CN111554679B - SOI FinFET device and manufacturing method thereof - Google Patents
SOI FinFET device and manufacturing method thereof Download PDFInfo
- Publication number
- CN111554679B CN111554679B CN202010276290.8A CN202010276290A CN111554679B CN 111554679 B CN111554679 B CN 111554679B CN 202010276290 A CN202010276290 A CN 202010276290A CN 111554679 B CN111554679 B CN 111554679B
- Authority
- CN
- China
- Prior art keywords
- layer
- region
- tin
- threshold voltage
- doping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/853—Complementary IGFETs, e.g. CMOS comprising FinFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0193—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices the components including FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体器件技术领域,尤其涉及一种SOI FinFET器件及其制作方法。The invention relates to the technical field of semiconductor devices, in particular to an SOI FinFET device and a manufacturing method thereof.
背景技术Background technique
阈值电压决定了MOS(Metal-Oxide-Semiconductor,金属-氧化物-半导体)器件的工作电流和开关速度,静态功耗等性能,是MOS器件的关键参数,如何精确控制器件的阈值电压是MOS器件制造的关键技术。Threshold voltage determines the operating current, switching speed, static power consumption and other performance of MOS (Metal-Oxide-Semiconductor, metal-oxide-semiconductor) devices. It is a key parameter of MOS devices. How to accurately control the threshold voltage of devices Key technologies for manufacturing.
Fin FET(Fin Field-Effect Transistor,鳍式场效应晶体管)器件的栅极一般采用高K(high-k,HK)金属栅工艺,栅极有效功函数决定了高K金属器件的阈值电压,目前高K金属栅SOI(Silicon-On-Insulator,绝缘体上硅)FinFET器件阈值电压的调节方式主要是通过控制栅极功函数金属的厚度。实验表明,在一定的厚度范围内,栅极整体的有效功函数随着功函数金属层的厚度改变而改变,其中P型功函数金属TiN(氮化钛)比较典型,TiN的厚度基本和栅极整体功函数成正比,厚度越大,栅极有效功函数越大。可以认为栅极功函数的变化完全来源于TiN厚度的变化,因此改变TiN厚度的方法能够调节栅极有效功函数,达到控制阈值电压的目的。除了功函数金属的厚度调节,高K金属栅器件也采用过在高K介质层之上第一层金属栅上离子注入杂质的方式调节阈值电压,在PMOS(Positive channel-Metal-Oxide-Semiconductor,P型金属氧化物半导体)区域的第一层金属栅注入可增大有效功函数的掺杂剂,在NMOS(Negative channel-Metal-Oxide-Semiconductor,N型金属氧化物半导体)区域的一层金属栅注入可减小有效功函数的掺杂剂,以此调节阈值电压。The gate of the Fin FET (Fin Field-Effect Transistor, Fin Field Effect Transistor) device generally adopts a high-K (high-k, HK) metal gate process, and the effective work function of the gate determines the threshold voltage of the high-K metal device. The threshold voltage of high-K metal gate SOI (Silicon-On-Insulator, silicon-on-insulator) FinFET devices is adjusted mainly by controlling the thickness of the gate work function metal. Experiments have shown that within a certain thickness range, the overall effective work function of the gate changes with the thickness of the work function metal layer. Among them, the P-type work function metal TiN (titanium nitride) is more typical, and the thickness of TiN is basically the same as that of the gate. It is directly proportional to the overall work function of the gate, and the greater the thickness, the greater the effective work function of the gate. It can be considered that the change of the gate work function is entirely derived from the change of the thickness of TiN, so the method of changing the thickness of TiN can adjust the effective work function of the gate to achieve the purpose of controlling the threshold voltage. In addition to the thickness adjustment of the work function metal, the high-K metal gate device also uses ion implantation of impurities on the first metal gate above the high-K dielectric layer to adjust the threshold voltage. In PMOS (Positive channel-Metal-Oxide-Semiconductor, The first layer of metal gate implantation in the P-type metal oxide semiconductor) region can increase the dopant of the effective work function, and a layer of metal in the NMOS (Negative channel-Metal-Oxide-Semiconductor, N-type metal oxide semiconductor) region Gate implants can reduce the effective work function of dopants, thereby adjusting the threshold voltage.
上述现有方案中通过功函数金属厚度调节阈值电压,在电压的调制幅度上有局限性。有数据表明,随着功函数金属厚度的增加,栅极有效功函数的变化率逐渐降低,直到某个临界厚度之后不再改变,在制作超低阈值电压器件的时候,阈值电压可能无法满足需求;其次,栅极功函数金属的厚度过厚会影响到栅极后续金属的填充,如图1所示,功函数金属层102越厚,留给栅极接触金属101的空间就越小,在制作PMOS,尤其是超低阈值电压PMOS(ultra low Vt PMOS,ULVT PMOS)时,需要很厚的栅极功函数金属,容易造成填充问题,会影响到栅极电阻率。因此,现有技术存在如下缺点:制作超低阈值电压器件时存在局限性,同时较厚的栅极金属会导致填充问题从而影响栅极的电阻率。In the above-mentioned existing solution, the threshold voltage is adjusted through the metal thickness of the work function, which has limitations on the modulation amplitude of the voltage. Data show that as the metal thickness of the work function increases, the rate of change of the effective work function of the gate gradually decreases until it does not change after a certain critical thickness. When making ultra-low threshold voltage devices, the threshold voltage may not meet the requirements. Secondly, the excessive thickness of the gate work function metal will affect the subsequent metal filling of the gate, as shown in Figure 1, the thicker the work
发明内容Contents of the invention
鉴于上述问题,本发明提出了一种SOI FinFET器件及其制作方法,其中器件的栅极结构不需很厚的栅极功函数金属,栅极电阻率稳定;所述制作方法能够有效的避免栅极金属的填充问题,且同时制作P型、N型低阈值电压器件,P型、N型标准阈值电压器件至同一芯片上,解决了局限性问题。In view of the above problems, the present invention proposes a SOI FinFET device and its fabrication method, wherein the gate structure of the device does not require a thick gate work function metal, and the gate resistivity is stable; the fabrication method can effectively avoid gate The filling problem of pole metal, and simultaneously manufacture P-type and N-type low-threshold voltage devices, and P-type and N-type standard threshold voltage devices on the same chip, which solves the limitation problem.
