[go: up one dir, main page]

CN111554819B - Light-emitting device, method for adjusting light-emitting color thereof, and display device - Google Patents

Light-emitting device, method for adjusting light-emitting color thereof, and display device Download PDF

Info

Publication number
CN111554819B
CN111554819B CN202010343921.3A CN202010343921A CN111554819B CN 111554819 B CN111554819 B CN 111554819B CN 202010343921 A CN202010343921 A CN 202010343921A CN 111554819 B CN111554819 B CN 111554819B
Authority
CN
China
Prior art keywords
light
electrode
emitting
layer
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010343921.3A
Other languages
Chinese (zh)
Other versions
CN111554819A (en
Inventor
陈树明
张恒
苏强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern University of Science and Technology
Original Assignee
Southern University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern University of Science and Technology filed Critical Southern University of Science and Technology
Priority to CN202010343921.3A priority Critical patent/CN111554819B/en
Publication of CN111554819A publication Critical patent/CN111554819A/en
Application granted granted Critical
Publication of CN111554819B publication Critical patent/CN111554819B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请涉及一种发光器件及其发光颜色调节方法、显示装置,包括基底、第一电极、第一发光单元、第二电极、第二发光单元以及第三电极。第一发光单元和第二发光单元中的一个为颜色变化单元,另一个为颜色固定单元,颜色变化单元的发光颜色随驱动电压参数的变化而变化。通过改变第二电极、第一电极及第三电极与电源的连接方式,能够使第一发光单元和第二发光单元同时工作,随着驱动电压参数的改变发光器件实现高效率、高亮度白光发射;或者使第一发光单元和第二发光单元轮流工作,随着驱动电压参数的改变,使发光器件具有全色可调的发光颜色。同时,第一发光单元和第二发光单元的发光层均不需要进行图形化处理,易于实现高分辨率和大面积显示。

Figure 202010343921

The present application relates to a light-emitting device, a method for adjusting its light-emitting color, and a display device, including a substrate, a first electrode, a first light-emitting unit, a second electrode, a second light-emitting unit, and a third electrode. One of the first light-emitting unit and the second light-emitting unit is a color-changing unit, and the other is a color-fixed unit, and the light-emitting color of the color-changing unit changes with the change of the driving voltage parameter. By changing the connection mode between the second electrode, the first electrode and the third electrode and the power supply, the first light-emitting unit and the second light-emitting unit can work simultaneously, and the light-emitting device can realize high-efficiency, high-brightness white light emission with the change of the driving voltage parameters ; Or make the first light-emitting unit and the second light-emitting unit work in turn, with the change of the driving voltage parameters, so that the light-emitting device has a full-color adjustable light-emitting color. At the same time, the light-emitting layers of the first light-emitting unit and the second light-emitting unit do not need to be patterned, so it is easy to realize high-resolution and large-area display.

Figure 202010343921

Description

发光器件及其发光颜色调节方法、显示装置Light-emitting device, method for adjusting light-emitting color thereof, and display device

技术领域technical field

本申请涉及发光二极管领域,特别是涉及一种发光器件及其发光颜色调节方法、显示装置。The present application relates to the field of light-emitting diodes, in particular to a light-emitting device, a method for adjusting its light-emitting color, and a display device.

背景技术Background technique

随着量子点材料的发展和器件制备工艺的进步,量子点发光二极管(Quantum DotLight Emitting Diodes,QLED)的效率、亮度和寿命等性能取得了很大的发展,但目前QLED在全彩显示器的实际应用仍然存在阻碍:要实现全彩QLED显示,发光层需要进行图形化处理,但量子点像素图形化技术未成熟,例如喷墨打印技术成膜质量差、分辨率低、均匀性差,难于实现高分辨率和大面积显示;为避免前述问题,可采用叠加彩色滤光片的方法实现全彩显示,但需要利用彩膜滤光片过滤白光,还原红、绿、蓝三原色,白光损耗大,效率低。With the development of quantum dot materials and the progress of device manufacturing technology, the performance of quantum dot light-emitting diodes (Quantum DotLight Emitting Diodes, QLED) has made great progress, such as efficiency, brightness and life, but the current practical application of QLED in full-color displays There are still obstacles in the application: to realize full-color QLED display, the light-emitting layer needs to be patterned, but the quantum dot pixel patterning technology is immature. For example, inkjet printing technology has poor film quality, low resolution, and poor uniformity. It is difficult to achieve high resolution and large-area display; in order to avoid the above-mentioned problems, the method of superimposing color filters can be used to achieve full-color display, but it is necessary to use color filter filters to filter white light and restore the three primary colors of red, green and blue. The loss of white light is large and the efficiency Low.

因此,目前QLED在全彩显示器的实际应用中存在白光损耗大、效率低及难以实现高分辨率和大面积显示的问题。Therefore, the current practical application of QLED in full-color displays has the problems of large white light loss, low efficiency, and difficulty in achieving high-resolution and large-area display.

发明内容Contents of the invention

本申请实施例提供一种发光器件及其发光颜色调节方法、显示装置,可以实现高分辨率和大面积显示,发光颜色全色可调,可以获得高效率白光发射。Embodiments of the present application provide a light-emitting device, a method for adjusting its light-emitting color, and a display device, which can realize high-resolution and large-area display, and can adjust the full-color light-emitting color to obtain high-efficiency white light emission.

一种发光器件,包括:A light emitting device comprising:

基底;base;

在所述基底依次层叠设置的第一电极、第一发光单元、第二电极、第二发光单元以及第三电极;其中:The first electrode, the first light-emitting unit, the second electrode, the second light-emitting unit and the third electrode are sequentially stacked on the substrate; wherein:

所述第二电极为透明导电电极;The second electrode is a transparent conductive electrode;

所述第一发光单元和所述第二发光单元中的一个为颜色变化单元,且所述第一发光单元和所述第二发光单元中的一个为颜色固定单元,所述颜色变化单元包括第一量子点发光层,所述第一量子点发光层的发光颜色随驱动电压参数的变化而变化。One of the first light emitting unit and the second light emitting unit is a color changing unit, and one of the first light emitting unit and the second light emitting unit is a color fixing unit, and the color changing unit includes a second A quantum dot light-emitting layer, the light-emitting color of the first quantum dot light-emitting layer changes with the change of the driving voltage parameter.

在其中一个实施例中,所述第一量子点发光层包括叠层设置的红色量子点发光层和绿色量子点发光层;或者In one of the embodiments, the first quantum dot light emitting layer includes a stacked red quantum dot light emitting layer and a green quantum dot light emitting layer; or

所述第一量子点发光层的材料包括红色量子点和绿色量子点的混合发光材料。The material of the first quantum dot light-emitting layer includes a mixed light-emitting material of red quantum dots and green quantum dots.

在其中一个实施例中,所述第一发光单元为所述颜色变化单元,所述颜色变化单元还包括:In one of the embodiments, the first light emitting unit is the color changing unit, and the color changing unit further includes:

第一空穴注入层,层叠设置在所述第一电极远离所述基底的一侧;a first hole injection layer stacked on a side of the first electrode away from the substrate;

第一空穴传输层,层叠设置在所述第一空穴注入层远离所述基底的一侧,所述第一量子点发光层层叠设置在所述第一空穴传输层远离所述基底的一侧;The first hole transport layer is stacked on the side of the first hole injection layer away from the substrate, and the first quantum dot light-emitting layer is stacked on the side of the first hole transport layer away from the substrate. side;

第一电子传输层,层叠设置在所述第一量子点发光层远离所述基底的一侧。The first electron transport layer is stacked on the side of the first quantum dot light-emitting layer away from the substrate.

在其中一个实施例中,所述颜色固定单元包括第二量子点发光层或者有机发光层。In one of the embodiments, the color fixing unit includes a second quantum dot light-emitting layer or an organic light-emitting layer.

在其中一个实施例中,所述第二量子点发光层的材料包括蓝色量子点发光材料,所述有机发光层的材料包括蓝色有机发光材料。In one embodiment, the material of the second quantum dot light-emitting layer includes blue quantum dot light-emitting material, and the material of the organic light-emitting layer includes blue organic light-emitting material.

在其中一个实施例中,所述颜色固定单元还包括:In one of the embodiments, the color fixing unit further includes:

第二空穴注入层、第二空穴传输层、第二电子传输层以及电子注入层;其中:The second hole injection layer, the second hole transport layer, the second electron transport layer and the electron injection layer; wherein:

所述第二空穴注入层和所述第二空穴传输层依次层叠设置在所述第二电极远离所述基底的一侧;The second hole injection layer and the second hole transport layer are sequentially stacked on the side of the second electrode away from the substrate;

所述第二量子点发光层或所述有机发光层层叠设置在所述第二空穴传输层远离所述基底的一侧;The second quantum dot light-emitting layer or the organic light-emitting layer is stacked on the side of the second hole transport layer away from the substrate;

所述第二电子传输层和所述电子注入层依次层叠设置在所述第二量子点发光层或所述有机发光层远离所述基底的一侧。The second electron transport layer and the electron injection layer are sequentially stacked on the side of the second quantum dot light-emitting layer or the organic light-emitting layer away from the substrate.

在其中一个实施例中,所述第二电极的材料包括透明导电氧化物;和/或所述第二电极的厚度为50nm-120nm。In one of the embodiments, the material of the second electrode includes transparent conductive oxide; and/or the thickness of the second electrode is 50nm-120nm.

在其中一个实施例中,所述第一电极和第三电极中的至少一个为透明电极。In one of the embodiments, at least one of the first electrode and the third electrode is a transparent electrode.

在其中一个实施例中,所述透明电极的材料包括透明导电氧化物和导电金属中的一种。In one embodiment, the material of the transparent electrode includes one of transparent conductive oxide and conductive metal.

在其中一个实施例中,所述发光器件还包括:In one of the embodiments, the light emitting device further includes:

溅射缓冲层,设置在所述第一发光单元和所述第二电极之间。A sputtering buffer layer is arranged between the first light emitting unit and the second electrode.

在其中一个实施例中,所述溅射缓冲层包括金属层和ZnO基纳米颗粒层中的一层或两者的叠层。In one of the embodiments, the sputtering buffer layer includes one or a stack of the metal layer and the ZnO-based nanoparticle layer.

在其中一个实施例中,所述金属层的厚度为1nm-5nm,所述ZnO基纳米颗粒层的厚度为40nm-100nm。In one embodiment, the metal layer has a thickness of 1 nm-5 nm, and the ZnO-based nanoparticle layer has a thickness of 40 nm-100 nm.

一种发光颜色调节方法,用于调节如上所述的发光器件的发光颜色,包括:A method for adjusting the emission color, for adjusting the emission color of the above-mentioned light emitting device, comprising:

将所述第一电极和所述第三电极短接后与交流电源的第一端相连,将所述第二电极与所述交流电源的第二端相连;short-circuiting the first electrode and the third electrode to the first end of the AC power supply, and connecting the second electrode to the second end of the AC power supply;

调节所述交流电源的驱动电压参数,以调节所述发光器件的发光颜色;或者adjusting the driving voltage parameters of the AC power supply to adjust the light emitting color of the light emitting device; or

将所述第一电极与直流电源的第一端相连,将所述第三电极与所述直流电源的第二端相连;connecting the first electrode to the first terminal of the DC power supply, and connecting the third electrode to the second terminal of the DC power supply;

调节所述直流电源的驱动电压参数,以调节所述发光器件的发光颜色。Adjusting the driving voltage parameters of the DC power supply to adjust the light emitting color of the light emitting device.

一种显示装置,包括如上所述的发光器件。A display device includes the above-mentioned light emitting device.

上述发光器件及其发光颜色调节方法、显示装置,包括基底、第一电极、第一发光单元、第二电极、第二发光单元以及第三电极。其中,第一发光单元和所述第二发光单元中的一个为颜色变化单元,且所述第一发光单元和所述第二发光单元中的一个为颜色固定单元,所述颜色变化单元的发光颜色随驱动电压参数的变化而变化。通过改变第二电极、第一电极及第三电极与电源的连接方式,一方面能够实现直流电压驱动,使第一发光单元和第二发光单元同时工作,随着驱动电压参数的改变,使发光器件实现高效率、高亮度白光发射,可应用于白光照明;另一方面能够实现交流电压驱动,使第一发光单元和第二发光单元轮流工作,随着驱动电压参数的改变,使发光器件具有全色可调的发光颜色,可应用于全彩显示器。同时,第一发光单元和第二发光单元的发光层均不需要进行图形化处理,易于实现高分辨率和大面积显示。The above-mentioned light-emitting device, its light-emitting color adjustment method, and display device include a substrate, a first electrode, a first light-emitting unit, a second electrode, a second light-emitting unit, and a third electrode. Wherein, one of the first light emitting unit and the second light emitting unit is a color changing unit, and one of the first light emitting unit and the second light emitting unit is a color fixing unit, and the light emitting of the color changing unit The color changes with the driving voltage parameter. By changing the connection mode between the second electrode, the first electrode, and the third electrode and the power supply, on the one hand, DC voltage driving can be realized, so that the first light-emitting unit and the second light-emitting unit can work at the same time. With the change of the driving voltage parameters, the light-emitting The device realizes high-efficiency, high-brightness white light emission, which can be applied to white light lighting; on the other hand, it can realize AC voltage drive, so that the first light-emitting unit and the second light-emitting unit work in turn, and the light-emitting device has Full-color adjustable luminous color, can be applied to full-color displays. At the same time, the light-emitting layers of the first light-emitting unit and the second light-emitting unit do not need to be patterned, so it is easy to realize high-resolution and large-area display.

附图说明Description of drawings

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present application. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1为一个实施例中发光器件的结构示意图;Fig. 1 is a schematic structural view of a light emitting device in an embodiment;

图2为一个实施例中发光器件的结构示意图;Fig. 2 is a schematic structural diagram of a light emitting device in an embodiment;

图3为一个实施例中发光器件的结构示意图;Fig. 3 is a schematic structural diagram of a light emitting device in an embodiment;

图4为一个实施例中第一发光单元的结构示意图;Fig. 4 is a schematic structural diagram of a first light-emitting unit in an embodiment;

图5为一个实施例中第二发光单元的结构示意图;Fig. 5 is a schematic structural diagram of a second light emitting unit in an embodiment;

图6为一个实施例中发光器件的结构示意图;Fig. 6 is a schematic structural diagram of a light emitting device in an embodiment;

图7为一个实施例中发光器件的发光颜色调节方法的流程图;Fig. 7 is a flow chart of a method for adjusting the emission color of a light emitting device in an embodiment;

图8为一个实施例中发光器件的具体结构示意图;Fig. 8 is a schematic structural diagram of a light emitting device in an embodiment;

图9为一个实施例中交流驱动的发光器件的电路示意图;Fig. 9 is a schematic circuit diagram of an AC-driven light emitting device in an embodiment;

图10为一个实施例中直流驱动的发光器件的电路示意图;Fig. 10 is a schematic circuit diagram of a DC-driven light emitting device in an embodiment;

图11为一个实施例中发光器件在交流电流驱动下的电致发光光谱以及对应的CIE坐标和驱动信号示意图;Fig. 11 is a schematic diagram of the electroluminescence spectrum of the light-emitting device driven by alternating current and the corresponding CIE coordinates and driving signals in one embodiment;

图12为一个实施例中发光器件可实现的色域图;Fig. 12 is a color gamut diagram achievable by a light emitting device in an embodiment;

图13为一个实施例中发光器件在直流驱动下的电致发光光谱图;Fig. 13 is an electroluminescence spectrum diagram of a light-emitting device driven by direct current in one embodiment;

图14为一个实施例中发光器件在直流驱动下的电流密度-电压-亮度特性曲线图;Fig. 14 is a graph of the current density-voltage-brightness characteristic curve of the light-emitting device under DC driving in an embodiment;

图15为一个实施例中发光器件在直流驱动下的外量子效率-电流密度特性曲线图。Fig. 15 is a graph showing the external quantum efficiency-current density characteristic curve of the light-emitting device driven by direct current in one embodiment.

具体实施方式Detailed ways

为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application clearer, the present application will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.

可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一电极称为第二电极,且类似地,可将第二电极称为第一电极。第一电极和第二电极两者都是电极,但其不是同一电极。It can be understood that the terms "first", "second" and the like used in this application may be used to describe various elements herein, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element. For example, a first electrode could be termed a second electrode, and, similarly, a second electrode could be termed a first electrode, without departing from the scope of the present application. Both the first electrode and the second electrode are electrodes, but they are not the same electrode.

请参阅图1,图1示出了本实施例提供的一种发光器件的结构示意图。Please refer to FIG. 1 . FIG. 1 shows a schematic structural diagram of a light emitting device provided in this embodiment.

本实施例中,发光器件10包括:基底101;在基底101依次层叠设置的第一电极102、第一发光单元103、第二电极104、第二发光单元105以及第三电极106。In this embodiment, the light-emitting device 10 includes: a substrate 101 ; a first electrode 102 , a first light-emitting unit 103 , a second electrode 104 , a second light-emitting unit 105 and a third electrode 106 are sequentially stacked on the substrate 101 .

在本实施例中,基底101可以选用玻璃基板,也可以根据实际情况选用陶瓷基板或塑料柔性基板。In this embodiment, the substrate 101 can be a glass substrate, or a ceramic substrate or a plastic flexible substrate according to actual conditions.

在本实施例中,第一电极102、第二电极104以及第三电极106三者结合使用:一实施例中,第二电极104可以作为发光器件的第一控制电极与交流电源的第一端连接,第一电极102和第三电极106短接作为发光器件的第二控制电极与交流电源的第二端连接,从而使第一发光单元103和第二发光单元105反向并联连接(请参阅图2),以实现交流电压驱动,此时第一发光单元103和第二发光单元105轮流工作,使发光器件具有全色可调的发光颜色。另一实施例中,第二电极104为透明导电电极,具有与第一发光单元103和第二发光单元105相匹配的能级,作为叠层的中间连接层可将第一发光单元103和第二发光单元105连接,同时第一电极102和第三电极106则分别与直流电源两端相连,从而使第一发光单元103和第二发光单元105有效地串联连接(请参阅图3),实现直流电压驱动,此时第一发光单元103和第二发光单元105同时工作,使发光器件实现高效率、高亮度白光发射。In this embodiment, the first electrode 102, the second electrode 104 and the third electrode 106 are used in combination: in one embodiment, the second electrode 104 can be used as the first control electrode of the light emitting device and the first end of the AC power supply connection, the first electrode 102 and the third electrode 106 are short-circuited as the second control electrode of the light-emitting device and connected to the second end of the AC power supply, so that the first light-emitting unit 103 and the second light-emitting unit 105 are connected in antiparallel (refer to 2 ), to realize AC voltage driving, at this time the first light-emitting unit 103 and the second light-emitting unit 105 work in turn, so that the light-emitting device has a full-color adjustable light-emitting color. In another embodiment, the second electrode 104 is a transparent conductive electrode, which has an energy level matching that of the first light-emitting unit 103 and the second light-emitting unit 105. As an intermediate connecting layer of the stack, the first light-emitting unit 103 and the second light-emitting unit 103 can be connected to each other. The two light-emitting units 105 are connected, while the first electrode 102 and the third electrode 106 are respectively connected to two ends of the DC power supply, so that the first light-emitting unit 103 and the second light-emitting unit 105 are effectively connected in series (see FIG. 3 ), realizing Driven by DC voltage, the first light emitting unit 103 and the second light emitting unit 105 work at the same time, so that the light emitting device can emit white light with high efficiency and high brightness.

一实施例中,第二电极104的材料包括透明导电氧化物,例如包括铟掺杂氧化锡(ITO)、铝掺杂氧化锌(AZO)及铟掺杂氧化锌(IZO)中的一种或多种,从而使第二电极104具有很好的透光性和导电性;一实施例中,第二电极104的厚度为50nm-120nm,从而在具有良好的电学性能的同时,还具有较高的透过率。更具体地,交流驱动时,发光器件作为变色器件以实现发光颜色全色可调功能,可以设置第二电极104的厚度为50nm-120nm;直流驱动时,发光器件作为白光器件以实现高效率、高亮度白光发射,可以设置第二电极104的厚度为50nm-120nm。In one embodiment, the material of the second electrode 104 includes a transparent conductive oxide, such as one of indium-doped tin oxide (ITO), aluminum-doped zinc oxide (AZO) and indium-doped zinc oxide (IZO), or Various, so that the second electrode 104 has good light transmittance and conductivity; in one embodiment, the thickness of the second electrode 104 is 50nm-120nm, so that while having good electrical properties, it also has high the transmittance. More specifically, when driven by AC, the light-emitting device is used as a color-changing device to realize the full-color tunable function of the luminous color, and the thickness of the second electrode 104 can be set to 50nm-120nm; when driven by DC, the light-emitting device is used as a white light device to achieve high efficiency. For high-brightness white light emission, the thickness of the second electrode 104 can be set to 50nm-120nm.

一实施例中,第一电极102和第三电极106中的至少一个为透明电极,该透明电极的材料包括透明导电氧化物和导电金属中的一种。具体地,当仅第一电极102为透明电极时,可以使发光器件形成底发射器件;当仅第三电极106为透明电极时,可以使发光器件形成顶发射器件,相较底发射器件而言,可在相同电流密度下获得更高的发光功率;当第一电极102和第三电极106均为透明电极时,使得发光器件为透明发光器件,可应用于透明显示器中。由此,可以通过第一电极102和第三电极106的材料的选择,形成不同发射类型的发光器件,以扩大发光器件的实际需求量,适用于更多显示场合。In one embodiment, at least one of the first electrode 102 and the third electrode 106 is a transparent electrode, and the material of the transparent electrode includes one of transparent conductive oxide and conductive metal. Specifically, when only the first electrode 102 is a transparent electrode, the light-emitting device can be formed as a bottom-emitting device; when only the third electrode 106 is a transparent electrode, the light-emitting device can be formed as a top-emitting device. , higher luminous power can be obtained at the same current density; when the first electrode 102 and the third electrode 106 are both transparent electrodes, the light-emitting device is a transparent light-emitting device, which can be applied in transparent displays. Therefore, light emitting devices of different emission types can be formed by selecting the materials of the first electrode 102 and the third electrode 106, so as to expand the actual demand of the light emitting device and be applicable to more display occasions.

其中,透明导电氧化物包括铟掺杂氧化锡(ITO)、铝掺杂氧化锌(AZO)及铟掺杂氧化锌(IZO)中的一种或多种;导电金属包括银和银镁合金中的一种或多种,例如Ag纳米线、薄层Ag、薄层Ag:Mg等金属纳米线、薄层金属的其中一种或多种。Among them, the transparent conductive oxide includes one or more of indium-doped tin oxide (ITO), aluminum-doped zinc oxide (AZO) and indium-doped zinc oxide (IZO); the conductive metal includes silver and silver-magnesium alloy One or more of, for example, one or more of Ag nanowires, thin-layer Ag, thin-layer Ag:Mg and other metal nanowires, and thin-layer metals.

在本实施例中,第一发光单元103和第二发光单元105中的一个为颜色变化单元,且第一发光单元103和第二发光单元105中的一个为颜色固定单元,且颜色变化单元包括第一量子点发光层,第一量子点发光层的发光颜色随驱动电压参数的变化而变化。In this embodiment, one of the first light emitting unit 103 and the second light emitting unit 105 is a color changing unit, and one of the first light emitting unit 103 and the second light emitting unit 105 is a color fixed unit, and the color changing unit includes The first quantum dot light-emitting layer, the light-emitting color of the first quantum dot light-emitting layer changes with the change of the driving voltage parameter.

其中,颜色变化单元可以随电源的驱动电压参数改变发光颜色,例如,随驱动电压参数的变化发出红光、黄光或者绿光;颜色固定单元随驱动电压保持同一种颜色,例如,随驱动电压参数的变化保持发出蓝光。其中,驱动电压参数包括电压幅值、占空比及频率,通常频率在50HZ以上。从而,通过颜色变化单元和颜色固定单元的相互结合,可以使不同颜色的光按照不同比例混合,从而使发光器件具有全色可调的发光颜色,还可以实现高效率的白光发射。同时,第一发光单元和第二发光单元的发光层均不需要进行图形化处理,易于实现高分辨率和大面积显示。Among them, the color changing unit can change the luminescent color according to the driving voltage parameters of the power supply, for example, emit red light, yellow light or green light with the change of the driving voltage parameters; the color fixing unit maintains the same color with the driving voltage, for example, Parameter changes keep glowing blue. Wherein, the driving voltage parameters include voltage amplitude, duty cycle and frequency, and the frequency is generally above 50HZ. Therefore, through the mutual combination of the color changing unit and the color fixing unit, lights of different colors can be mixed in different proportions, so that the light emitting device has full-color adjustable luminescent colors, and high-efficiency white light emission can also be realized. At the same time, the light-emitting layers of the first light-emitting unit and the second light-emitting unit do not need to be patterned, so it is easy to realize high-resolution and large-area display.

示例性的,第一发光单元103为颜色变化单元,第二发光单元105为颜色固定单元:Exemplarily, the first light emitting unit 103 is a color changing unit, and the second light emitting unit 105 is a color fixing unit:

一实施例中,第一发光单元103为单功能层结构,包含第一量子点发光层,第一量子点发光层设置在第一电极102和第二电极104之间,从而实现薄型化的发光单元,有效简化发光器件的制备工艺。In one embodiment, the first light-emitting unit 103 is a single-functional layer structure, including a first quantum dot light-emitting layer, and the first quantum dot light-emitting layer is arranged between the first electrode 102 and the second electrode 104, thereby achieving thinner light-emitting The unit effectively simplifies the manufacturing process of the light-emitting device.

一实施例中,第一发光单元103为多功能层结构,从而进一步提高光电特性。请参阅图4,第一发光单元103包括第一量子点发光层301,还包括:第一空穴注入层302、第一空穴传输层303和第一电子传输层304。其中,第一空穴注入层302,层叠设置在第一电极远离基底的一侧;第一空穴传输层303,层叠设置在第一空穴注入层302远离基底的一侧;第一量子点发光层301层叠设置在第一空穴传输层303远离基底101的一侧;第一电子传输层304,层叠设置在第一量子点发光层301远离基底的一侧。In one embodiment, the first light emitting unit 103 is a multifunctional layer structure, so as to further improve the photoelectric characteristics. Referring to FIG. 4 , the first light emitting unit 103 includes a first quantum dot light emitting layer 301 , and further includes: a first hole injection layer 302 , a first hole transport layer 303 and a first electron transport layer 304 . Wherein, the first hole injection layer 302 is stacked on the side of the first electrode away from the substrate; the first hole transport layer 303 is stacked on the side of the first hole injection layer 302 away from the substrate; the first quantum dots The light emitting layer 301 is stacked on the side of the first hole transport layer 303 away from the substrate 101 ; the first electron transport layer 304 is stacked on the side of the first quantum dot light emitting layer 301 away from the base.

其中,第一空穴注入层302、第一空穴传输层303和第一电子传输层304各个功能层的材料及厚度在此不做限定,只要能够实现各个功能层的功能即可。同时,第一发光单元还可以根据实际情况增加功能层或减少其中的功能层。Wherein, the material and thickness of each functional layer of the first hole injection layer 302 , the first hole transport layer 303 and the first electron transport layer 304 are not limited here, as long as the functions of each functional layer can be realized. At the same time, the first light-emitting unit can also add functional layers or reduce functional layers therein according to actual conditions.

一实施例中,第二发光单元105为单功能层结构,包含第二量子点发光层或者有机发光层,从而实现薄型化的发光单元,有效简化发光器件的制备工艺。In one embodiment, the second light-emitting unit 105 is a single-functional layer structure, including a second quantum dot light-emitting layer or an organic light-emitting layer, so as to realize a thinner light-emitting unit and effectively simplify the manufacturing process of the light-emitting device.

一实施例中,第二发光单元105为多功能层结构,从而进一步提高光电特性。请参阅图5,第二发光单元105包括第二量子点发光层或者有机发光层401,还包括:第二空穴注入层402、第二空穴传输层403、第二电子传输层404以及电子注入层405。其中,第二空穴注入层402和第二空穴传输层403依次层叠设置在第二电极104远离基底的一侧;第二量子点发光层或有机发光层401层叠设置在第二空穴传输层403远离基底的一侧;第二电子传输层404和电子注入层405依次层叠设置在第二量子点发光层或有机发光层401远离基底的一侧。In one embodiment, the second light emitting unit 105 is a multifunctional layer structure, so as to further improve the photoelectric characteristics. Referring to Fig. 5, the second light-emitting unit 105 includes a second quantum dot light-emitting layer or an organic light-emitting layer 401, and also includes: a second hole injection layer 402, a second hole transport layer 403, a second electron transport layer 404, and electron Inject layer 405 . Wherein, the second hole injection layer 402 and the second hole transport layer 403 are sequentially stacked on the side of the second electrode 104 away from the substrate; the second quantum dot light-emitting layer or organic light-emitting layer 401 is stacked on the second hole transport layer The layer 403 is away from the substrate; the second electron transport layer 404 and the electron injection layer 405 are sequentially stacked on the side of the second quantum dot light-emitting layer or organic light-emitting layer 401 away from the substrate.

其中,第二空穴注入层402、第二空穴传输层403、第二电子传输层404以及电子注入层405各个功能层的材料及厚度在此不做限定,只要能够实现各个功能层的功能即可。同时,第二发光单元105还可以根据实际情况增加功能层(例如在有机发光层和第二空穴传输层之间增设电子阻挡层)或减少其中的功能层。Wherein, the material and thickness of each functional layer of the second hole injection layer 402, the second hole transport layer 403, the second electron transport layer 404 and the electron injection layer 405 are not limited here, as long as the functions of each functional layer can be realized That's it. At the same time, the second light emitting unit 105 can also add functional layers (such as adding an electron blocking layer between the organic light emitting layer and the second hole transport layer) or reduce the functional layers therein according to actual conditions.

一实施例中,第一量子点发光层包括叠层设置的红色量子点发光层和绿色量子点发光层;或者第一量子点发光层的材料包括红色量子点和绿色量子点的混合发光材料。从而通过红色量子点和绿色量子点,第一量子点发光层的发光颜色随驱动电压参数的改变而改变。In one embodiment, the first quantum dot light emitting layer includes a stacked red quantum dot light emitting layer and a green quantum dot light emitting layer; or the material of the first quantum dot light emitting layer includes a mixed light emitting material of red quantum dots and green quantum dots. Therefore, through the red quantum dots and the green quantum dots, the luminescent color of the first quantum dot light-emitting layer changes with the change of the driving voltage parameter.

一实施例中,第二量子点发光层的材料包括蓝色量子点发光材料,有机发光层的材料包括蓝色有机发光材料。从而第二量子点发光层的蓝色量子点发光材料在电压驱动下实现蓝色发光,有机发光层的蓝色有机发光材料在电压驱动下实现蓝色发光。其中,蓝色量子点发光材料相比于蓝色有机发光材料,具有更好的色域。In one embodiment, the material of the second quantum dot light-emitting layer includes blue quantum dot light-emitting material, and the material of the organic light-emitting layer includes blue organic light-emitting material. Therefore, the blue quantum dot luminescent material of the second quantum dot luminescent layer realizes blue light emission under voltage driving, and the blue organic light emitting material of the organic light emitting layer realizes blue light emission under voltage driving. Among them, the blue quantum dot luminescent material has a better color gamut than the blue organic luminescent material.

一实施例中,上述量子点发光材料包括CdSe基纳米发光材料、InP基纳米发光材料中的至少一种;有机发光材料包括有机磷光发光材料、有机荧光发光材料和有机延迟荧光发光材料中的至少一种。In one embodiment, the quantum dot luminescent material includes at least one of CdSe-based nano-luminescent material and InP-based nano-luminescent material; the organic luminescent material includes at least one of organic phosphorescent luminescent material, organic fluorescent luminescent material and organic delayed fluorescent luminescent material. A sort of.

需要说明的是,上述各层的形成工艺不受限定,包括激光刻蚀、旋涂法、蒸镀法、射频磁控溅射、热蒸镀以及全溶液法等形成工艺。例如,采用激光刻蚀图案化基底,采用溅射法沉积第一电极和第二电极,采用旋涂法沉积第一发光单元和第二发光单元的各个功能层,采用热蒸镀沉积第三电极。可以理解,该形成工艺可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。It should be noted that the formation process of the above layers is not limited, including laser etching, spin coating method, evaporation method, radio frequency magnetron sputtering, thermal evaporation and full solution method and other formation processes. For example, the substrate is patterned by laser etching, the first electrode and the second electrode are deposited by sputtering, the functional layers of the first light-emitting unit and the second light-emitting unit are deposited by spin coating, and the third electrode is deposited by thermal evaporation. . It can be understood that the forming process can be selected and adjusted according to actual application conditions and product performance, and no further limitation is made here.

本实施例提供的发光器件,包括基底、第一电极、第一发光单元、第二电极、第二发光单元以及第三电极。其中,第一发光单元和第二发光单元中的一个为颜色变化单元,且第一发光单元和第二发光单元中的一个为颜色固定单元,颜色变化单元的发光颜色随驱动电压参数的变化而变化。通过改变第二电极、第一电极及第三电极与电源的连接方式,一方面能够实现直流电压驱动,使第一发光单元和第二发光单元同时工作,随着驱动电压参数的改变发光器件实现高效率、高亮度白光发射,可应用于白光照明;另一方面能够实现交流电压驱动,使第一发光单元和第二发光单元轮流工作,随着驱动电压参数的改变,使发光器件具有全色可调的发光颜色,可应用于全彩显示器。同时,第一发光单元和第二发光单元的发光层均不需要进行图形化处理,易于实现高分辨率和大面积显示。The light emitting device provided in this embodiment includes a substrate, a first electrode, a first light emitting unit, a second electrode, a second light emitting unit and a third electrode. Wherein, one of the first light emitting unit and the second light emitting unit is a color changing unit, and one of the first light emitting unit and the second light emitting unit is a color fixing unit, and the light emitting color of the color changing unit varies with the change of the driving voltage parameter Variety. By changing the connection mode between the second electrode, the first electrode and the third electrode and the power supply, on the one hand, DC voltage driving can be realized, so that the first light-emitting unit and the second light-emitting unit can work at the same time, and the light-emitting device can be realized by changing the driving voltage parameters. High-efficiency, high-brightness white light emission, which can be applied to white light lighting; on the other hand, it can realize AC voltage drive, so that the first light-emitting unit and the second light-emitting unit work in turn, and the light-emitting device has a full color with the change of the driving voltage parameters. Adjustable luminous color, can be applied to full-color display. At the same time, the light-emitting layers of the first light-emitting unit and the second light-emitting unit do not need to be patterned, so it is easy to realize high-resolution and large-area display.

请参阅图6,在图1的基础上,图6示出了本实施例提供的另一种发光器件的结构示意图。Please refer to FIG. 6 . On the basis of FIG. 1 , FIG. 6 shows a schematic structural diagram of another light emitting device provided by this embodiment.

在本实施例中,发光器件20包括:基底201;在基底201依次层叠设置的第一电极202、第一发光单元203、第二电极204、第二发光单元205以及第三电极206;发光器件还包括溅射缓冲层207,设置在第一发光单元203和第二电极204之间,以在使用溅射法制备第二电极204时保护第一发光单元203不被损伤。In this embodiment, the light-emitting device 20 includes: a substrate 201; a first electrode 202, a first light-emitting unit 203, a second electrode 204, a second light-emitting unit 205, and a third electrode 206 that are sequentially stacked on the substrate 201; It also includes a sputtering buffer layer 207 disposed between the first light emitting unit 203 and the second electrode 204 to protect the first light emitting unit 203 from being damaged when the second electrode 204 is prepared by sputtering.

一实施例中,溅射缓冲层207包括金属层和ZnO基纳米颗粒层中的一层或两者的叠层。由于金属和ZnO基纳米粒子具有导电性,有利于电荷的传输,从而溅射缓冲层207抵抗溅射第二电极204过程的轰击并阻止原子的渗透时,不会对第一发光单元203的电学性能和光学性能造成负面影响。由此,本实施例通过溅射缓冲层207的设置,可以在保护第一发光单元203的同时提高第一发光单元203的光电性能,从而进一步提高发光器件的稳定性和光电性能。In one embodiment, the sputtering buffer layer 207 includes one or a stack of the metal layer and the ZnO-based nanoparticle layer. Since metal and ZnO-based nanoparticles have electrical conductivity, it is beneficial to the transport of charges, so that when the sputtering buffer layer 207 resists the bombardment of the sputtering second electrode 204 process and prevents the penetration of atoms, it will not affect the electrical properties of the first light-emitting unit 203. Performance and optical performance are negatively affected. Therefore, in this embodiment, by setting the sputtering buffer layer 207, the photoelectric performance of the first light emitting unit 203 can be improved while protecting the first light emitting unit 203, thereby further improving the stability and photoelectric performance of the light emitting device.

一实施例中,金属层的厚度为1nm-5nm,金属层可以选用Al层,例如Al超薄金属薄膜,从而在能够保护第一发光单元的同时进一步提高第一发光单元的光电性能;ZnO基纳米颗粒层的厚度为40nm-100nm,从而在能够保护第一发光单元的同时进一步提高第一发光单元的光电性能。In one embodiment, the thickness of the metal layer is 1nm-5nm, and the metal layer can be an Al layer, such as an Al ultra-thin metal film, so as to further improve the photoelectric performance of the first light-emitting unit while protecting the first light-emitting unit; ZnO-based The nanoparticle layer has a thickness of 40nm-100nm, so as to further improve the photoelectric performance of the first light-emitting unit while protecting the first light-emitting unit.

需要说明的是,基底201、第一电极202、第一发光单元203、第二电极204、第二发光单元205以及第三电极206请参见上一实施例的基底101、第一电极102、第一发光单元103、第二电极104、第二发光单元105以及第三电极106相关描述,在此不再赘述。It should be noted that, for the substrate 201, the first electrode 202, the first light emitting unit 203, the second electrode 204, the second light emitting unit 205 and the third electrode 206, please refer to the substrate 101, the first electrode 102, the second electrode 206 in the previous embodiment. A light-emitting unit 103 , the second electrode 104 , the second light-emitting unit 105 and the third electrode 106 are described, and will not be repeated here.

请参阅图7,图7示出了上述实施例提供的发光器件的发光颜色调节方法的流程图。调节方法包括步骤701至步骤704。具体地:Please refer to FIG. 7 . FIG. 7 shows a flow chart of the method for adjusting the light emission color of the light emitting device provided in the above embodiment. The adjustment method includes step 701 to step 704 . specifically:

步骤701,将第一电极和第三电极短接后与交流电源的第一端相连,将第二电极与交流电源的第二端相连。Step 701, short-circuit the first electrode and the third electrode and connect to the first terminal of the AC power supply, and connect the second electrode to the second terminal of the AC power supply.

步骤702,调节交流电源的驱动电压参数,以调节发光器件的发光颜色。Step 702, adjusting the driving voltage parameters of the AC power supply to adjust the light emitting color of the light emitting device.

步骤703,将第一电极与直流电源的第一端相连,将第三电极与直流电源的第二端相连。Step 703, connect the first electrode with the first terminal of the DC power supply, and connect the third electrode with the second terminal of the DC power supply.

步骤704,调节直流电源的驱动电压参数,以调节发光器件的发光颜色。Step 704, adjusting the driving voltage parameters of the DC power supply to adjust the light emitting color of the light emitting device.

在本实施例中,通过步骤701至步骤702可以使发光器件具有全色可调的发光颜色,发光器件各电极的具体连接方式请结合参阅上述实施例图2,在此不再赘述;通过步骤703至步骤704可以使发光器件实现高效率、高亮度白光发射,发光器件各电极的具体连接方式请结合参阅上述实施例图3,在此不再赘述。In this embodiment, through steps 701 to 702, the light-emitting device can have a full-color adjustable light-emitting color. For the specific connection method of each electrode of the light-emitting device, please refer to Figure 2 of the above-mentioned embodiment, and will not be repeated here; through the steps From step 703 to step 704, the light-emitting device can realize high-efficiency, high-brightness white light emission. For the specific connection method of each electrode of the light-emitting device, please refer to FIG. 3 of the above-mentioned embodiment, and will not be repeated here.

应该理解的是,虽然图7的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。It should be understood that although the various steps in the flow chart of FIG. 7 are displayed sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders.

以下为上述实施例中的具体实施方式,需要说明的是,上述实施例不限定于以下具体实施例,在不改变主权利的范围内,可以适当的进行变更实施:The following are the specific implementation methods in the above-mentioned embodiments. It should be noted that the above-mentioned embodiments are not limited to the following specific embodiments, and can be appropriately modified and implemented within the scope of not changing the main right:

实施例1Example 1

图8为本实施例提供的发光器件的结构示意图。Fig. 8 is a schematic structural diagram of the light emitting device provided by this embodiment.

该发光器件由下往上依次层叠设置有玻璃基板801、第一电极802、第一发光单元803、溅射缓冲层804、第二电极805、第二发光单元806和第三电极807。The light-emitting device is sequentially stacked with a glass substrate 801 , a first electrode 802 , a first light-emitting unit 803 , a sputtering buffer layer 804 , a second electrode 805 , a second light-emitting unit 806 and a third electrode 807 .

其中,第一发光单元803为颜色变化单元,且为色彩可调的QLED,包括空穴注入层8031、空穴传输层8032、第一量子点发光层8033以及电子传输层8034;第二发光单元806为颜色固定单元,且为荧光蓝色OLED,包括空穴注入层8061、空穴传输层8062、有机发光层8063、电子传输层8064以及电子注入层8065。Wherein, the first light emitting unit 803 is a color changing unit, and is a color adjustable QLED, including a hole injection layer 8031, a hole transport layer 8032, a first quantum dot light emitting layer 8033 and an electron transport layer 8034; the second light emitting unit 806 is a color fixing unit, which is a fluorescent blue OLED, including a hole injection layer 8061 , a hole transport layer 8062 , an organic light emitting layer 8063 , an electron transport layer 8064 and an electron injection layer 8065 .

其中,玻璃基板801和第一电极802(透明电极)为采用激光烧蚀或光刻技术图案化的ITO玻璃基板。Wherein, the glass substrate 801 and the first electrode 802 (transparent electrode) are ITO glass substrates patterned by laser ablation or photolithography.

其中,空穴注入层8031为聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)(PEDOT:PSS)薄膜,其制备方法为:将PEDORT:PSS溶液以3000r/min的转速旋涂成膜,然后以150℃烘烤15min。空穴传输层8032为聚[(N,N'-(4-正丁基苯基)-N,N'-二苯基-1,4-苯二胺)-ALT-(9,9-二正辛基芴基-2,8-二基)]Poly[(9,9-dioctylfluorenyl-2,8-diyl)-co(4,4-(N-(p-butylphenyl))diphenylamine)]Wherein, the hole injection layer 8031 is a poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) film, and its preparation method is as follows: The PEDORT:PSS solution was spin-coated at 3000r/min to form a film, and then baked at 150°C for 15min. The hole transport layer 8032 is poly[(N,N'-(4-n-butylphenyl)-N,N'-diphenyl-1,4-phenylenediamine)-ALT-(9,9-di n-octylfluorenyl-2,8-diyl)]Poly[(9,9-dioctylfluorenyl-2,8-diyl)-co(4,4-(N-(p-butylphenyl))diphenylamine)]

(TFB)薄膜,其制备方法为:将8mg/ml的TFB的氯苯溶液以3000r/min的转速旋涂成膜,然后以110℃烘烤10min。(TFB) film, its preparation method is: the chlorobenzene solution of 8mg/ml TFB is spin-coated at the speed of 3000r/min to form a film, then baked at 110°C for 10min.

其中,第一量子点发光层8033为CdSe/ZnS核壳结构的红色量子点与绿色量子点的混合薄膜,其制备方法为:将10mg/mL红色量子点的正辛烷溶液和10mg/mL绿色量子点的正辛烷溶液按照不同的体积比配置成红色量子点与绿色量子点的比例为1:20(变色器件)或1:9(白光器件)的混合溶液,并以3000r/min的转速旋涂成膜,然后以100℃烘烤5min。Among them, the first quantum dot light-emitting layer 8033 is a mixed film of CdSe/ZnS core-shell structure red quantum dots and green quantum dots, and its preparation method is: 10mg/mL red quantum dot n-octane solution and 10mg/mL green The n-octane solution of quantum dots is configured into a mixed solution of red quantum dots and green quantum dots with a ratio of 1:20 (color-changing device) or 1:9 (white light device) according to different volume ratios, and at a speed of 3000r/min Spin-coat to form a film, and then bake at 100°C for 5min.

其中,电子传输层8034为ZnMgO纳米颗粒薄膜,其制备方法为:将20mg/ml的ZnMgO纳米颗粒的乙醇溶液以2500r/min的转速旋涂成膜,然后以100℃烘烤10min。Wherein, the electron transport layer 8034 is a ZnMgO nanoparticle thin film, which is prepared by spin-coating a 20mg/ml ethanol solution of ZnMgO nanoparticles at a speed of 2500r/min, and then baking at 100°C for 10min.

其中,溅射缓冲层804为利用蒸镀方法制备的2nm的Al超薄金属薄膜;第二电极805为利用溅射方法制备的60nm(变色发光器件)或者80nm(白光发光器件)的IZO透明氧化物薄膜。Among them, the sputtering buffer layer 804 is a 2nm Al ultra-thin metal film prepared by evaporation; the second electrode 805 is a 60nm (color-changing light-emitting device) or 80nm (white light-emitting device) IZO transparent oxide film prepared by sputtering. object film.

其中,空穴注入层8061的材料为三氧化钼(MoO3),厚度为8nm;空穴传输层8062的材料为N,N'-[二(1-萘基)-N,N'-二苯基]-1,1'-联苯基)-4,4'-二胺N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4″-diamine(NPB),厚度为45nm;有机发光层8063的材料为9,10-二(2-萘基)-2-甲基蒽2-methyl-9,10-di(2-naphthyl)anthracene(MADN)和4,4′-[1,4-亚苯基二-(1E)-2,1-乙烯二基]二[N,N-二苯基苯胺]9,10-p-bis(p-N,N-diphenyl-aminostyryl)benzene(DSA-Ph)的混合薄膜(DSA-Ph/MADN=12%),其厚度为25nm;电子传输层8064的材料为2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole(TPBi),厚度为40nm;电子注入层8065的材料为氟化锂(LiF),厚度为1nm。Wherein, the material of the hole injection layer 8061 is molybdenum trioxide (MoO 3 ) with a thickness of 8 nm; the material of the hole transport layer 8062 is N,N'-[bis(1-naphthyl)-N,N'-di Phenyl]-1,1'-bisphenyl)-4,4'-diamineN,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4, 4″-diamine (NPB), with a thickness of 45nm; the material of the organic light-emitting layer 8063 is 9,10-di(2-naphthyl)-2-methylanthracene 2-methyl-9,10-di(2-naphthyl) anthracene (MADN) and 4,4′-[1,4-phenylenebis-(1E)-2,1-ethylenediyl]bis[N,N-diphenylaniline]9,10-p-bis (pN, N-diphenyl-aminostyryl) benzene (DSA-Ph) mixed film (DSA-Ph/MADN=12%), its thickness is 25nm; the material of the electron transport layer 8064 is 2,2′,2″-( 1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole (TPBi), with a thickness of 40nm; the electron injection layer 8065 is made of lithium fluoride (LiF), with a thickness of 1nm.

其中,第三电极807为利用热蒸镀制备的100nm的Al电极。Wherein, the third electrode 807 is a 100 nm Al electrode prepared by thermal evaporation.

请结合参阅图9-图10,图9为本实施例提供的交流驱动的发光器件的电路示意图,图10为本实施例提供的直流驱动的发光器件的电路示意图。Please refer to FIGS. 9-10 in combination. FIG. 9 is a schematic circuit diagram of an AC-driven light emitting device provided in this embodiment, and FIG. 10 is a circuit schematic diagram of a DC-driven light emitting device provided in this embodiment.

请结合参阅图11-图12,图11为本实施例提供的发光器件在交流电流驱动下的电致发光光谱以及对应的CIE坐标和驱动信号示意图;图12为本实施例提供的发光器件可实现的色域图。Please refer to FIG. 11-FIG. 12 in combination. FIG. 11 is a schematic diagram of the electroluminescent spectrum of the light-emitting device provided in this embodiment under the driving of an alternating current and the corresponding CIE coordinates and driving signals; FIG. 12 is a schematic diagram of the light-emitting device provided in this embodiment. Realized gamut map.

从图11-图12中可以看出,通过控制交流电源的幅值、占空比和频率等参数可以实现器件发光颜色从从红色到绿色,绿色到蓝色,蓝色到红色和蓝色到橙色的变化,可实现的色域高达63%NTSC。It can be seen from Figure 11-Figure 12 that by controlling the parameters such as the amplitude, duty cycle and frequency of the AC power supply, the luminous color of the device can be changed from red to green, green to blue, blue to red and blue to blue. Orange variations, achievable color gamut up to 63% NTSC.

请结合参阅图13-图15,图13为本实施例提供的发光器件在直流驱动下的电致发光光谱图;图14为本实施例提供的发光器件在直流驱动下的电流密度-电压-亮度特性曲线图;图15为本实施例提供的发光器件在直流驱动下的外量子效率-电流密度特性曲线图。Please refer to Figure 13-Figure 15 in combination, Figure 13 is the electroluminescence spectrum diagram of the light-emitting device provided in this embodiment under DC driving; Figure 14 is the current density-voltage-voltage of the light-emitting device provided in this embodiment under DC driving Luminance characteristic curve; FIG. 15 is the external quantum efficiency-current density characteristic curve of the light-emitting device provided in this embodiment under direct current driving.

从图中可以看出,发光器件在直流电源驱动下,第一发光单元(红色-绿色QLED)和第二发光单元(蓝色OLED)的发光光谱、电流-电压特性和外量子效率等参数得到很好的叠加(叠层白光),说明第二电极具有优异的电学性能,能很好的串联连接第一发光单元和第二发光单元。该发光器件成功实现了107K cd/m2的高亮度白光发射和16.91%的高外量子效率。It can be seen from the figure that the light-emitting device is driven by a DC power supply, and the parameters such as the emission spectrum, current-voltage characteristics and external quantum efficiency of the first light-emitting unit (red-green QLED) and the second light-emitting unit (blue OLED) are obtained. Very good stacking (stacked white light) indicates that the second electrode has excellent electrical properties and can well connect the first light-emitting unit and the second light-emitting unit in series. The light-emitting device successfully achieved a high-brightness white light emission of 107K cd/m 2 and a high external quantum efficiency of 16.91%.

实施例2Example 2

本实施例与实施例1的区别仅在于,第二发光单元为磷光蓝色OLED,包括依次层叠设置的空穴注入层、空穴传输层、电子阻挡层、有机发光层、电子传输层和电子注入层,其制备方法为热蒸镀。The only difference between this embodiment and Embodiment 1 is that the second light-emitting unit is a phosphorescent blue OLED, which includes a hole injection layer, a hole transport layer, an electron blocking layer, an organic light-emitting layer, an electron transport layer, and an electron barrier layer stacked in sequence. The injection layer is prepared by thermal evaporation.

其中,空穴注入层的材料为2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲dipyrazino[2,3-f:2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile(HATCN),厚度为20nm。空穴传输层的材料为1,1-双[4-[N,N-二(对甲苯)氨基]苯基]环己烷1,1-bis[4-[N,N-di(p-tolyl)aminophenyl]cyclohexane(TAPC),厚度为40nm。电子阻挡层的材料为1,3-二咔唑-9-基苯1,3-bis(9-carbazolyl)benzene(mCP),厚度为5nm。有机发光层的材料为二(4,6-二氟苯基吡啶-C2,N)吡啶甲酰合铱Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III)(Firpic)和9-(3-(9H-carbazole-9-yl)phenyl)-3-(dibromophenylphosphoryl)-9H-carbazole(mCPPO1)的混合薄膜(Firpic/mCPPO1=8%),其厚度为30nm。电子传输层的材料为1,3,5-三[(3-吡啶基)-3-苯基]苯1,3,5-Tri(m-pyridin-3-ylphenyl)benzene)(TmPyPB),厚度为30nm。电子注入层的材料为氟化锂(LiF),厚度为1nm。Wherein, the material of the hole injection layer is 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene dipyrazino[2,3-f :2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HATCN), with a thickness of 20nm. The material of the hole transport layer is 1,1-bis[4-[N,N-bis(p-toluene)amino]phenyl]cyclohexane 1,1-bis[4-[N,N-di(p- tolyl)aminophenyl]cyclohexane (TAPC) with a thickness of 40nm. The material of the electron blocking layer is 1,3-dicarbazol-9-ylbenzene 1,3-bis(9-carbazolyl)benzene (mCP), and the thickness is 5 nm. The material of the organic light-emitting layer is bis(4,6-difluorophenylpyridine-C2,N)pyridinium iridium Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III )(Firpic) and 9-(3-(9H-carbazole-9-yl)phenyl)-3-(dibromophenylphosphoryl)-9H-carbazole(mCPPO1) mixed thin film (Firpic/mCPPO1=8%) with a thickness of 30 nm . The material of the electron transport layer is 1,3,5-tris[(3-pyridinyl)-3-phenyl]benzene 1,3,5-Tri(m-pyridin-3-ylphenyl)benzene)(TmPyPB), the thickness 30nm. The electron injection layer is made of lithium fluoride (LiF) with a thickness of 1 nm.

相较于实施例1的荧光蓝色OLED,实施例2第二发光单元采用的磷光蓝色OLED发光效率更高,使得发光器件的整体发光效率更高。Compared with the fluorescent blue OLED in Example 1, the phosphorescent blue OLED used in the second light-emitting unit of Example 2 has higher luminous efficiency, so that the overall luminous efficiency of the light-emitting device is higher.

实施例3Example 3

本实施例与实施例1的区别仅在于,第一电极为基于Al/ITO的反射电极,使用溅射的方法制备;第三电极为透明电极,采用厚度15nm的Ag:Mg薄层金属,使用蒸镀制作。The only difference between this embodiment and Embodiment 1 is that the first electrode is a reflective electrode based on Al/ITO, which is prepared by sputtering; the third electrode is a transparent electrode, which adopts Ag:Mg thin layer metal with a thickness of 15nm, using Made by vapor deposition.

相较于实施例1的底发射器件,实施例3为顶发射器件,具有更大的开口率,可在相同电流密度下获得更高的发光功率。Compared with the bottom-emitting device of Example 1, Example 3 is a top-emitting device, which has a larger aperture ratio and can obtain higher luminous power at the same current density.

实施例4Example 4

本实施例与实施例1的区别仅在于,第二电极为60nm-80nm的ITO薄膜,使用溅射的方法制备。The only difference between this embodiment and embodiment 1 is that the second electrode is an ITO thin film of 60nm-80nm, prepared by sputtering.

相较于实施例1第二电极的IZO透明氧化物薄膜,实施例4第二电极采用的ITO薄膜,同样具有优异的透光性和导电性,使得整体器件具有较高的发光效率和光电特性。Compared with the IZO transparent oxide film used in the second electrode of Example 1, the ITO film used in the second electrode of Example 4 also has excellent light transmittance and electrical conductivity, so that the overall device has higher luminous efficiency and photoelectric characteristics. .

实施例5Example 5

本实施例与实施例1的区别仅在于,第二发光单元为蓝色QLED,包括依次层叠设置的空穴注入层、空穴传输层、量子点发光层、电子传输层,采用全溶液方法制备。The difference between this embodiment and Embodiment 1 is that the second light-emitting unit is a blue QLED, which includes a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, and an electron transport layer stacked in sequence, and is prepared by a full solution method. .

其中,空穴注入层的材料为聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)(PEDOT:PSS),其制备方法为:将PEDORT:PSS溶液以3000r/min的转速旋涂成膜,然后以150℃烘烤15min。空穴传输层的材料为聚[(N,N'-(4-正丁基苯基)-N,N'-二苯基-1,4-苯二胺)-ALT-(9,9-二正辛基芴基-2,7-二基)]Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co(4,4-(N-(p-butylphenyl))diphenylamine)](TFB),其制备方法为:将8mg/ml的TFB的氯苯溶液以3000r/min的转速旋涂成膜,然后以110℃烘烤10min。量子点发光层的材料为CdSe/ZnS核壳结构的蓝色色量子点,其制备方法为:将10mg/mL蓝色量子点的正辛烷溶液以3000r/min的转速旋涂成膜,然后以100℃烘烤5min。电子传输层的材料为ZnMgO纳米颗粒薄膜,其制备方法为:将20mg/ml的ZnMgO纳米颗粒的乙醇溶液以2500r/min的转速旋涂成膜,然后以100℃烘烤10min。Wherein, the material of the hole injection layer is poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS), and its preparation method is: The PEDORT:PSS solution was spin-coated at 3000r/min to form a film, and then baked at 150°C for 15min. The material of the hole transport layer is poly[(N,N'-(4-n-butylphenyl)-N,N'-diphenyl-1,4-phenylenediamine)-ALT-(9,9- Din-octylfluorenyl-2,7-diyl)]Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co(4,4-(N-(p-butylphenyl))diphenylamine)]( TFB), its preparation method is: 8 mg/ml TFB chlorobenzene solution is spin-coated at a speed of 3000 r/min to form a film, and then baked at 110° C. for 10 min. The material of the quantum dot luminescent layer is the blue color quantum dot of CdSe/ZnS core-shell structure, and its preparation method is: the n-octane solution of 10mg/mL blue quantum dot is spin-coated with the speed of 3000r/min to form a film, and then with Bake at 100°C for 5 minutes. The material of the electron transport layer is a ZnMgO nanoparticle thin film, and its preparation method is: spin coating a 20mg/ml ethanol solution of ZnMgO nanoparticles at a speed of 2500r/min to form a film, and then bake at 100°C for 10min.

相较于实施例1的荧光蓝色OLED,实施例5第二发光单元采用的蓝色QLED使得发光器件的色域进一步提高。Compared with the fluorescent blue OLED in Example 1, the blue QLED used in the second light emitting unit of Example 5 further improves the color gamut of the light emitting device.

实施例6Example 6

本实施例与实施例5的区别仅在于,第三电极为Ag纳米线,使用旋涂制作。The only difference between this embodiment and Embodiment 5 is that the third electrode is Ag nanowires, which are made by spin coating.

相较于实施例5的底发射器件,实施例6为透明发光器件,可应用于透明显示器中。Compared with the bottom-emitting device of Embodiment 5, Embodiment 6 is a transparent light-emitting device, which can be applied to transparent displays.

实施例7Example 7

本实施例与实施例5的区别仅在于,第一发光单元的量子点发光层为蓝色量子点薄膜,第二发光单元的量子点发光层为红色和绿色混合量子点薄膜。The difference between this embodiment and Embodiment 5 is that the quantum dot light-emitting layer of the first light-emitting unit is a blue quantum dot film, and the quantum dot light-emitting layer of the second light-emitting unit is a red and green mixed quantum dot film.

其中,第一发光单元的量子点制备方法为:将10mg/mL CdSe/ZnS核壳结构的蓝色量子点的正辛烷溶液以3000r/min的转速旋涂成膜,然后以100℃烘烤5min。第二发光单元的量子点制备方法为:将10mg/mL CdSe/ZnS核壳结构的绿色量子点和10mg/mL CdSe/ZnS核壳结构的红色量子点的正辛烷溶液以不同的体积比配置成红色量子点与绿色量子点的混合溶液,并以3000r/min的转速旋涂成膜,然后以100℃烘烤5min。Among them, the quantum dot preparation method of the first light-emitting unit is: spin-coat the n-octane solution of blue quantum dots with 10mg/mL CdSe/ZnS core-shell structure at a speed of 3000r/min to form a film, and then bake at 100°C 5min. The quantum dot preparation method of the second light-emitting unit is as follows: the n-octane solutions of the green quantum dots with 10 mg/mL CdSe/ZnS core-shell structure and the red quantum dots with 10 mg/mL CdSe/ZnS core-shell structure are configured in different volume ratios A mixed solution of red quantum dots and green quantum dots was formed, and spin-coated at a speed of 3000r/min to form a film, and then baked at 100°C for 5min.

相较于实施例5第一发光单元为颜色变化单元且第二发光单元为颜色固定单元,实施例7第一发光单元为颜色固定单元且第二发光单元为颜色变化单元,同样可以实现发光器件的发光颜色全色可调,获得高效率白光发射。Compared with Embodiment 5, where the first light-emitting unit is a color-changing unit and the second light-emitting unit is a color-fixed unit, in Embodiment 7, the first light-emitting unit is a color-fixed unit and the second light-emitting unit is a color-changing unit, and the light-emitting device can also be realized The luminous color is adjustable in all colors, and high-efficiency white light emission is obtained.

本实施例还提供了一种显示装置,包括如上述实施例所述的发光器件,该显示装置可以实现高分辨率和大面积显示,发光颜色全色可调,进行全彩显示;还可以获得高效率白光发射,进行白光照明。This embodiment also provides a display device, including the light-emitting device as described in the above-mentioned embodiments, the display device can realize high resolution and large-area display, and the luminous color can be adjusted in full color to perform full-color display; it can also obtain High-efficiency white light emission for white light illumination.

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present application, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present application. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the scope of protection of the patent application should be based on the appended claims.

Claims (11)

1. A light emitting device, comprising:
a substrate;
a first electrode, a first light-emitting unit, a second electrode, a second light-emitting unit and a third electrode which are sequentially stacked on the substrate; wherein:
the second electrode is a transparent conductive electrode;
one of the first light emitting unit and the second light emitting unit is a color change unit, one of the first light emitting unit and the second light emitting unit is a color fixing unit, the color change unit comprises a first quantum dot light emitting layer, the color fixing unit comprises a second quantum dot light emitting layer or an organic light emitting layer, the second electrode is used as a first control electrode of the light emitting device and is connected with a first end of an alternating current power supply, the first electrode and the third electrode are in short circuit, used as a second control electrode of the light emitting device, are connected with a second end of the alternating current power supply, and accordingly the first light emitting unit and the second light emitting unit are connected in anti-parallel to achieve alternating current voltage driving, and the light emitting color of the first quantum dot light emitting layer changes along with the change of driving voltage parameters, so that the light emitting device has full-color adjustable light emitting color;
the first quantum dot light-emitting layer comprises a red quantum dot light-emitting layer and a green quantum dot light-emitting layer which are arranged in a laminated manner; or the material of the first quantum dot luminescent layer comprises a mixed luminescent material of red quantum dots and green quantum dots; the material of the second quantum dot light-emitting layer comprises a blue quantum dot light-emitting material, and the material of the organic light-emitting layer comprises a blue organic light-emitting material.
2. The light-emitting device according to claim 1, wherein the first light-emitting unit is the color-changing unit, the color-changing unit further comprising:
a first hole injection layer stacked on a side of the first electrode away from the substrate;
the first quantum dot light-emitting layer is arranged on one side of the first hole transport layer away from the substrate in a stacked manner;
and the first electron transmission layer is laminated on one side of the first quantum dot light-emitting layer far away from the substrate.
3. The light-emitting device according to claim 1, wherein the color fixing unit further comprises:
a second hole injection layer, a second hole transport layer, a second electron transport layer, and an electron injection layer; wherein:
the second hole injection layer and the second hole transport layer are sequentially stacked on one side of the second electrode away from the substrate;
the second quantum dot light-emitting layer or the organic light-emitting layer is stacked on one side of the second hole transport layer far away from the substrate;
the second electron transport layer and the electron injection layer are sequentially stacked on one side, far away from the substrate, of the second quantum dot light-emitting layer or the organic light-emitting layer.
4. A light emitting device according to any one of claims 1-3 wherein the material of the second electrode comprises a transparent conductive oxide; and/or the thickness of the second electrode is 50nm-120nm.
5. A light-emitting device according to any one of claims 1 to 3, wherein at least one of the first electrode and the third electrode is a transparent electrode.
6. The light-emitting device according to claim 5, wherein the material of the transparent electrode comprises one of a transparent conductive oxide and a conductive metal.
7. A light emitting device according to any one of claims 1-3, further comprising:
and a sputtering buffer layer disposed between the first light emitting unit and the second electrode.
8. The light emitting device of claim 7, wherein the sputter buffer layer comprises a stack of one or both of a metal layer and a ZnO-based nanoparticle layer.
9. The light-emitting device according to claim 8, wherein the thickness of the metal layer is 1nm to 5nm, and the thickness of the ZnO-based nanoparticle layer is 40nm to 100nm.
10. A light-emitting color adjustment method for adjusting a light-emitting color of a light-emitting device according to any one of claims 1 to 9, comprising:
the first electrode and the third electrode are connected with a first end of an alternating current power supply after being short-circuited, and the second electrode is connected with a second end of the alternating current power supply;
adjusting a driving voltage parameter of the alternating current power supply to adjust the light emitting color of the light emitting device; or alternatively
Connecting the first electrode with a first end of a direct current power supply, and connecting the third electrode with a second end of the direct current power supply;
and adjusting the driving voltage parameter of the direct current power supply to adjust the light emitting color of the light emitting device.
11. A display device comprising a light emitting device according to any one of claims 1 to 9.
CN202010343921.3A 2020-04-27 2020-04-27 Light-emitting device, method for adjusting light-emitting color thereof, and display device Active CN111554819B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010343921.3A CN111554819B (en) 2020-04-27 2020-04-27 Light-emitting device, method for adjusting light-emitting color thereof, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010343921.3A CN111554819B (en) 2020-04-27 2020-04-27 Light-emitting device, method for adjusting light-emitting color thereof, and display device

Publications (2)

Publication Number Publication Date
CN111554819A CN111554819A (en) 2020-08-18
CN111554819B true CN111554819B (en) 2023-06-23

Family

ID=72003090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010343921.3A Active CN111554819B (en) 2020-04-27 2020-04-27 Light-emitting device, method for adjusting light-emitting color thereof, and display device

Country Status (1)

Country Link
CN (1) CN111554819B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695687A (en) * 2020-12-29 2022-07-01 Tcl科技集团股份有限公司 Quantum dot light-emitting device and display device
KR20220104412A (en) 2021-01-18 2022-07-26 삼성전자주식회사 Light emission element and display device including the same
CN113241415B (en) * 2021-04-22 2022-11-18 南方科技大学 Light emitting device and display apparatus
CN113421981B (en) * 2021-06-09 2022-09-27 Tcl华星光电技术有限公司 QLED light-emitting transistor and display device
CN113419353A (en) * 2021-06-17 2021-09-21 中国科学技术大学 Display for realizing three-dimensional display, preparation method and three-dimensional display method
CN115084416A (en) * 2022-06-21 2022-09-20 北京交通大学 A kind of organic-quantum dot electroluminescent device hybrid film and preparation method thereof
WO2024000304A1 (en) * 2022-06-29 2024-01-04 京东方科技集团股份有限公司 Light-emitting means, light-emitting substrate and light-emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131949A1 (en) * 2005-12-12 2007-06-14 General Electric Company Color tunable light-emitting devices and method of making the same
WO2007083918A1 (en) * 2006-01-18 2007-07-26 Lg Chem. Ltd. Oled having stacked organic light-emitting units
CN103682117B (en) * 2013-12-31 2017-10-27 北京维信诺科技有限公司 A kind of organic light emission lighting device
CN110957347A (en) * 2019-12-13 2020-04-03 苏州星烁纳米科技有限公司 Light-emitting structure, display device and lighting device

Also Published As

Publication number Publication date
CN111554819A (en) 2020-08-18

Similar Documents

Publication Publication Date Title
CN111554819B (en) Light-emitting device, method for adjusting light-emitting color thereof, and display device
JP6554291B2 (en) Multilayer organic light emitting device
CN102577618B (en) Organic electroluminescent element
US10566390B2 (en) Series connected quantum dot light-emitting device, panel and display device
US20060202616A1 (en) Multilayer polymer light-emitting diodes for solid state lighting applications
TW200915915A (en) High-performance tandem white OLED
WO2009084274A1 (en) Organic electroluminescent device
JP2004031323A (en) Organic EL light emitting device
CN110212105B (en) Quantum dot light-emitting device, preparation method thereof and lighting device
KR101441193B1 (en) Electroluminescent layer with colloidal quantum dot hybrid, electroluminescent device with the layer and manufacturing method of the device
CN111584732B (en) A white light organic light-emitting diode with all-excimer emission
CN107046103A (en) Laminated QLED device and preparation method and application thereof
CN102751449B (en) Organic light emitting diode
CN104716264B (en) Organic light-emitting device and display device with same
CN106654033A (en) Organic light emitting display panel and electronic equipment
WO2007047779A1 (en) Method and apparatus for light emission utilizing an oled with a microcavity
CN108807701B (en) A white light organic light emitting diode including thermally activated delayed fluorescent material and preparation method thereof
CN100514701C (en) Organic EL element
CN109428005B (en) Organic Electroluminescent Devices
JP2010055899A (en) Organic electroluminescent element
US12238951B2 (en) Organic electroluminescent device and array substrate
US20220328776A1 (en) Electron barrier film, quantum dot light-emitting diode and preparation method thereof
JP2014225328A (en) Light-emitting device, display device and luminaire
CN112909191B (en) Light-emitting device structure and preparation method thereof, display substrate and display device
WO2015192591A1 (en) Organic electroluminescence device and organic electroluminescence display apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant