 A CN202010258762 A CN 202010258762A CN 111569856 B CN111569856 B CN 111569856B
- Authority
- CN
- China
- Prior art keywords
- composite photocatalyst
- preparation
- ga2o3
- composite
- pfoa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 64
- 239000002131 composite material Substances 0.000 title claims abstract description 60
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 title claims description 20
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims abstract description 54
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 claims abstract description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000012046 mixed solvent Substances 0.000 claims abstract description 10
- 239000002243 precursor Substances 0.000 claims abstract description 9
- 239000007787 solid Substances 0.000 claims abstract description 9
- 229910052738 indium Inorganic materials 0.000 claims abstract description 8
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 7
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract 2
- 238000013033 photocatalytic degradation reaction Methods 0.000 claims description 10
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical group [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229940044658 gallium nitrate Drugs 0.000 claims description 4
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical group N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 abstract description 10
- 238000006731 degradation reaction Methods 0.000 abstract description 10
- 230000003197 catalytic effect Effects 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 7
- 238000001354 calcination Methods 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 239000003054 catalyst Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000006303 photolysis reaction Methods 0.000 description 5
- 230000015843 photosynthesis, light reaction Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- YZZFBYAKINKKFM-UHFFFAOYSA-N dinitrooxyindiganyl nitrate;hydrate Chemical compound O.[In+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YZZFBYAKINKKFM-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000002135 nanosheet Substances 0.000 description 3
- 230000001699 photocatalysis Effects 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- 229910001195 gallium oxide Inorganic materials 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- -1 polymer adsorbents Chemical compound 0.000 description 2
- 238000000985 reflectance spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910005224 Ga2O Inorganic materials 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 231100000693 bioaccumulation Toxicity 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000007688 immunotoxicity Effects 0.000 description 1
- 231100000386 immunotoxicity Toxicity 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/08—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/288—Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/36—Organic compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种In‑Ga2O3复合光催化剂及其制备方法和应用,该制备方法包括以下步骤:S1、取铟源和镓源溶解于混合溶剂中,混匀形成前驱体溶液,所述混合溶剂包括水和乙二胺;S2、将所述前驱体溶液置于密闭环境中,在160~200℃下加热反应后,分离得到固体;S3、取所述固体,在空气氛围和550~650℃下煅烧,得到In‑Ga2O3复合光催化剂。利用本发明的方法制得的In‑Ga2O3复合光催化剂具有多级花状结构,可以暴露出丰富的催化活性位点,在催化降解PFOA中具有优异的应用前景。
Description
技术领域
本发明涉及光催化剂技术领域,尤其是涉及一种In-Ga2O3复合光催化剂及其制备方法和应用。
背景技术
全氟烷基化合物(PFAS)因其很高的化学惰性,耐热性和疏水疏油特性,在工业生产和生活消费品等领域得到了广泛的应用。随着它们的大量生产和使用,在各类环境水体中都检测到了它们的存在。研究表明,长期暴露于PFAS环境中会导致人体新陈代谢紊乱、免疫毒性甚至诱发癌症的风险,因此,亟需开发出有效去除水环境中PFAS的技术。
作为PFAS的典型代表之一,全氟辛酸(PFOA)具有环境持续性,生物蓄积性等特点而被人们广泛关注。由于C-F键具有很高的热稳定性和化学稳定性(536kJ mol-1),PFOA难以通过自然分解或传统的生物降解技术来分解。近年来,研究者尝试一些新技术来实现PFOA的有效去除,如聚合物吸附剂、电化学氧化和光催化等。其中,异相光催化利用太阳光来驱动催化反应,环境友好,具有能源可持续性的特点。一系列光催化剂如TiO2、Ga2O3、In2O3、BiOCl和Bi3O(OH)(PO4)2等都被用于环境水体中PFOA的去除。其中,氧化镓因其氧化还原电位高、性能稳定受到了研究者的青睐。然而,氧化镓的光吸收局限于紫外区域,单一组分光生电荷复合效率较低。因此,开发出高效的光催化剂用于处理水环境中的PFOA具有深远的意义。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种In-Ga2O3复合光催化剂及其制备方法和应用,制备出的复合光催化剂具有更宽的光吸收范围,能够拓宽至可见光区域,光催化效率高。
本发明所采取的技术方案是:
本发明的第一方面,提供一种In-Ga2O3复合光催化剂的制备方法,包括以下步骤:
S1、取铟源和镓源溶解于混合溶剂中,混匀形成前驱体溶液,所述混合溶剂包括水和乙二胺;
S2、将所述前驱体溶液置于密闭环境中,在160~200℃下加热反应后,分离得到固体;
S3、取所述固体,在空气氛围和550~650℃下煅烧,得到In-Ga2O3复合光催化剂。
根据本发明的一些实施例,所述铟源:镓源的摩尔比为1:(15~25)。
根据本发明的一些实施例,所述铟源为硝酸铟,所述镓源为硝酸镓。
根据本发明的一些实施例,所述混合溶剂中乙二胺:水的体积比为1:(0.5~2.5)。
根据本发明的一些实施例,步骤S2中,分离得到的所述固体依次使用水和乙醇进行洗涤,并置于真空中干燥。
本发明的第二方面,提供一种In-Ga2O3复合光催化剂,由上述的In-Ga2O3复合光催化剂的制备方法制得。
本发明的第三方面,提供上述的In-Ga2O3复合光催化剂在光催化降解全氟辛酸中的应用。
本发明的第四方面,提供一种可用于降解全氟辛酸的光催化剂组合物,包括上述的In-Ga2O3复合光催化剂。
本发明实施例的有益效果是:
本发明实施例提供了一种In-Ga2O3复合光催化剂的制备方法,采用溶剂热法制备具有多级结构的In-Ga2O3材料,然后再通过煅烧处理提高催化剂的结晶度以及移除催化剂表面的溶剂杂质,形成高结晶度的In-Ga2O3复合光催化剂,煅烧处理一方面有助于提高催化剂的结晶度,另一方面还可以诱导水热合成后催化剂中的In(OH)3分解形成In2O3,从而原位构建异质结型复合催化剂,利用本发明的方法制得的In-Ga2O3复合光催化剂具有多级花状结构,可以暴露出丰富的催化活性位点,缩短光生电荷的迁移距离,进而提高光生电荷的分离效率,与单一催化剂相比,该复合光催化剂具有更宽的光吸收范围,可以拓宽至可见光区域;此外,该复合光催化剂具有良好的光生电荷能力,能够有效抑制光生电子和空穴的复合,后续进行降解时可以通过多重配位方式和PFOA结合,极大地促进了目标降解产物在催化剂表面的吸附能力。
附图说明
图1为实施例1制备得到的In-Ga2O3复合光催化剂的电镜表征图;
图2为对比例1得到的Ga2O3材料和实施例1的In-Ga2O3复合光催化剂的XRD图谱;
图3为对比例1得到的Ga2O3材料和实施例1的In-Ga2O3复合光催化剂的紫外可见漫反射图谱;
图4为对比例1得到的Ga2O3材料和实施例1的In-Ga2O3复合光催化剂的荧光(PL)图谱;
图5为In-Ga2O3复合光催化剂催化降解全氟辛酸(PFOA)的示意图;
图6为UV光解、Ga2O3材料和In-Ga2O3复合光催化剂光催化降解PFOA的活性图;
图7为对比例2提供的系列复合光催化剂的光催化降解PFOA活性图;
图8为UV光解、Ga2O3材料、In-Ga2O3复合光催化剂和对比例2提供的系列复合光催化剂的降解动力学速率常数对比图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例提供一种In-Ga2O3复合光催化剂,按照以下步骤制备:
S1、取20mL乙二胺和40mL水混合形成混合溶剂,按摩尔比为1:20取硝酸铟水合物和硝酸镓水合物,然后将硝酸镓水合物,硝酸铟水合物溶解于混合溶剂中,混合搅拌30min,得到前驱体溶液;
S2、将上述前驱体溶液转入容积为50mL的聚四氟内衬中,密封于不锈钢高压釜中,置于180℃烘箱中反应24h;
待冷却至室温,将样品离心分离,去除上清液,下层固体样品分别用水和乙醇各清洗3次,在60℃真空干燥箱中干燥12h,得到In-Ga2O3纳米片;
S3、将上述干燥后的In-Ga2O3纳米片置于石英坩埚中,在空气氛围下置于管式炉中600℃煅烧2h,得到In-Ga2O3复合光催化剂。
图1为实施例1制备得到的In-Ga2O3复合光催化剂的电镜表征图,其中(a)-(b)不同放大倍数的扫描电镜(SEM)图,(c)-(d)为不同放大倍数的透射电镜(TEM)图,从图中可以看出实施例1制备的In-Ga2O3复合光催化剂为由纳米片自组装而成的多级花状结构,尺寸在2-4μm,厚度在几纳米。
对比例1:对比例1提供一种Ga2O3材料,制备过程与上述实施例1相同,不同之处在于,未添加硝酸铟水合物。
图2为对比例1得到的Ga2O3材料和实施例1的In-Ga2O3复合光催化剂的XRD图谱,从图中可以看出,改性后的复合光催化剂不仅含有Ga2O3的出峰,也有In2O3的出峰。
图3为对比例1得到的Ga2O3材料和实施例1的In-Ga2O3复合光催化剂的紫外可见漫反射图谱(UV-vis DRS),从图中可以看出,In-Ga2O3复合光催化剂具有更加宽的光吸收范围,与Ga2O3材料相比,从270nm拓宽至可见光区域的475nm。
图4为对比例1得到的Ga2O3材料和实施例1的In-Ga2O3复合光催化剂的荧光(PL)图谱,从图中可以看出,In-Ga2O3复合光催化剂具有更弱的荧光,表明复合光催化剂的光生电荷复合得到了极大地抑制。
效果实施例1
实验组:取实施例1中的In-Ga2O3复合光催化剂,在室温下对PFOA进行光催化降解实验,其中PFOA浓度为20mg/L,In-Ga2O3复合光催化剂的加入量为0.5g/L,光照波长为200-600nm。
对照组1:取对比例1的Ga2O3材料作为催化剂,在室温下对PFOA进行光催化降解实验,其中PFOA浓度为20mg/L,Ga2O3材料的加入量为0.5g/L,光照波长为200-600nm。
对照组2:利用UV光解技术,在室温下对PFOA进行光催化降解实验,其中PFOA浓度为20mg/L。
图5为In-Ga2O3复合光催化剂催化降解全氟辛酸(PFOA)的示意图,利用本发明实施例的In-Ga2O3复合光催化剂能够对PFOA进行降解。
图6为UV光解、Ga2O3材料和In-Ga2O3复合光催化剂光催化降解PFOA的活性图,从图中可以看出,相较于单一的催化剂Ga2O3,本发明实施例制得的In-Ga2O3复合光催化剂表现出更优异的催化活性,可以在60min内将20mg/L的PFOA降解完全。
效果实施例2
对比例2:对比例2提供系列复合光催化剂,制备过程与实施例1相同,不同之处在于,将硝酸铟分别替换为硝酸铜、醋酸锌、硝酸钴、硝酸锰,分别形成Cu-Ga2O3、Zn-Ga2O3、Co-Ga2O3和Mn-Ga2O3。
取对比例2提供的系列复合光催化剂,在室温下对PFOA进行光催化降解实验,其中PFOA浓度为20mg/L,复合光催化剂的加入量为0.5g/L,反应温度为室温。图7为对比例2提供的系列复合光催化剂的光催化降解PFOA活性图,从图7和图6对比可以看出,本发明尝试了系列过渡金属如Cu、Zn、Co、Mn和In对Ga2O3进行改性,结果表明,相较于纯的Ga2O3材料,使用不同的过渡元素进行改性并没有表现出规律性,如使用Co进行改性后的Co-Ga2O3催化效果变差,使用Cu进行改性后的Cu-Ga2O3催化效果与Ga2O3材料相差不大,只有In-Ga2O3对全氟辛酸表现出优异的降解活性,本发明实施例通过选用过渡金属In对Ga2O3进行改性,并得到了较优越的催化降解性能,能够在60min内将PFOA全部降解,降低了催化剂制备成本,并且催化过程中勿需引入额外的气体如氧气、氮气等就可以实现水环境中PFOA的高效降解,极大地降低了设备运行成本。
图8为UV光解、Ga2O3材料、In-Ga2O3复合光催化剂和对比例2提供的系列复合光催化剂的降解动力学速率对比图,从图中可以看出,In-Ga2O3表现出最优异的降解活性。
Claims (6)
1.一种In-Ga2O3复合光催化剂的制备方法,其特征在于,包括以下步骤:
S1、取铟源和镓源溶解于混合溶剂中,混匀形成前驱体溶液,所述混合溶剂包括水和乙二胺;所述铟源:镓源的摩尔比为1:(15~25);所述混合溶剂中乙二胺:水的体积比为1:(0.5~2.5);
S2、将所述前驱体溶液置于密闭环境中,在160~200℃下加热反应后,分离得到固体;
S3、取所述固体,在空气氛围和550~650℃下煅烧,得到In-Ga2O3复合光催化剂,所述In-Ga2O3复合光催化剂为由纳米片自组装而成的多级花状结构。
2.根据权利要求1所述的In-Ga2O3复合光催化剂的制备方法,其特征在于,所述铟源为硝酸铟,所述镓源为硝酸镓。
3.根据权利要求1至2任一项所述的In-Ga2O3复合光催化剂的制备方法,其特征在于,步骤S2中,分离得到的所述固体依次使用水和乙醇进行洗涤,并置于真空中干燥。
4.一种In-Ga2O3复合光催化剂,其特征在于,由权利要求1至3任一项所述的In-Ga2O3复合光催化剂的制备方法制得。
5.权利要求4所述的In-Ga2O3复合光催化剂在光催化降解全氟辛酸中的应用。
6.一种可用于降解全氟辛酸的光催化剂组合物,其特征在于,包括权利要求4所述的In-Ga2O3复合光催化剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010258762.7A CN111569856B (zh) | 2020-04-03 | 2020-04-03 | In-Ga2O3复合光催化剂及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010258762.7A CN111569856B (zh) | 2020-04-03 | 2020-04-03 | In-Ga2O3复合光催化剂及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111569856A CN111569856A (zh) | 2020-08-25 |
CN111569856B true CN111569856B (zh) | 2023-06-09 |
Family
ID=72124315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010258762.7A Active CN111569856B (zh) | 2020-04-03 | 2020-04-03 | In-Ga2O3复合光催化剂及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111569856B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12275661B2 (en) | 2024-07-12 | 2025-04-15 | Claros Technologies Inc. | Methods and systems of iodine capture from aqueous solutions |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114307941B (zh) * | 2021-10-18 | 2023-05-05 | 南京大学 | 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用 |
CN115634685B (zh) * | 2022-11-03 | 2023-12-08 | 常熟理工学院 | 一种对可见光响应的光催化材料及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009089754A1 (en) * | 2007-12-29 | 2009-07-23 | Shanghai Institute Of Ceramics, Chinese Academy Of Sciences | Preparation method of light absorption layer of copper-indium-gallium-sulfur-selenium film solar cell |
CN101958369A (zh) * | 2010-07-27 | 2011-01-26 | 上海太阳能电池研究与发展中心 | 一种铜铟镓硒薄膜材料的制备方法 |
CN105060389A (zh) * | 2015-07-16 | 2015-11-18 | 广西大学 | 一种贵金属掺杂氧化镓光催化降解水中全氟辛酸的方法 |
CN108264127A (zh) * | 2018-01-04 | 2018-07-10 | 嘉兴市众盛环保科技有限公司 | 一种纳米级氧化镓真空紫外光催化降解全氟辛酸的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2657317B1 (en) * | 2010-12-20 | 2015-06-17 | Ocean's King Lighting Science&Technology Co., Ltd. | Luminescent material of gallium indium oxide and preparation method thereof |
JP5925535B2 (ja) * | 2012-03-12 | 2016-05-25 | 三井金属鉱業株式会社 | ガリウム・インジウム複合酸化物粉末 |
CN103721699A (zh) * | 2014-01-03 | 2014-04-16 | 长沙学院 | 一种NaInO2光催化剂及其制备方法 |
CN105597765B (zh) * | 2016-02-26 | 2018-08-07 | 大连理工大学 | 一种In2O3/ZnFe2O4纳米异质结复合光催化材料及其制备方法 |
CN109772260A (zh) * | 2017-11-10 | 2019-05-21 | 霍尼韦尔特性材料和技术(中国)有限公司 | 三氧化二镓-吸附剂复合材料及其制备方法和用途 |
CN109248672B (zh) * | 2018-06-28 | 2022-01-14 | 霍尼韦尔特性材料和技术(中国)有限公司 | 一种复合材料及其制备方法与应用 |
CN109746019B (zh) * | 2018-12-28 | 2020-08-18 | 西安交通大学 | 一种镓铟锌三元氮氧化物的制备方法及其应用 |
-
2020
- 2020-04-03 CN CN202010258762.7A patent/CN111569856B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009089754A1 (en) * | 2007-12-29 | 2009-07-23 | Shanghai Institute Of Ceramics, Chinese Academy Of Sciences | Preparation method of light absorption layer of copper-indium-gallium-sulfur-selenium film solar cell |
CN101958369A (zh) * | 2010-07-27 | 2011-01-26 | 上海太阳能电池研究与发展中心 | 一种铜铟镓硒薄膜材料的制备方法 |
CN105060389A (zh) * | 2015-07-16 | 2015-11-18 | 广西大学 | 一种贵金属掺杂氧化镓光催化降解水中全氟辛酸的方法 |
CN108264127A (zh) * | 2018-01-04 | 2018-07-10 | 嘉兴市众盛环保科技有限公司 | 一种纳米级氧化镓真空紫外光催化降解全氟辛酸的方法 |
Non-Patent Citations (1)
Title |
---|
Ga掺杂ZnO纳米粉体的合成及其光、电学性能研究;徐润春;吕伟;徐青;;山东大学学报(工学版)(第06期);全文 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12275661B2 (en) | 2024-07-12 | 2025-04-15 | Claros Technologies Inc. | Methods and systems of iodine capture from aqueous solutions |
Also Published As
Publication number | Publication date |
---|---|
CN111569856A (zh) | 2020-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | MXenes as co-catalysts for the solar-driven photocatalytic reduction of CO 2 | |
Wei et al. | Green and controllable synthesis of one-dimensional Bi2O3/BiOI heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr (VI) | |
Chen et al. | In situ construction of an SnO 2/gC 3 N 4 heterojunction for enhanced visible-light photocatalytic activity | |
CN109589991B (zh) | 一种锌铟硫/铜铟硫二维异质结光催化剂、其制备方法及应用 | |
US10486138B2 (en) | Method for hydrothermal synthesis of three dimensional Bi4MoO9/TiO2 nanostructure heterojunction | |
CN103962159B (zh) | 一种光催化剂及其制备方法和应用 | |
Gupta et al. | Ag and CuO impregnated on Fe doped ZnO for bacterial inactivation under visible light | |
CN101254467A (zh) | 具有高可见光催化活性纳米CdxZn1-xS光催化剂的沉淀-水热制备方法 | |
CN108671907B (zh) | 一种铂/二氧化钛纳米花复合材料及其制备方法与应用 | |
Gupta et al. | Mn-modified Bi 2 Ti 2 O 7 photocatalysts: bandgap engineered multifunctional photocatalysts for hydrogen generation | |
CN112663088B (zh) | 一种纳米花瓣状结构的二硒化钴/羟基氧化铁复合材料的制备方法 | |
CN113663693A (zh) | 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用 | |
CN103058265B (zh) | 一种高比表面积介孔纳米片状氧化锌粉体的制备方法 | |
CN111569856B (zh) | In-Ga2O3复合光催化剂及其制备方法和应用 | |
Zhang et al. | Enhanced visible-light photocatalytic activity of ZnS/BiOBr/graphene oxide ternary composite | |
CN114192171A (zh) | Cu:ZnIn2S4-Ti3C2复合光催化剂的制备方法及应用 | |
CN112473712A (zh) | 采用不同气氛处理的CeO2/g-C3N4异质结材料及其制备方法和应用 | |
Lu et al. | Microwave-assisted synthesis and characterization of BiOI/BiF 3 p–n heterojunctions and its enhanced photocatalytic properties | |
CN105126803A (zh) | 一种钛酸锶/石墨烯复合纳米催化剂的制备方法 | |
CN108579738B (zh) | 一种金纳米颗粒/二氧化钛纳米花复合材料及其制备方法与应用 | |
CN113976147B (zh) | 一种Bi/Bi4O5Br2光催化剂、制备方法及其应用 | |
Quan et al. | Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO 3 decorated with Zn x Cd 1− x S | |
CN106925306B (zh) | 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法 | |
CN114130408A (zh) | 一种Z型α-Fe2O3/ZnIn2S4复合光催化剂的制备方法和应用 | |
Ji et al. | Oxygen deficiencies and metallic Bi-mediated photocatalytic activity of bismuth tungsten oxides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |