CN111554895A - A kind of solid polymer lithium ion battery positive electrode and its preparation method and application - Google Patents
A kind of solid polymer lithium ion battery positive electrode and its preparation method and application Download PDFInfo
- Publication number
- CN111554895A CN111554895A CN202010340685.XA CN202010340685A CN111554895A CN 111554895 A CN111554895 A CN 111554895A CN 202010340685 A CN202010340685 A CN 202010340685A CN 111554895 A CN111554895 A CN 111554895A
- Authority
- CN
- China
- Prior art keywords
- lithium
- solid polymer
- positive electrode
- solid
- ion battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 67
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 229920000642 polymer Polymers 0.000 title claims abstract description 63
- 239000007787 solid Substances 0.000 title claims abstract description 44
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000011230 binding agent Substances 0.000 claims abstract description 23
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 21
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 19
- 239000011149 active material Substances 0.000 claims abstract description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000001768 carboxy methyl cellulose Substances 0.000 claims abstract description 10
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 239000000661 sodium alginate Substances 0.000 claims abstract description 9
- 235000010413 sodium alginate Nutrition 0.000 claims abstract description 9
- 229940005550 sodium alginate Drugs 0.000 claims abstract description 9
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims abstract description 7
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims abstract description 7
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims abstract description 3
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229940072056 alginate Drugs 0.000 claims abstract description 3
- 235000010443 alginic acid Nutrition 0.000 claims abstract description 3
- 229920000615 alginic acid Polymers 0.000 claims abstract description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims abstract description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims abstract description 3
- 239000005518 polymer electrolyte Substances 0.000 claims description 23
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 17
- 238000002156 mixing Methods 0.000 claims description 8
- 239000002002 slurry Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 229910003002 lithium salt Inorganic materials 0.000 claims description 7
- 159000000002 lithium salts Chemical class 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000007784 solid electrolyte Substances 0.000 claims description 7
- 239000006230 acetylene black Substances 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 5
- 239000000945 filler Substances 0.000 claims description 5
- 229910003480 inorganic solid Inorganic materials 0.000 claims description 5
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 230000000996 additive effect Effects 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 239000011888 foil Substances 0.000 claims description 4
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 claims description 4
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims description 4
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 4
- -1 polyoxyethylene Polymers 0.000 claims description 4
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000002228 NASICON Substances 0.000 claims description 2
- FVXHSJCDRRWIRE-UHFFFAOYSA-H P(=O)([O-])([O-])[O-].[Ge+2].[Al+3].[Li+].P(=O)([O-])([O-])[O-] Chemical compound P(=O)([O-])([O-])[O-].[Ge+2].[Al+3].[Li+].P(=O)([O-])([O-])[O-] FVXHSJCDRRWIRE-UHFFFAOYSA-H 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- CVJYOKLQNGVTIS-UHFFFAOYSA-K aluminum;lithium;titanium(4+);phosphate Chemical compound [Li+].[Al+3].[Ti+4].[O-]P([O-])([O-])=O CVJYOKLQNGVTIS-UHFFFAOYSA-K 0.000 claims description 2
- 239000002223 garnet Substances 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims description 2
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 239000002210 silicon-based material Substances 0.000 claims description 2
- 239000002153 silicon-carbon composite material Substances 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- NRJJZXGPUXHHTC-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[O--].[Zr+4].[La+3] Chemical compound [Li+].[O--].[O--].[O--].[O--].[Zr+4].[La+3] NRJJZXGPUXHHTC-UHFFFAOYSA-N 0.000 claims 1
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 230000001351 cycling effect Effects 0.000 abstract description 2
- 238000011161 development Methods 0.000 abstract description 2
- 239000010405 anode material Substances 0.000 abstract 1
- 230000001737 promoting effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 9
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 8
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical group CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000002083 X-ray spectrum Methods 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- XRNHBMJMFUBOID-UHFFFAOYSA-N [O].[Zr].[La].[Li] Chemical compound [O].[Zr].[La].[Li] XRNHBMJMFUBOID-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- CXULZQWIHKYPTP-UHFFFAOYSA-N cobalt(2+) manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O--].[O--].[O--].[Mn++].[Co++].[Ni++] CXULZQWIHKYPTP-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UVSPVEYCSVXYBB-UHFFFAOYSA-N ethyl 3-amino-3-oxopropanoate Chemical compound CCOC(=O)CC(N)=O UVSPVEYCSVXYBB-UHFFFAOYSA-N 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- RBYFNZOIUUXJQD-UHFFFAOYSA-J tetralithium oxalate Chemical compound [Li+].[Li+].[Li+].[Li+].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O RBYFNZOIUUXJQD-UHFFFAOYSA-J 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/666—Composites in the form of mixed materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本发明涉及固态聚合物锂离子电池,尤其涉及一种固态聚合物锂离子电池正极及其制备方法与应用。The invention relates to a solid polymer lithium ion battery, in particular to a solid polymer lithium ion battery positive electrode and a preparation method and application thereof.
背景技术Background technique
锂离子电池作为可充电的储能设备,具有绿色无污染、能量密度高、可多次稳定充放电等优点;上述优点使得锂离子电池具备取代化石燃料应用于交通运输行业的前景。然而,目前锂离子电池主要应用于手机、照相机、手提电脑等小型设备中,以及小型电动汽车中;要将锂离子电池进一步应用于电动运输领域,取代燃油汽车,还需要解决锂离子电池的安全性和能量密度的问题。而固态锂离子电池相比于传统液体电池具有更高的能量密度,并且固态锂离子电池在制备过程中没有使用任何有机溶剂,进而可有效避免使用过程中出现起火、泄露等潜在危险,因此固态锂离子电池相较于传统的锂离子电池具有更好的安全性和能量密度。As a rechargeable energy storage device, lithium-ion batteries have the advantages of green and pollution-free, high energy density, and stable charging and discharging for multiple times. The above advantages make lithium-ion batteries have the prospect of replacing fossil fuels in the transportation industry. However, at present, lithium-ion batteries are mainly used in small devices such as mobile phones, cameras, and laptop computers, as well as in small electric vehicles. To further apply lithium-ion batteries to the field of electric transportation and replace fuel vehicles, it is also necessary to solve the safety of lithium-ion batteries. sexuality and energy density. Compared with traditional liquid batteries, solid-state lithium-ion batteries have higher energy density, and solid-state lithium-ion batteries do not use any organic solvents in the preparation process, which can effectively avoid potential dangers such as fire and leakage during use. Lithium-ion batteries have better safety and energy density than traditional lithium-ion batteries.
现阶段,最具备应用前景的固态锂离子电池是固态聚合物锂离子电池;固态聚合物锂离子电池使用的是固态聚合物电解质。固态聚合物电解质具有价格便宜、环境友好、离子导高、以及界面阻抗小等优点;目前,最为广泛应用的固态聚合物电解质是聚氧化乙烯(PEO)聚合物固态电解质,它的衍生物含EO支链的聚合物电解质也得到广泛的研究。在法国巴黎市内使用的电动汽车BolloréBluecar就是使用的固态聚合物锂离子电池,该固态聚合物锂离子电池使用的是聚氧化乙烯类似物作为固态电解质,锂金属作为负极,磷酸铁锂作为正极;但是,该固态聚合物锂离子电池能量密度过低,使得电动车的使用里程过短。At this stage, the most promising solid-state lithium-ion battery is the solid-state polymer lithium-ion battery; the solid-state polymer lithium-ion battery uses a solid-state polymer electrolyte. Solid polymer electrolytes have the advantages of low price, environmental friendliness, high ionic conductivity, and low interfacial impedance. At present, the most widely used solid polymer electrolytes are polyethylene oxide (PEO) polymer solid electrolytes, and its derivatives contain EO. Branched polymer electrolytes have also been extensively studied. The Bolloré Bluecar, an electric car used in Paris, France, is a solid-state polymer lithium-ion battery. The solid-state polymer lithium-ion battery uses a polyethylene oxide analog as a solid electrolyte, lithium metal as a negative electrode, and lithium iron phosphate as a positive electrode; However, the energy density of the solid-state polymer lithium-ion battery is too low, so that the mileage of the electric vehicle is too short.
为了提高固态聚合物锂离子电池的能量密度,需要使用高电压或者高容量的正极材料;磷酸铁锂虽然具有比较高的比容量,但是它的放电电压平台比较低,导致能量密度较低;相比于磷酸铁锂,钴酸锂以及高镍钴锰酸锂等正极活性材料具有高比容量、高电压平台等优点,因此其能为固态聚合物锂离子电池提供更高的能量密度。但是,聚氧化乙烯类固态聚合物电解质在4伏及4伏以上的充放电电压时会发生剧烈的分解,导致钴酸锂以及高镍钴锰酸锂等固态聚合物锂离子电池的循环性能很差,无法满足实际应用。In order to improve the energy density of solid-state polymer lithium-ion batteries, it is necessary to use high-voltage or high-capacity cathode materials; although lithium iron phosphate has a relatively high specific capacity, its discharge voltage platform is relatively low, resulting in low energy density; phase Compared with lithium iron phosphate, lithium cobalt oxide and high nickel cobalt lithium manganate and other cathode active materials, they have the advantages of high specific capacity and high voltage platform, so they can provide higher energy density for solid-state polymer lithium-ion batteries. However, polyethylene oxide-based solid polymer electrolytes will decompose violently at charge and discharge voltages of 4 volts and above, resulting in poor cycle performance of solid polymer lithium-ion batteries such as lithium cobalt oxide and high nickel cobalt manganese oxide. poor and cannot meet the practical application.
现有技术中,提高固态聚合物锂离子电池在4伏及4伏以上电压下的循环性能的方法主要是通过电极颗粒包覆实现的;比如,氧化铝、磷酸锂等材料已经被报道用于包覆钴酸锂颗粒进而提高固态聚合物锂离子电池的稳定性(Chem.Mater.2005,17,23,5603-5605,Chem.Mater.2005,17,8,2041-2045);再比如,聚合物PECA包覆的钴酸锂同样也被尝试了用于固态聚合物锂离子电池中进而提高电池的稳定性。尽管上述包覆的技术方案能够明显提高固态聚合物锂离子电池的循环稳定性,但是提高的幅度有限,远不能达到实际应用的要求。另外,现有技术中也有通过使用双层电解质的方法来提高固态聚合物锂离子电池在4伏及4伏以上电压下的稳定性,该方法具体为使用一层负极稳定的PEO聚合物电解质,而在正极侧则使用一层高电压稳定的聚N-甲基丙二酰胺(PMA)基聚合物电解质(Adv.Mater.2019,31,1805574);上述双层结构的固态聚合物锂离子电池在匹配钴酸锂正极时展现优异的循环性能,但是这种双层电解质的方法使得电解质层质量增加,降低了固态电池的能量密度。In the prior art, the method for improving the cycle performance of solid-state polymer lithium ion batteries at voltages of 4 volts and above is mainly achieved by coating electrode particles; for example, materials such as alumina and lithium phosphate have been reported for Coating lithium cobalt oxide particles to improve the stability of solid-state polymer lithium-ion batteries (Chem.Mater.2005,17,23,5603-5605, Chem.Mater.2005,17,8,2041-2045); another example, Lithium cobalt oxide coated with polymer PECA has also been tried to be used in solid-state polymer lithium-ion batteries to improve the stability of the battery. Although the above-mentioned coating technical solution can significantly improve the cycle stability of solid-state polymer lithium-ion batteries, the improvement is limited and cannot meet the requirements of practical applications. In addition, in the prior art, there is also a method for improving the stability of solid-state polymer lithium ion batteries at a voltage of 4 volts and above by using a double-layer electrolyte. The method is specifically to use a layer of negative electrode stable PEO polymer electrolyte, On the positive side, a layer of high-voltage stable poly-N-methylmalonamide (PMA)-based polymer electrolyte (Adv. Mater. 2019, 31, 1805574) is used; the solid-state polymer lithium-ion battery with the above-mentioned double-layer structure It exhibits excellent cycling performance when matched with lithium cobalt oxide cathodes, but this double-layer electrolyte approach increases the mass of the electrolyte layer and reduces the energy density of solid-state batteries.
有鉴于此,特提出本发明。In view of this, the present invention is proposed.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的不足,本申请提供一种固态聚合物锂离子电池正极;包括该正极的固态聚合物锂离子电池在4伏及4伏以上的电压条件下,具有非常优异的循环稳定性和能量密度。In view of the shortcomings of the prior art, the present application provides a solid-state polymer lithium-ion battery positive electrode; the solid-state polymer lithium-ion battery including the positive electrode has very excellent cycle stability under voltage conditions of 4 volts and above and energy density.
具体而言,所述正极包括活性材料、粘结剂和导电碳,所述活性材料为钴酸锂或高镍钴锰酸锂;所述粘结剂选自羧甲基纤维素钠、羧甲基纤维素锂、海藻酸钠、海藻酸锂中的一种或几种的混合;Specifically, the positive electrode includes an active material, a binder and conductive carbon, and the active material is lithium cobalt oxide or high-nickel cobalt lithium manganese oxide; the binder is selected from sodium carboxymethyl cellulose, carboxymethyl cellulose One or more mixtures of lithium cellulose, sodium alginate and lithium alginate;
其中,以质量百分比计,所述正极包括活性材料70~95%、粘结剂2~15%、导电碳3~15%。Wherein, in terms of mass percentage, the positive electrode comprises 70-95% of active material, 2-15% of binder, and 3-15% of conductive carbon.
粘结剂作为电池正极材料的重要组分,需要具有一定的机械强度,能够分散活性材料和导电碳,具有很好的粘结效果,因此,使得正极材料在电池循环过程中不脱落或者分离;本发明发现,由不同粘结剂组成的正极材料在高电压条件下稳定性差异显著,尤其是在固态聚合物锂离子电池中。比如,现有技术中常选用的PEO粘结剂或者含EO支链的聚合物粘结剂制备正极,虽然上述粘结剂能够有效提高正极的离子导,进而有效提高电池的倍率性能,但是包含上述粘结剂的正极在4伏及4伏以上电压下容易发生粘结剂电化学分解反应,导致电池性能变差。进一步地,本发明发现,选择特定的粘结剂与活性材料、导电碳组成的电池正极,在4伏及4伏以上电压下不会发生电化学分解反应,进而得到循环稳定性极佳的固态聚合物锂离子电池正极。As an important component of the positive electrode material of the battery, the binder needs to have a certain mechanical strength, can disperse the active material and conductive carbon, and has a good bonding effect, so that the positive electrode material does not fall off or separate during the battery cycle; The present invention finds that the stability of cathode materials composed of different binders varies significantly under high voltage conditions, especially in solid-state polymer lithium-ion batteries. For example, the PEO binder or the polymer binder containing EO branch chains often used in the prior art is used to prepare the positive electrode. Although the above-mentioned binder can effectively improve the ion conductivity of the positive electrode, thereby effectively improving the rate performance of the battery, it contains the above The positive electrode of the binder is prone to electrochemical decomposition of the binder at a voltage of 4 volts and above, resulting in poor battery performance. Further, the present invention finds that selecting a specific binder, an active material, and a battery positive electrode composed of conductive carbon will not cause an electrochemical decomposition reaction at a voltage of 4 volts and above, thereby obtaining a solid state with excellent cycle stability. Positive electrode for polymer lithium ion battery.
作为优选,所述活性材料为钴酸锂;所述粘结剂为羧甲基纤维素钠或海藻酸钠;所述导电碳为乙炔黑;所述活性材料、所述粘结剂与所述导电碳的质量比为8~9:0.5~1:0.5~1。Preferably, the active material is lithium cobaltate; the binder is sodium carboxymethyl cellulose or sodium alginate; the conductive carbon is acetylene black; the active material, the binder and the The mass ratio of the conductive carbon is 8-9:0.5-1:0.5-1.
本发明同时提供上述正极的制备方法,包括如下步骤:The present invention also provides a method for preparing the above-mentioned positive electrode, comprising the following steps:
(1)将活性材料、粘结剂和导电碳在溶剂中混合后得到浆料;(1) mixing the active material, the binder and the conductive carbon in a solvent to obtain a slurry;
(2)将所述浆料涂布到集流体表面,烘干。(2) Coating the slurry on the surface of the current collector and drying.
作为优选,所述集流体为碳包覆的铝箔。Preferably, the current collector is a carbon-coated aluminum foil.
本发明还提供上述正极在固态聚合物锂离子电池中的应用。The present invention also provides the application of the above positive electrode in the solid polymer lithium ion battery.
本发明同时提供一种固态聚合物锂离子电池,包括上述正极、负极和固态聚合物电解质;所述负极为锂金属、石墨、硅材料、硅碳复合材料中的一种;所述固态聚合物电解质为聚氧化乙烯基固态聚合物电解质或含有EO支链的固态聚合物电解质。The present invention also provides a solid-state polymer lithium ion battery, comprising the above-mentioned positive electrode, a negative electrode and a solid-state polymer electrolyte; the negative electrode is one of lithium metal, graphite, silicon material, and silicon-carbon composite material; the solid-state polymer The electrolyte is a polyoxyethylene solid polymer electrolyte or a solid polymer electrolyte containing EO branches.
作为优选,所述固态聚合物电解质由包括如下步骤的方法制得:将聚氧化乙烯或含有EO支链的聚合物与锂盐在溶剂中混合后,进行浇注成膜。Preferably, the solid polymer electrolyte is prepared by a method comprising the following steps: after mixing polyethylene oxide or a polymer containing EO branches with a lithium salt in a solvent, casting is performed to form a film.
作为优选,所述锂盐选自高氯酸锂(LiClO4)、双(三氟甲烷磺酰)亚胺锂(LITFIS)、双氟磺酰亚胺锂盐(LIFSI)、双草酸硼酸锂(LIBOB)中的一种或几种的混合。Preferably, the lithium salt is selected from lithium perchlorate (LiClO 4 ), lithium bis(trifluoromethanesulfonyl)imide (LITFIS), lithium bisfluorosulfonimide (LIFSI), lithium bis(oxalate)borate ( A mixture of one or more of LIBOB).
进一步地,所述锂盐为高氯酸锂或双(三氟甲烷磺酰)亚胺锂。Further, the lithium salt is lithium perchlorate or lithium bis(trifluoromethanesulfonyl)imide.
作为优选,所述聚氧化乙烯或含有EO支链的聚合物中的EO基团与所述锂盐中的Li+离子的摩尔比为6:1~20:1;优选为16:1~20:1。Preferably, the molar ratio of the EO group in the polyethylene oxide or the polymer containing the EO branch to the Li + ion in the lithium salt is 6:1-20:1; preferably 16:1-20 :1.
作为优选,在固态聚合物电解质的制备过程中,所述混合中还加入金属氧化物添加剂或无机固态电解质填充剂;Preferably, in the preparation process of the solid polymer electrolyte, a metal oxide additive or an inorganic solid electrolyte filler is also added to the mixing;
所述金属氧化物添加剂选自氧化铝、氧化硅、氧化钛中的一种或几种的混合;所述无机固态电解质填充剂选自石榴石型锂镧锆氧、NASICON型磷酸锂铝钛、磷酸锂铝锗中的一种或几种的混合。The metal oxide additive is selected from one or more mixtures of alumina, silicon oxide and titanium oxide; the inorganic solid electrolyte filler is selected from garnet type lithium lanthanum zirconium oxygen, NASICON type lithium aluminum titanium phosphate, One or several mixtures of lithium aluminum germanium phosphate.
本发明中,在固态聚合物电解质的制备过程中,在所述混合中,还可以加入适量的金属氧化物添加剂或无机固态电解质填充剂,以提高聚合物的锂离子导及其机械强度。In the present invention, in the preparation process of the solid polymer electrolyte, an appropriate amount of metal oxide additives or inorganic solid electrolyte fillers can also be added in the mixing to improve the lithium ion conductivity of the polymer and its mechanical strength.
本发明中,所述电池的制备方法为本领域的常规方法,在此不做限定。In the present invention, the preparation method of the battery is a conventional method in the field, which is not limited herein.
本发明的有益效果:Beneficial effects of the present invention:
本发明通过选择特定粘结剂、活性材料和导电碳,所得材料作为固态聚合物锂离子电池正极时,电池在4伏及4伏以上电压下具有非常优异的循环稳定性;相比于现有技术中的固态聚合物锂离子电池正极,本发明的正极材料在4伏及4伏以上电压下循环稳定性更好、使用寿命更长、能量密度更大。并且,本发明的固态聚合物锂离子电池的制备工艺简单、易于放大,同时环境友好;有利于推进固态高能量密度的锂电池发展。By selecting a specific binder, active material and conductive carbon in the present invention, when the obtained material is used as a positive electrode of a solid polymer lithium ion battery, the battery has very excellent cycle stability at a voltage of 4 volts and above; compared with the existing The positive electrode of the solid polymer lithium ion battery in the technology, the positive electrode material of the present invention has better cycle stability, longer service life and higher energy density at voltages of 4 volts and above. In addition, the preparation process of the solid-state polymer lithium ion battery of the present invention is simple, easy to scale up, and environmentally friendly; it is beneficial to promote the development of a solid-state high-energy-density lithium battery.
附图说明Description of drawings
图1为实施例1~2和对比例1~2的固态聚合物锂离子电池正极的X射线图谱;Fig. 1 is the X-ray spectrum of the solid polymer lithium ion battery positive electrode of Examples 1-2 and Comparative Examples 1-2;
图2为实施例1~2和对比例1~2的固态聚合物锂离子电池正极的扫描电镜图;2 is a scanning electron microscope image of the positive electrode of the solid polymer lithium ion battery of Examples 1-2 and Comparative Examples 1-2;
图3为将实施例1~2和对比例1~2的固态聚合物锂离子电池正极制成固态聚合物锂离子电池在2.7~4.2V条件下的循环稳定性对比图;FIG. 3 is a comparison diagram of the cycle stability of solid polymer lithium ion batteries made from the solid polymer lithium ion battery positive electrodes of Examples 1 to 2 and Comparative Examples 1 to 2 under the condition of 2.7 to 4.2 V;
图4为将实施例1~2和对比例1~2的固态聚合物锂离子电池正极制成固态聚合物锂离子电池在2.7~4.3V条件下的循环稳定性对比图。FIG. 4 is a comparison diagram of the cycle stability of solid polymer lithium ion batteries made from the solid polymer lithium ion battery positive electrodes of Examples 1 to 2 and Comparative Examples 1 to 2 under the condition of 2.7 to 4.3 V.
具体实施方式Detailed ways
以下实施例用于说明本发明,但不用来限制本发明的范围。The following examples are intended to illustrate the present invention, but not to limit the scope of the present invention.
实施例1Example 1
本实施例提供一种固态聚合物锂离子电池正极,所述电池正极由钴酸锂、海藻酸钠、乙炔黑按8:1:1的质量比组成。This embodiment provides a solid polymer lithium ion battery positive electrode, the battery positive electrode is composed of lithium cobalt oxide, sodium alginate, and acetylene black in a mass ratio of 8:1:1.
所述正极的制备方法包括如下步骤:The preparation method of the positive electrode comprises the following steps:
(1)将钴酸锂、海藻酸钠和乙炔黑在水中混合后得到浆料;(1) obtaining slurry after mixing lithium cobaltate, sodium alginate and acetylene black in water;
(2)将所述浆料涂布到碳包覆的铝箔表面,在80℃真空烘箱中烘干除去水,得到固态聚合物锂离子电池正极。(2) Coating the slurry on the surface of the carbon-coated aluminum foil, drying in a vacuum oven at 80° C. to remove water, and obtaining a solid polymer lithium ion battery positive electrode.
所述固态聚合物锂离子电池正极的X射线图谱如图1所示,扫描电镜图如图2所示。The X-ray spectrum of the solid-state polymer lithium ion battery positive electrode is shown in FIG. 1 , and the scanning electron microscope image is shown in FIG. 2 .
实施例2Example 2
本实施例提供一种固态聚合物锂离子电池正极,所述电池正极由钴酸锂、羧甲基纤维素钠、乙炔黑按8:1:1的质量比组成。This embodiment provides a solid polymer lithium ion battery positive electrode, the battery positive electrode is composed of lithium cobalt oxide, sodium carboxymethyl cellulose, and acetylene black in a mass ratio of 8:1:1.
所述正极的制备方法包括如下步骤:The preparation method of the positive electrode comprises the following steps:
(1)将钴酸锂、羧甲基纤维素钠和乙炔黑在水中混合后得到浆料;(1) obtain slurry after mixing lithium cobaltate, sodium carboxymethyl cellulose and acetylene black in water;
(2)将所述浆料涂布到碳包覆的铝箔表面,在80℃真空烘箱中烘干除去水,得到固态聚合物锂离子电池正极。(2) Coating the slurry on the surface of the carbon-coated aluminum foil, drying in a vacuum oven at 80° C. to remove water, and obtaining a solid polymer lithium ion battery positive electrode.
所述固态聚合物锂离子电池正极的X射线图谱如图1所示,扫描电镜图如图2所示。The X-ray spectrum of the solid-state polymer lithium ion battery positive electrode is shown in FIG. 1 , and the scanning electron microscope image is shown in FIG. 2 .
对比例1Comparative Example 1
本对比例提供一种固态聚合物锂离子电池正极,与所述实施例1的区别仅在于:将海藻酸钠替换为聚氧化乙烯(PEO)、将水溶剂替换成乙腈。This comparative example provides a solid-state polymer lithium ion battery positive electrode, which is different from the embodiment 1 only in that sodium alginate is replaced with polyethylene oxide (PEO), and the water solvent is replaced with acetonitrile.
所述固态聚合物锂离子电池正极的X射线图谱如图1所示,扫描电镜图如图2所示。The X-ray spectrum of the solid-state polymer lithium ion battery positive electrode is shown in FIG. 1 , and the scanning electron microscope image is shown in FIG. 2 .
对比例2Comparative Example 2
本对比例提供一种固态聚合物锂离子电池正极,与所述实施例1的区别仅在于:将海藻酸钠替换为聚偏氟乙烯(PVDF)、将水溶剂替换成N-甲基-2-吡咯烷酮。This comparative example provides a solid-state polymer lithium-ion battery positive electrode, which is different from Example 1 only in that sodium alginate is replaced by polyvinylidene fluoride (PVDF), and the water solvent is replaced by N-methyl-2 - Pyrrolidone.
所述固态聚合物锂离子电池正极的X射线图谱如图1所示,扫描电镜图如图2所示。The X-ray spectrum of the solid-state polymer lithium ion battery positive electrode is shown in FIG. 1 , and the scanning electron microscope image is shown in FIG. 2 .
试验例1Test Example 1
本试验例分别将实施例1~2和对比例1~2的正极组装成固态聚合物锂离子电池;所述固态聚合物锂离子电池的负极为锂金属,电解质为聚氧化乙烯基固态聚合物电解质;In this test example, the positive electrodes of Examples 1-2 and Comparative Examples 1-2 are respectively assembled into solid polymer lithium ion batteries; the negative electrodes of the solid polymer lithium ion batteries are lithium metal, and the electrolyte is polyoxyethylene solid polymer electrolyte;
所述聚氧化乙烯基固态聚合物电解质的制备方法如下:The preparation method of the polyoxyethylene solid-state polymer electrolyte is as follows:
将EO:Li+摩尔比为16:1的聚氧化乙烯和高氯酸锂在乙腈中混合后,进行浇注成膜,得到固态聚合物电解质薄膜;After mixing polyethylene oxide with a molar ratio of EO:Li + of 16:1 and lithium perchlorate in acetonitrile, casting is performed to form a film to obtain a solid polymer electrolyte film;
所述固态聚合物锂离子电池的制备方法如下:The preparation method of the solid-state polymer lithium ion battery is as follows:
(1)将正极剪裁成圆片或者方片;(1) Cut the positive electrode into circular or square pieces;
(2)将固态聚合物电解质薄膜剪裁成比正极稍大的圆片或者方片;(2) cutting the solid polymer electrolyte film into a round or square piece slightly larger than the positive electrode;
(3)将锂金属负极剪裁成如正极一般大的圆片或者方片;(3) Cut the lithium metal negative electrode into a round or square piece as large as the positive electrode;
(4)将步骤(1)中的正极、步骤(2)中的电解质、步骤(3)中的负极依次叠成三明治结构,组成固态聚合物锂离子电池,整个操作过程中无任何液体加入。(4) The positive electrode in step (1), the electrolyte in step (2), and the negative electrode in step (3) are sequentially stacked into a sandwich structure to form a solid-state polymer lithium ion battery, and no liquid is added during the entire operation.
在60℃检测各固态聚合物锂离子电池的电化学性能,检测结果如图3和图4所示;由图3和图4可知,包含实施例1~2正极的固态聚合物锂离子电池在4伏及4伏以上电压下循环稳定性更高,能量密度更大。The electrochemical performance of each solid-state polymer lithium-ion battery was tested at 60°C, and the test results were shown in Figures 3 and 4; it can be seen from Figures 3 and 4 that the solid-state polymer lithium-ion batteries containing the positive electrodes of Examples 1 to 2 were Higher cycle stability and higher energy density at 4 V and above.
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。Although the present invention has been described in detail above with general description, specific embodiments and tests, some modifications or improvements can be made on the basis of the present invention, which is obvious to those skilled in the art . Therefore, these modifications or improvements made without departing from the spirit of the present invention fall within the scope of the claimed protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010340685.XA CN111554895A (en) | 2020-04-26 | 2020-04-26 | A kind of solid polymer lithium ion battery positive electrode and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010340685.XA CN111554895A (en) | 2020-04-26 | 2020-04-26 | A kind of solid polymer lithium ion battery positive electrode and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111554895A true CN111554895A (en) | 2020-08-18 |
Family
ID=72005874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010340685.XA Pending CN111554895A (en) | 2020-04-26 | 2020-04-26 | A kind of solid polymer lithium ion battery positive electrode and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111554895A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022080766A1 (en) * | 2020-10-12 | 2022-04-21 | 주식회사 엘지에너지솔루션 | Cathode slurry composition for lithium secondary battery, cathode, and lithium secondary battery comprising same |
CN118530677A (en) * | 2024-07-26 | 2024-08-23 | 远景动力技术(鄂尔多斯市)有限公司 | Binder and pole piece, electrochemical device and electronic device containing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102925978A (en) * | 2012-11-07 | 2013-02-13 | 深圳华粤宝电池有限公司 | Lithium niobtate crystal and solid electrolyte and preparation methods and application thereof |
CN109004265A (en) * | 2018-07-27 | 2018-12-14 | 江苏卓高新材料科技有限公司 | Solid electrolyte anode and the solid state battery comprising it |
CN110098434A (en) * | 2019-04-09 | 2019-08-06 | 中国科学院合肥物质科学研究院 | Double-deck smooth bulk of electrode-electric solution matter and preparation method thereof in solid lithium battery |
WO2020019392A1 (en) * | 2018-07-25 | 2020-01-30 | 中能中科(天津)新能源科技有限公司 | Solid electrolyte-lithium composite, preparation method therefor, and all-solid-state lithium secondary battery comprising same |
-
2020
- 2020-04-26 CN CN202010340685.XA patent/CN111554895A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102925978A (en) * | 2012-11-07 | 2013-02-13 | 深圳华粤宝电池有限公司 | Lithium niobtate crystal and solid electrolyte and preparation methods and application thereof |
WO2020019392A1 (en) * | 2018-07-25 | 2020-01-30 | 中能中科(天津)新能源科技有限公司 | Solid electrolyte-lithium composite, preparation method therefor, and all-solid-state lithium secondary battery comprising same |
CN109004265A (en) * | 2018-07-27 | 2018-12-14 | 江苏卓高新材料科技有限公司 | Solid electrolyte anode and the solid state battery comprising it |
CN110098434A (en) * | 2019-04-09 | 2019-08-06 | 中国科学院合肥物质科学研究院 | Double-deck smooth bulk of electrode-electric solution matter and preparation method thereof in solid lithium battery |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022080766A1 (en) * | 2020-10-12 | 2022-04-21 | 주식회사 엘지에너지솔루션 | Cathode slurry composition for lithium secondary battery, cathode, and lithium secondary battery comprising same |
CN114930581A (en) * | 2020-10-12 | 2022-08-19 | 株式会社Lg新能源 | Slurry composition for positive electrode of lithium secondary battery, and positive electrode and lithium secondary battery comprising same |
CN114930581B (en) * | 2020-10-12 | 2024-02-13 | 株式会社Lg新能源 | Slurry composition for positive electrode of lithium secondary battery and positive electrode and lithium secondary battery containing the same |
CN118530677A (en) * | 2024-07-26 | 2024-08-23 | 远景动力技术(鄂尔多斯市)有限公司 | Binder and pole piece, electrochemical device and electronic device containing the same |
CN118530677B (en) * | 2024-07-26 | 2024-10-18 | 远景动力技术(鄂尔多斯市)有限公司 | Adhesive, pole piece containing adhesive, electrochemical device and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112582596B (en) | Secondary battery and battery module, battery pack, and device including the same | |
WO2018103129A1 (en) | Graphene-based sodium ion battery | |
CN101379653A (en) | Lithium secondary battery using ionic liquid | |
CN110112465A (en) | Lithium-rich manganese-based cathode material system battery electrolyte and lithium-ion battery | |
CN105261790A (en) | Electrolyte and lithium-ion battery including same | |
CN110707287A (en) | Metallic lithium cathode, preparation method thereof and lithium battery | |
JP7527590B2 (en) | Manufacturing method for all-solid-state batteries | |
CN111082150A (en) | Interface modification method between electrolyte layer and lithium negative electrode in solid-state secondary lithium battery | |
CN114843590A (en) | Preparation and application of ultrathin organic-inorganic composite solid electrolyte membrane | |
CN106953073A (en) | Lithium iron phosphate anode composite material and preparation method thereof | |
CN116826165A (en) | Lithium secondary battery and preparation method thereof | |
CN111554895A (en) | A kind of solid polymer lithium ion battery positive electrode and its preparation method and application | |
CN115275166A (en) | Long-life graphite composite material and preparation method thereof | |
CN115172680A (en) | High-capacity high-rate lithium ion battery and preparation method thereof | |
CN114400321A (en) | A low-temperature charge-discharge lithium-ion battery and its negative electrode material | |
WO2025130004A1 (en) | Positive electrode sheet, preparation method for positive electrode sheet, and lithium-ion battery | |
CN114792793A (en) | A sodium-ion battery additive and high-power sodium-ion battery | |
CN108987803B (en) | Lithium metal negative electrode film-forming electrolyte for lithium-sulfur battery and additive thereof | |
CN109802176B (en) | Electrolyte and Lithium-Ion Batteries Containing Electrolyte | |
CN116914251A (en) | A non-aqueous electrolyte and lithium-ion battery | |
CN113488694B (en) | A method for improving the interface of superionic conductors and polymers in composite electrolytes | |
CN113206215B (en) | Positive electrode active material, positive electrode material and lithium ion battery | |
CN116207264A (en) | A positive electrode lithium supplement slurry, preparation method and application, lithium ion battery | |
CN105024113B (en) | A preparation method of a rechargeable lithium-ion oxygen battery based on lithium-intercalated graphite | |
CN114864901A (en) | All-solid-state battery electrode material with double-carrier conduction and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200818 |
|
RJ01 | Rejection of invention patent application after publication |