第一方面,本申请通过本申请的一实施例提供如下技术方案:In the first aspect, the present application provides the following technical solutions through an embodiment of the present application:
一种SOI FinFET器件,包括:An SOI FinFET device comprising:
衬底,在所述衬底上具有掺杂形成成组的源区和漏区;a substrate having source and drain regions doped in sets thereon;
每一组所述源区和所述漏区之间的上方为第一区域、第二区域、第三区域和第四区域中的任一区域;其中,所述第一区域用于形成P型低阈值电压器件的栅极,所述第二区域用于形成P型标准阈值电压器件的栅极,所述第三区域用于形成N型低阈值电压器件的栅极,所述第四区域用于形成N型标准阈值电压器件的栅极;Above each group of the source region and the drain region is any region in the first region, the second region, the third region and the fourth region; wherein, the first region is used to form a P-type The gate of the low threshold voltage device, the second region is used to form the gate of the P-type standard threshold voltage device, the third region is used to form the gate of the N-type low threshold voltage device, and the fourth region is used Used to form the gate of an N-type standard threshold voltage device;
所述第一区域由下至上依次设置为高K介质层、第一掺杂层、第二掺杂层、TiN层以及填充层;其中,所述第一掺杂层为含有增大有效功函数的掺杂剂的TiN层,所述第二掺杂层为含有减小有效功函数的掺杂剂的TiN层;The first region is sequentially arranged as a high-K dielectric layer, a first doped layer, a second doped layer, a TiN layer, and a filling layer from bottom to top; wherein, the first doped layer contains A TiN layer of a dopant, the second doped layer is a TiN layer containing a dopant that reduces the effective work function;
所述第二区域由下至上依次设置为所述高K介质层、所述第一掺杂层、所述第二掺杂层、所述TiN层以及所述填充层;The second region is sequentially arranged as the high-K dielectric layer, the first doped layer, the second doped layer, the TiN layer, and the filling layer from bottom to top;
所述第三区域由下至上依次设置为所述高K介质层、所述第二掺杂层、所述TiN层以及所述填充层;The third region is sequentially arranged as the high-K dielectric layer, the second doped layer, the TiN layer, and the filling layer from bottom to top;
所述第四区域由下至上依次设置为所述高K介质层、所述第二掺杂层以及所述填充层。The fourth region is sequentially arranged as the high-K dielectric layer, the second doped layer and the filling layer from bottom to top.
优选地,所述第一区域、所述第二区域、所述第三区域以及所述第四区域中任一个或多个区域的所述第二掺杂层上方相邻一层均设置有刻蚀阻挡层。Preferably, the adjacent layer above the second doped layer in any one or more of the first region, the second region, the third region and the fourth region is provided with engraved etch barrier.
优选地,所述第一区域中的所述TiN层的厚度大于所述第二区域中的所述TiN层的厚度。Preferably, the thickness of the TiN layer in the first region is greater than the thickness of the TiN layer in the second region.
优选地,所述填充层由下至上依次为TiAl层,TiN层以及金属钨。Preferably, the filling layer is TiAl layer, TiN layer and metal tungsten in order from bottom to top.
优选地,所述第一掺杂层为BF2离子的TiN层,所述第二掺杂层为P离子的TiN层。Preferably, the first doped layer is a TiN layer of BF 2 ions, and the second doped layer is a TiN layer of P ions.
第二方面,基于同一发明构思,本申请通过本申请的一实施例提供如下技术方案:In the second aspect, based on the same inventive concept, the present application provides the following technical solutions through an embodiment of the present application:
一种SOI FinFET器件的制作方法,包括:A method for manufacturing an SOI FinFET device, comprising:
在衬底上的高K介质层上的第一区域和第二区域沉积第一掺杂层;其中,所述衬底具有成组的源区和漏区,所述第一区域和所述第二区域分别位于成组的所述源区和所述漏区之间的上方,所述第一区域用于形成P型低阈值电压器件的栅极,所述第二区域用于形成P型标准阈值电压器件的栅极,其中,所述第一掺杂层为含有增大有效功函数的掺杂剂的TiN层;A first doped layer is deposited on the first region and the second region on the high-K dielectric layer on the substrate; wherein, the substrate has a source region and a drain region in groups, and the first region and the second region are The two regions are respectively located above the groups of the source region and the drain region, the first region is used to form the gate of the P-type low threshold voltage device, and the second region is used to form the P-type standard The gate of a threshold voltage device, wherein the first doped layer is a TiN layer containing a dopant that increases the effective work function;
继续在所述高K介质层上的所述第一区域、所述第二区域、第三区域和第四区域沉积第二掺杂层;其中,所述第二区域和所述第三区域分别位于成组的所述源区和所述漏区之间的上方,所述第三区域用于形成N型低阈值电压器件的栅极,所述第四区域用于形成N型标准阈值电压器件的栅极,所述第二掺杂层为含有减小有效功函数的掺杂剂的TiN层;Continue to deposit a second doped layer on the first region, the second region, the third region and the fourth region on the high-K dielectric layer; wherein, the second region and the third region are respectively Located above the groups of the source region and the drain region, the third region is used to form the gate of an N-type low threshold voltage device, and the fourth region is used to form an N-type standard threshold voltage device The gate of the second doped layer is a TiN layer containing a dopant that reduces the effective work function;
继续在所述高K介质层上的所述第一区域、所述第二区域和所述第三区域沉积TiN层;continuing to deposit a TiN layer on the first region, the second region and the third region on the high-K dielectric layer;
继续在所述高K介质层上的所述第一区域、所述第二区域、所述第三区域和所述第四区域沉积填充层。Continue to deposit a filling layer on the first region, the second region, the third region and the fourth region on the high-K dielectric layer.
优选地,所述在衬底上的高K介质层上的第一区域和第二区域沉积第一掺杂层,包括:Preferably, depositing the first doped layer on the first region and the second region on the high-K dielectric layer on the substrate includes:
在衬底上的高K介质层上沉积第一掺杂层;Depositing a first doped layer on the high-K dielectric layer on the substrate;
在所述第一掺杂层上涂布BARC层,并剥除所述第三区域和所述第四区域的所述BARC层;coating a BARC layer on the first doped layer, and stripping the BARC layer of the third region and the fourth region;
采用刻蚀方法去除所述第三区域和所述第四区域的所述第一掺杂层。The first doped layer in the third region and the fourth region is removed by an etching method.
优选地,所述在所述高K介质层上的所述第一区域、所述第二区域、第三区域和第四区域沉积第二掺杂层之后,且所述在所述高K介质层上的所述第一区域、所述第二区域和所述第三区域沉积TiN层之前,还包括:Preferably, after the second doped layer is deposited on the first region, the second region, the third region and the fourth region on the high-K dielectric layer, and the high-K dielectric layer Before depositing the TiN layer on the first region, the second region and the third region on the layer, it also includes:
在所述第一区域、所述第二区域、所述第三区域和所述第四区域沉积刻蚀阻挡层。An etch stop layer is deposited on the first region, the second region, the third region and the fourth region.
优选地,所述在所述高K介质层上的所述第一区域、所述第二区域和所述第三区域沉积TiN层,包括:Preferably, depositing a TiN layer on the first region, the second region and the third region on the high-K dielectric layer includes:
在所述刻蚀阻挡层上方沉积第一层所述TiN层;depositing a first layer of said TiN layer over said etch stop layer;
对所述第二区域和所述第三区域刻蚀至所述刻蚀阻挡层;etching the second region and the third region up to the etch stop layer;
继续在所述刻蚀阻挡层上方层积第二层所述TiN层;continue to laminate a second layer of the TiN layer above the etch barrier layer;
对所述第四区域刻蚀至所述刻蚀阻挡层。The fourth region is etched to the etch barrier layer.
优选地,所述在所述高K介质层上的所述第一区域、所述第二区域、所述第三区域和所述第四区域沉积填充层,包括:Preferably, depositing a filling layer on the first region, the second region, the third region and the fourth region on the high-K dielectric layer includes:
在所述高K介质层上的所述第一区域、所述第二区域、所述第三区域和所述第四区域依次沉积TiAl层,TiN层以及金属钨。A TiAl layer, a TiN layer and metal tungsten are sequentially deposited on the first region, the second region, the third region and the fourth region on the high-K dielectric layer.
本发明提供的一种SOI FinFET器件,通过TiN层以及第一/第二掺杂层对栅极阈值电压进行影响,使得该SOI FinFET器件的栅极结构具有更大范围的阈值电压调整范围,进而超低阈值电压P型器件(即第一区域和第二区域)不再需要厚的功函数层,P型器件栅极金属填充问题得到了很好的改善。In the SOI FinFET device provided by the present invention, the threshold voltage of the gate is affected by the TiN layer and the first/second doped layer, so that the gate structure of the SOI FinFET device has a wider threshold voltage adjustment range, and further The ultra-low threshold voltage P-type device (ie, the first region and the second region) no longer needs a thick work function layer, and the problem of gate metal filling of the P-type device has been well improved.
本发明提供的一种SOI FinFET器件的制作方法,在形成金属栅第一层时,先沉积TiN并掺杂P型器件(即第一区域和第二区域)所需的增大有效功函数的掺杂剂,然后刻蚀掉N型区域(即第三区域和第四区域)的TiN,再沉积TiN并掺杂N型区域所需的减小有效功函数的掺杂剂,掺杂计量可控,从而可控制阈值电压。相比于现有技术中通过改变栅极功函数层厚度调节阈值电压的方式相比,调节幅度更大,解决了局限性问题;对于超低阈值电压P型FinFET器件不再需要厚的功函数层,P型器件的栅极金属填充问题得到较大改善。进一步的,在本发明实施例中,对于各阈值电压类型的器件的不同功函数需求,无需通过杂质计量,而是通过后续在各区域沉积相应厚度的功函数金属层TiN来满足,最后完成栅极金属的填充。针对P型低阈值电压器件、P型标准阈值电压器件、N型低阈值电压器件以及N型标准阈值电压器件,沉积的功函数金属层厚度递减,从而可以省去了多次沉积、掺杂、和刻蚀步骤,并且可将P型、N型低阈值电压器件,P型、N型标准阈值电压器件制作到同一芯片上,使得该制作工艺大大的降低了制作成本。In the method for manufacturing an SOI FinFET device provided by the present invention, when forming the first layer of the metal gate, first deposit TiN and dope the P-type device (that is, the first region and the second region) to increase the effective work function. dopant, and then etch away the TiN in the N-type region (i.e. the third region and the fourth region), then deposit TiN and dope the dopant that reduces the effective work function required by the N-type region, and the doping amount can be control, so that the threshold voltage can be controlled. Compared with the method of adjusting the threshold voltage by changing the thickness of the gate work function layer in the prior art, the adjustment range is larger, which solves the limitation problem; for ultra-low threshold voltage P-type FinFET devices, a thick work function is no longer required layer, the gate metal filling problem of P-type devices has been greatly improved. Further, in the embodiment of the present invention, for the different work function requirements of devices with various threshold voltage types, it is not necessary to measure impurities, but to meet them by subsequently depositing a work function metal layer TiN with a corresponding thickness in each region, and finally complete the gate Extremely metallic filling. For P-type low-threshold voltage devices, P-type standard threshold-voltage devices, N-type low-threshold voltage devices and N-type standard threshold-voltage devices, the thickness of the deposited work function metal layer decreases, thus eliminating the need for multiple depositions, doping, and etching steps, and P-type, N-type low threshold voltage devices, P-type, N-type standard threshold voltage devices can be manufactured on the same chip, so that the manufacturing process greatly reduces the manufacturing cost.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。The above description is only an overview of the technical solution of the present invention. In order to better understand the technical means of the present invention, it can be implemented according to the contents of the description, and in order to make the above and other purposes, features and advantages of the present invention more obvious and understandable , the specific embodiments of the present invention are enumerated below.
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiment. The drawings are only for the purpose of illustrating a preferred embodiment and are not to be considered as limiting the invention. Also throughout the drawings, the same reference numerals are used to designate the same components. In the attached picture:
图1示出了本发明中提供的现有技术中栅极接触金属与功函数金属层的厚度结构示意图;FIG. 1 shows a schematic diagram of the thickness structure of the gate contact metal and the work function metal layer in the prior art provided in the present invention;
图2示出了本发明第一实施例提供的一种SOI FinFET器件的栅极结构的结构示意图;FIG. 2 shows a schematic structural diagram of a gate structure of an SOI FinFET device provided in the first embodiment of the present invention;
图3示出了本发明第二实施例提供的一种SOI FinFET器件的栅极结构的制作方法的方法流程图;FIG. 3 shows a method flow chart of a method for manufacturing a gate structure of an SOI FinFET device according to a second embodiment of the present invention;
图4示出了本发明第二实施例中执行沉积TiN层并掺杂BF2离子时的栅极结构示意图;FIG. 4 shows a schematic diagram of the grid structure when depositing a TiN layer and doping BF2 ions in the second embodiment of the present invention;
图5示出了本发明第二实施例中执行刻蚀第三区域和第四区域沉积的掺杂BF2离子的TiN层时的栅极结构示意图;5 shows a schematic diagram of the gate structure when etching the TiN layer doped with BF2 ions deposited in the third region and the fourth region in the second embodiment of the present invention;
图6示出了本发明第二实施例中执行沉积TiN层并掺杂P离子时的栅极结构示意图;6 shows a schematic diagram of the gate structure when depositing a TiN layer and doping P ions in the second embodiment of the present invention;
图7示出了本发明第二实施例中执行沉积刻蚀阻挡层时的栅极结构示意图;FIG. 7 shows a schematic diagram of a gate structure when depositing an etching stopper layer in the second embodiment of the present invention;
图8示出了本发明第二实施例中执行在刻蚀阻挡层上方沉积第一层TiN层时的栅极结构示意图;FIG. 8 shows a schematic diagram of the gate structure when depositing the first TiN layer above the etching barrier layer in the second embodiment of the present invention;
图9示出了本发明第二实施例中执行刻蚀第二区域和第三区域刻蚀阻挡层上方的第一层TiN层时的栅极结构示意图;9 shows a schematic diagram of the gate structure when etching the first TiN layer above the etching barrier layer in the second region and the third region in the second embodiment of the present invention;
图10示出了本发明第二实施例中执行在刻蚀阻挡层上方沉积第二层TiN层时的栅极结构示意图;FIG. 10 shows a schematic diagram of the gate structure when depositing a second TiN layer above the etching barrier layer in the second embodiment of the present invention;
图11示出了本发明第二实施例中执行刻蚀第四区域的刻蚀阻挡层上方的第一层TiN层和第二层TiN层时的栅极结构示意图;11 shows a schematic diagram of the gate structure when etching the first TiN layer and the second TiN layer above the etch barrier layer in the fourth region in the second embodiment of the present invention;
图12示出了本发明第二实施例中执行沉积填充层后的栅极结构示意图。FIG. 12 shows a schematic diagram of the gate structure after the filling layer is deposited in the second embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations.
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Accordingly, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the claimed invention, but merely represents selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。It should be noted that like numerals and letters denote similar items in the following figures, therefore, once an item is defined in one figure, it does not require further definition and explanation in subsequent figures.
在本发明的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。In the description of the present invention, it should be noted that the orientation or positional relationship indicated by the terms "upper", "lower", "left", "right", "inner" and "outer" are based on the Orientation or positional relationship, or the orientation or positional relationship that the inventive product is usually placed in use, is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, so as to Specific orientation configurations and operations, therefore, are not to be construed as limitations on the invention. In addition, the terms "first", "second", "third", etc. are only used for distinguishing descriptions, and should not be construed as indicating or implying relative importance.
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it also needs to be explained that, unless otherwise clearly specified and limited, the terms "set", "connected" and "connected" should be interpreted in a broad sense, for example, they can be directly connected or can be connected through an intermediate An indirect connection through a medium may be an internal connection between two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
第一实施例first embodiment
请参见图2,示出了本发明第一实施例提供的一种SOI FinFET器件的栅极结构10的结构示意图。所述SOI FinFET器件的栅极结构10,包括:衬底,在衬底上具有掺杂形成成组的源区和漏区;每一组源区和漏区之间的上方为第一区域a、第二区域b、第三区域c和第四区域d中的任一区域;该四个区域分别对应如下:第一区域a用于形成P型低阈值电压器件(P type ultra low threshold voltage,PULVT)的栅极,第二区域b用于形成P型标准阈值电压器件(P type Standard threshold voltage,PSVT)的栅极,第三区域c用于形成N型低阈值电压器件(N type ultra low threshold voltage,NULVT)的栅极,第四区域d用于形成N型标准阈值电压器件(N type Standard threshold voltage,NSVT)的栅极。在第一区域a的衬底上方由下至上依次设置为高K介质层12、第一掺杂层13、第二掺杂层14、TiN(氮化钛)层160以及填充层18;其中,第一掺杂层13为含有增大有效功函数的掺杂剂的TiN层,第二掺杂层14为含有减小有效功函数的掺杂剂的TiN层;第二区域b的衬底上方由下至上依次设置为高K介质层12、第一掺杂层13、第二掺杂层14、TiN层17以及填充层18;第三区域c的衬底上方由下至上依次设置为高K介质层12、第二掺杂层14、TiN层17以及填充层18;第四区域d的衬底上方由下至上依次设置为高K介质层12、第二掺杂层14以及填充层18。Please refer to FIG. 2 , which shows a schematic structural diagram of a
在本实施例中,源区和漏区相对于栅极的位置结构可参照现有的FinFET器件中的相对位置结构关系,不再赘述。In this embodiment, the position structure of the source region and the drain region relative to the gate can refer to the relative position structure relationship in the existing FinFET device, and will not be repeated here.
在本实施例中,第一区域a中的TiN层160的厚度大于第二区域b和第三区域c中的TiN层17的厚度;具体的,可在第一区域a中沉积两层TiN层,即TiN层16和TiN层17,在第二区域b、第三区域c中沉积一层TiN层17。通过TiN厚度160的调整,可对应实现功函数的改变,从而实现不同的阈值电压。In this embodiment, the thickness of the
通过上述的SOI FinFET器件的栅极结构10,使得在P型器件中能够得到增大有效功函数沉积层,在N型器件中可得到减小有效功函数沉积层,增加了电压阈值的调节范围;进一步的,在P型器件中TiN越厚阈值电压越低,在N型型器件中TiN越薄阈值电压越低,在不同的区域进行不同厚度的TiN沉积,使得本实施例中的SOI FinFET器件的栅极结构10阈值电压调节幅度更大,制备也更加灵活,从而避免了较厚的栅极金属导致的填充问题,避免影响栅极的电阻率。Through the above-mentioned
进一步的,第一区域a、第二区域b、第三区域c以及第四区域d中的每个区域的第二掺杂层14上方相邻一层均设置有刻蚀阻挡层15。通过刻蚀阻挡层15的设置可以更加准确的在栅极结构10的制作过程中控制沉积TiN的厚度。具体的,在第一区域a中刻蚀阻挡层15位于第二掺杂层14和TiN层16之间。在第二区域b中刻蚀阻挡层15位于第二掺杂层14和TiN层17之间。在第三区域c中刻蚀阻挡层15位于第二掺杂层14和TiN层17之间,在第四区域d中刻蚀阻挡层15位于第二掺杂层14与填充层18之间。Further, the adjacent layer above the second doped
所述第一掺杂层13对应的增大有效功函数的掺杂剂可为:BF2(氟化硼)、Al(铝)、B(硼)、Mo(钼)、Pt(铂)等;第二掺杂层14对应的减小有效功函数的掺杂剂可为:La(镧)、As(砷)、Sb(锑)等。The dopant for increasing the effective work function corresponding to the first doped
填充层18,由下至上依次为TiAl层(TiAl基合金),TiN层以及金属W(钨),以形成完整的栅极结构10。The filling
需要说明的是,本实施例中衬底材料为Si(硅)材料。对于高K介质层12而言,在本实施例中Al2O3(氧化铝)介电常数太低了,ZrO2(二氧化锆)和TiO2(二氧化钛)容易和Si衬底发生反应,La2O3(氧化镧)容易吸水;因此,优选的高K介质层12为如下材料:HfO2(氧化铪)、HfSiO4(正硅酸铪)、HfON(氮氧化铪)、HfAlO(铪铝氧)、HfSiO(硅酸铪)、HfSiON(氧氮化铪硅)等。另外,在衬底与高K介质层12之间可沉积一层IL层(interfacial layer,界面层)用于改善衬底与高K介质层12之间的接触特性,该界面层可为SiO2。It should be noted that, in this embodiment, the substrate material is Si (silicon) material. For the high-
本实施例中的一种SOI FinFET器件,可制作在同一芯片上形成P型低阈值电压区域,P型标准阈值电压区域,N型低阈值电压区域,N型标准阈值电压区域等不同的器件类型,同时本实施例中的SOI FinFET器件的栅极结构10制作时不需使用离子注入掺杂,避免了离子注入掺杂能量较大对金属薄膜造成损伤。本实施例中的栅极结构10中通过TiN层以及第一/第二掺杂层14对栅极阈值电压进行影响,使得该SOI FinFET器件的栅极结构10具有更大范围的阈值电压调整范围,进而超低阈值电压P型FinFET器件不再需要厚的功函数层,P型器件栅极金属填充问题得到了很好的改善。An SOI FinFET device in this embodiment can be fabricated on the same chip to form different device types such as P-type low threshold voltage region, P-type standard threshold voltage region, N-type low threshold voltage region, and N-type standard threshold voltage region. At the same time, the
第二实施例second embodiment
请参阅图3,在本实施例中还提供一种SOI FinFET器件的制作方法,图2示出了该方法的方法流程图。Referring to FIG. 3 , this embodiment also provides a method for fabricating an SOI FinFET device, and FIG. 2 shows a flow chart of the method.
具体的,所述SOI FinFET器件的制作方法包括:Specifically, the manufacturing method of the SOI FinFET device includes:
步骤S10:在衬底上的高K介质层上的第一区域和第二区域沉积第一掺杂层;其中,所述衬底具有成组的源区和漏区,所述第一区域和所述第二区域分别位于成组的所述源区和所述漏区之间的上方,所述第一区域用于形成P型低阈值电压器件的栅极,所述第二区域用于形成P型标准阈值电压器件的栅极,其中,所述第一掺杂层为含有增大有效功函数的掺杂剂的TiN层;Step S10: Depositing a first doped layer on the first region and the second region on the high-K dielectric layer on the substrate; wherein, the substrate has source regions and drain regions in groups, and the first region and The second regions are respectively located above the groups of the source regions and the drain regions, the first regions are used to form gates of P-type low threshold voltage devices, and the second regions are used to form The gate of a P-type standard threshold voltage device, wherein the first doped layer is a TiN layer containing a dopant that increases the effective work function;
步骤S20:继续在所述高K介质层上的所述第一区域、所述第二区域、第三区域和第四区域沉积第二掺杂层;其中,所述第二区域和所述第三区域分别位于成组的所述源区和所述漏区之间的上方,所述第三区域用于形成N型低阈值电压器件的栅极,所述第四区域用于形成N型标准阈值电压器件的栅极,所述第二掺杂层为含有减小有效功函数的掺杂剂的TiN层;Step S20: continue to deposit a second doped layer on the first region, the second region, the third region and the fourth region on the high-K dielectric layer; wherein, the second region and the first The three regions are respectively located above the groups of the source region and the drain region, the third region is used to form the gate of the N-type low threshold voltage device, and the fourth region is used to form the N-type standard The gate of the threshold voltage device, the second doped layer is a TiN layer containing a dopant that reduces the effective work function;
步骤S30:继续在所述高K介质层上的所述第一区域、所述第二区域和所述第三区域沉积TiN层;Step S30: continue to deposit a TiN layer on the first region, the second region and the third region on the high-K dielectric layer;
步骤S40:继续在所述高K介质层上的所述第一区域、所述第二区域、所述第三区域和所述第四区域沉积填充层。Step S40: continue to deposit filling layers on the first region, the second region, the third region and the fourth region on the high-K dielectric layer.
在步骤S10中,具体的实施可为:在衬底上掺杂形成成组存在的源区和漏区,并在成组的源区和漏区之间上方的高K介质层上沉积第一掺杂层。具体的,采用PEALD(PlasmaEnhanced Atomic Layer Deposition,等离子体增强原子层沉积)沉积第一层金属栅TiN,并原位掺杂掺入可增大有效功函数的掺杂剂,如BF2,如图4所示。进一步的,在第一掺杂层上涂布BARC层(Bottom Anti-Reflective Coatings,底部抗反射涂层),并剥除第三区域和第四区域的BARC层,如图5所示。最后,采用刻蚀方法去除第三区域和第四区域的第一掺杂层,刻蚀在高K层介质层之上停止,即仅保留第一区域和第二区域上的第一掺杂层。完成刻蚀之后将第一掺杂层上的BARC层剥除,以便进行后续的沉积步骤。PEALD是一种传统ALD(atomic layer deposition,原子层沉积)的改进技术,是通过在ALD设备中增加等离子体放电装置而形成,PEALD原位掺杂是在沉积金属栅薄膜的同时等离子体放电掺杂,可实现单原子层沉积,工艺过程与ALD相同,适合于FinFET立体的栅极结构,在沉积过程中沉积杂质的数量可以由等离子体功率和进气流量等参数精确控制;另外,该PEALD原位掺杂可实现表面沉积且沉积过程中杂质数量需求少,因而可以极大的减小等离子体功率,比离子注入对栅极表面结构带来的破坏性小。In step S10, the specific implementation may be: doping the substrate to form source regions and drain regions existing in groups, and depositing a first doped layer. Specifically, PEALD (PlasmaEnhanced Atomic Layer Deposition, Plasma Enhanced Atomic Layer Deposition) is used to deposit the first layer of metal gate TiN, and in-situ doping is doped with a dopant that can increase the effective work function, such as BF 2 , as shown in Fig. 4. Further, a BARC layer (Bottom Anti-Reflective Coatings, Bottom Anti-Reflective Coatings) is coated on the first doped layer, and the BARC layer in the third region and the fourth region is stripped off, as shown in FIG. 5 . Finally, the first doped layer in the third region and the fourth region is removed by etching, and the etching stops on the high-K dielectric layer, that is, only the first doped layer on the first region and the second region remains . After the etching is completed, the BARC layer on the first doped layer is stripped for subsequent deposition steps. PEALD is an improved technology of traditional ALD (atomic layer deposition, atomic layer deposition), which is formed by adding a plasma discharge device to the ALD equipment. It can achieve single atomic layer deposition. The process is the same as ALD, which is suitable for the three-dimensional gate structure of FinFET. The amount of deposited impurities can be precisely controlled by parameters such as plasma power and gas flow rate during the deposition process; in addition, the PEALD In-situ doping can achieve surface deposition and the amount of impurities required in the deposition process is small, so the plasma power can be greatly reduced, and it is less destructive to the surface structure of the gate than ion implantation.
进一步的,执行步骤S20。在步骤S20中,同样的通过PEALD沉积第二掺杂层,具体的,沉积一层TiN,并通过原位掺杂法掺入可减小有效功函数的掺杂剂,例如P,如图6所示。Further, step S20 is executed. In step S20, the second doped layer is also deposited by PEALD, specifically, a layer of TiN is deposited, and a dopant that can reduce the effective work function, such as P, is doped by an in-situ doping method, as shown in Figure 6 shown.
为了便于刻蚀,提高刻蚀的准确性。本实施例中,可在步骤S20之后、步骤S30之前进行一层刻蚀阻挡层的沉积,如图7所示。具体的,在所述第一区域、所述第二区域、所述第三区域和所述第四区域沉积刻蚀阻挡层。在第一区域、第二区域、第三区域和第四区域中,刻蚀阻挡层均与第二掺杂层相接。该刻蚀阻挡层可为TaN(氮化钽)。In order to facilitate etching, the accuracy of etching is improved. In this embodiment, a layer of etching barrier layer may be deposited after step S20 and before step S30, as shown in FIG. 7 . Specifically, an etch stop layer is deposited on the first region, the second region, the third region and the fourth region. In the first region, the second region, the third region and the fourth region, the etching barrier layer is in contact with the second doped layer. The etch stop layer may be TaN (tantalum nitride).
进一步的,执行步骤S30。在步骤S30中,首先在刻蚀阻挡层上方原子层沉积第一层TiN层,如图8所示。然后,涂布一层BARC层并剥除第二区域和第三区域上方的BARC层,之后刻蚀掉这两个区域的第一层TiN层,即刻蚀在TaN层(刻蚀阻挡层)处停止,如图9所示。将第一区域和第四区域的BARC层剥除,再继续在刻蚀阻挡层上方沉积第二层TiN层,如图10所示。进一步,涂布一层BARC层,剥除第四区域中的BARC层,然后刻蚀掉该区域的第一层TiN层和第二层TiN层,刻蚀在TaN层停止,如图11所示。最后,清除剩余的BARC层。由此,可对第四区域中的多余TiN层(第一层TiN层和第二层TiN层)进行一次性清除,避免在第四区域中进行多次BARC层的清楚操作,简化了制作步骤。同时,通过上述操作可在第一区域的刻蚀阻挡层上方沉积两层TiN层,得到更厚的TiN层,得到更低的阈值电压。Further, step S30 is executed. In step S30, a first layer of TiN layer is atomically layer deposited on the etching barrier layer, as shown in FIG. 8 . Then, apply a layer of BARC layer and peel off the BARC layer above the second region and the third region, and then etch away the first layer of TiN layer in these two regions, that is, etch at the TaN layer (etch stop layer) stop, as shown in Figure 9. The BARC layers in the first region and the fourth region are stripped, and then continue to deposit a second TiN layer on the etching barrier layer, as shown in FIG. 10 . Further, coat a layer of BARC layer, peel off the BARC layer in the fourth region, and then etch away the first layer of TiN layer and the second layer of TiN layer in this region, and the etching stops at the TaN layer, as shown in Figure 11 . Finally, clear the remaining BARC layers. Thus, the redundant TiN layer (the first TiN layer and the second TiN layer) in the fourth area can be removed at one time, avoiding multiple cleaning operations of the BARC layer in the fourth area, and simplifying the manufacturing steps . At the same time, through the above operations, two layers of TiN layers can be deposited on the etching barrier layer in the first region to obtain a thicker TiN layer and lower threshold voltage.
进一步的,执行步骤S40,具体的在高K介质层上的第一区域、第二区域、第三区域和第四区域依次沉积TiAl层,TiN层,最后采用金属钨填充,如图12所示。Further, step S40 is performed, specifically depositing a TiAl layer, a TiN layer in sequence in the first region, the second region, the third region and the fourth region on the high-K dielectric layer, and finally filling it with metal tungsten, as shown in FIG. 12 .
通过本实施例中的方法可实现如下的有益效果:The following beneficial effects can be achieved by the method in this embodiment:
1、采用本实施例中的制备方法进行SOI FinFET器件的制作,可有效的控制栅极功函数金属的厚度,不会对栅极后续金属的填充造成影响,保证了器件的栅极电阻率稳定。具体的,在本实施例中采用了高K介质层之上用PEALD沉积TiN层,同时用PEALD原位掺杂方法掺入杂质,在P型区域(第一区域、第二区域)掺入可增大有效功函数的杂质,N型区域(第三区域、第四区域)掺入可减小有效功函数的杂质,掺杂计量可控,从而可控制阈值电压。相比于现有技术中通过改变栅极功函数层厚度调节阈值电压的方式相比,调节幅度更大,解决了制作局限性问题;对于超低阈值电压P型FinFET器件不再需要厚的功函数层,P型器件的栅极金属填充问题得到较大改善。1. Using the preparation method in this example to manufacture SOI FinFET devices can effectively control the thickness of the gate work function metal without affecting the subsequent metal filling of the gate, ensuring the stability of the gate resistivity of the device . Specifically, in this embodiment, the TiN layer is deposited on the high-K dielectric layer by PEALD, and at the same time, impurities are doped by PEALD in-situ doping method. Impurities that increase the effective work function are doped into the N-type region (the third region and the fourth region) to reduce the effective work function, and the doping amount is controllable, so that the threshold voltage can be controlled. Compared with the method of adjusting the threshold voltage by changing the thickness of the gate work function layer in the prior art, the adjustment range is larger, which solves the problem of manufacturing limitations; for ultra-low threshold voltage P-type FinFET devices, no thick work function is required. The function layer, the gate metal filling problem of P-type devices has been greatly improved.
2、在现有技术中有如下的制作方式,在高K金属栅工艺的MOS FET器件可采用在第一层金属栅中离子注入杂质的方式来调节阈值电压。具体的,在P型器件的第一层金属栅注入可增大有效功函数的掺杂剂,在N型器件的一层金属栅注入可减小有效功函数的掺杂剂,以此调节阈值电压。该种现有技术的实施方式一方面离子注入掺杂能量较大,会对金属薄膜造成损伤,对先进工艺节点下Fin FET器件尤其如此;另一方面,P型器件和N型器件的功函数不同:P型器件的有效功函数应当在Si的价带顶附近,N型器件的功函数应当在Si的导带底附近;同一型器件根据阈值电压不同也可分为超低阈值电压器件和标准阈值电压器件,功函数需求也有所不同。若需要在一个芯片上形成不同类型,不同阈值电压的器件,在栅极制造期间不同的器件所需的掺杂类型或计量不同,需要分别针对P型低阈值电压器件、P型标准阈值电压器件、N型低阈值电压器件以及N型标准阈值电压器件执行各自的沉积、掺杂、和刻蚀步骤,导致工艺复杂,成本高昂。而在本实施例中的SOI FinFET器件的制作方法采用了PEALD原位掺杂技术掺杂,该技术相比离子注入掺杂,能量更小,对栅极表面结构带来的破坏性更小;同时,本方法在形成金属栅第一层时,先沉积TiN并掺杂P型器件(即第一区域和第二区域)所需的增大有效功函数的掺杂剂,然后刻蚀掉N型区域(即第三区域和第四区域)的TiN,然后再沉积TiN并掺杂N型区域所需的减小有效功函数的掺杂剂。对于各阈值电压类型的器件的不同功函数需求,无需通过杂质计量,而是通过后续在各区域沉积相应厚度的功函数金属层TiN来满足,最后完成栅极金属的填充。针对P型低阈值电压器件、P型标准阈值电压器件、N型低阈值电压器件以及N型标准阈值电压器件,沉积的功函数金属层厚度递减,从而可以省去了多次沉积、掺杂、和刻蚀步骤,并且可将P型、N型低阈值电压器件,P型、N型标准阈值电压器件制作到同一芯片上,使得该制作工艺大大的降低了制作成本。2. In the prior art, there is the following manufacturing method. The MOS FET device in the high-K metal gate process can adjust the threshold voltage by implanting impurities into the first layer of metal gate. Specifically, a dopant that can increase the effective work function is injected into the first metal gate of the P-type device, and a dopant that can reduce the effective work function is implanted into the metal gate of the N-type device, thereby adjusting the threshold Voltage. On the one hand, the ion implantation doping energy is relatively large, which will cause damage to the metal film, especially for Fin FET devices under advanced process nodes; on the other hand, the work functions of P-type devices and N-type devices Different: The effective work function of P-type devices should be near the top of the valence band of Si, and the work function of N-type devices should be near the bottom of the conduction band of Si; devices of the same type can also be divided into ultra-low threshold voltage devices and Standard threshold voltage devices also have different work function requirements. If it is necessary to form different types of devices with different threshold voltages on one chip, different doping types or metering are required for different devices during gate manufacturing, and it is necessary to separately target P-type low threshold voltage devices and P-type standard threshold voltage devices. , N-type low-threshold-voltage devices, and N-type standard-threshold-voltage devices perform respective deposition, doping, and etching steps, resulting in complex processes and high costs. However, the manufacturing method of the SOI FinFET device in this embodiment adopts PEALD in-situ doping technology, which has lower energy and less damage to the gate surface structure than ion implantation doping; At the same time, when forming the first layer of the metal gate in this method, first deposit TiN and dope the dopant that increases the effective work function required by the P-type device (ie, the first region and the second region), and then etch away the N TiN in the N-type region (that is, the third region and the fourth region), and then TiN is deposited and doped with the dopant required to reduce the effective work function in the N-type region. For the different work function requirements of devices of various threshold voltage types, it is not necessary to measure impurities, but to meet them by subsequently depositing a corresponding thickness of work function metal layer TiN in each region, and finally complete the gate metal filling. For P-type low-threshold voltage devices, P-type standard threshold-voltage devices, N-type low-threshold voltage devices and N-type standard threshold-voltage devices, the thickness of the deposited work function metal layer decreases, thus eliminating the need for multiple depositions, doping, and etching steps, and P-type, N-type low threshold voltage devices, P-type, N-type standard threshold voltage devices can be manufactured on the same chip, so that the manufacturing process greatly reduces the manufacturing cost.
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010276290.8A CN111554679B (en) | 2020-04-09 | 2020-04-09 | SOI FinFET device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010276290.8A CN111554679B (en) | 2020-04-09 | 2020-04-09 | SOI FinFET device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111554679A CN111554679A (en) | 2020-08-18 |
CN111554679B true CN111554679B (en) | 2023-03-31 |
Family
ID=72005736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010276290.8A Active CN111554679B (en) | 2020-04-09 | 2020-04-09 | SOI FinFET device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111554679B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105428361A (en) * | 2014-09-19 | 2016-03-23 | 中国科学院微电子研究所 | CMOS device and method for fabricating the same |
CN106298506A (en) * | 2015-05-25 | 2017-01-04 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor device and forming method |
CN107180794A (en) * | 2017-06-14 | 2017-09-19 | 中国科学院微电子研究所 | Method for adjusting threshold value of high-K metal gate CMOS (complementary Metal oxide semiconductor) device and CMOS device |
CN107910298A (en) * | 2017-11-09 | 2018-04-13 | 中国科学院微电子研究所 | Method for manufacturing semiconductor CMOS device |
CN108258028A (en) * | 2016-12-28 | 2018-07-06 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN108695321A (en) * | 2017-04-07 | 2018-10-23 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and its manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8188551B2 (en) * | 2005-09-30 | 2012-05-29 | Infineon Technologies Ag | Semiconductor devices and methods of manufacture thereof |
-
2020
- 2020-04-09 CN CN202010276290.8A patent/CN111554679B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105428361A (en) * | 2014-09-19 | 2016-03-23 | 中国科学院微电子研究所 | CMOS device and method for fabricating the same |
CN106298506A (en) * | 2015-05-25 | 2017-01-04 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor device and forming method |
CN108258028A (en) * | 2016-12-28 | 2018-07-06 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN108695321A (en) * | 2017-04-07 | 2018-10-23 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and its manufacturing method |
CN107180794A (en) * | 2017-06-14 | 2017-09-19 | 中国科学院微电子研究所 | Method for adjusting threshold value of high-K metal gate CMOS (complementary Metal oxide semiconductor) device and CMOS device |
CN107910298A (en) * | 2017-11-09 | 2018-04-13 | 中国科学院微电子研究所 | Method for manufacturing semiconductor CMOS device |
Also Published As
Publication number | Publication date |
---|---|
CN111554679A (en) | 2020-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6898929B2 (en) | Vertical field effect transistor structure with variable gate length and its manufacturing method | |
CN101930979B (en) | CMOSFETs structure for controlling threshold voltage of device and manufacturing method thereof | |
CN109671629B (en) | Negative Capacitance Matching in Gate Electrode Structures | |
US10418361B2 (en) | Circuit incorporating multiple gate stack compositions | |
CN102446729B (en) | High-k gate stack with superior integrity and controlled undercut, formed through wet chemistry | |
US10559684B2 (en) | Vertical transistor having dual work function materials and method for fabricating thereof | |
US10672669B2 (en) | Structure for improving dielectric reliability of CMOS device | |
US9455350B2 (en) | Transistor device structure that includes polycrystalline semiconductor thin film that has large grain size | |
US10211108B2 (en) | Gate structures and fabrication methods thereof | |
US8829587B2 (en) | Flash memory device and manufacturing method of the same | |
US11222964B2 (en) | Multiple planes of transistors with different transistor architectures to enhance 3D logic and memory circuits | |
CN108257874B (en) | Semiconductor element and manufacturing method thereof | |
CN111554679B (en) | SOI FinFET device and manufacturing method thereof | |
CN107546121B (en) | Semiconductor device and manufacturing method thereof | |
US20160104804A1 (en) | Self-aligned thin film transistor and fabrication method thereof | |
US10770360B2 (en) | Semiconductor structures and fabrication methods thereof | |
CN109119335B (en) | Work function layer, metal gate, semiconductor device and manufacturing method thereof | |
US10566243B2 (en) | Semiconductor device having multiple work functions and manufacturing method thereof | |
CN103325683A (en) | Fin Field Effect Transistor and Its Technology | |
CN107346780B (en) | Microelectronic structure and method of forming the same | |
TW202414680A (en) | Semiconductor structure and manufacturing method thereof | |
CN115799256A (en) | Semiconductor device and method for manufacturing the same | |
US7799668B2 (en) | Formation of uniform silicate gate dielectrics | |
CN109037334A (en) | A kind of manufacturing method of semiconductor devices | |
CN104282571A (en) | Fin-type field effect transistor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |