CN111551139A - A wireless sensor for self-energy structure monitoring based on piezoelectric effect - Google Patents
A wireless sensor for self-energy structure monitoring based on piezoelectric effect Download PDFInfo
- Publication number
- CN111551139A CN111551139A CN202010393271.3A CN202010393271A CN111551139A CN 111551139 A CN111551139 A CN 111551139A CN 202010393271 A CN202010393271 A CN 202010393271A CN 111551139 A CN111551139 A CN 111551139A
- Authority
- CN
- China
- Prior art keywords
- piezoelectric
- energy
- wireless sensor
- wireless
- monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 34
- 230000000694 effects Effects 0.000 title claims abstract description 18
- 238000012545 processing Methods 0.000 claims description 16
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 10
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 6
- 238000003306 harvesting Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000036541 health Effects 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 238000003672 processing method Methods 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 230000009977 dual effect Effects 0.000 abstract 1
- 238000005265 energy consumption Methods 0.000 abstract 1
- 238000010248 power generation Methods 0.000 abstract 1
- 238000004146 energy storage Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B17/00—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
- G01B17/04—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring the deformation in a solid, e.g. by vibrating string
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
- H02N2/181—Circuits; Control arrangements or methods
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
- H02N2/186—Vibration harvesters
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于结构健康监测及能量采集领域,具体涉及一种基于压电效应的自能量式结构监测无线传感器。The invention belongs to the field of structural health monitoring and energy collection, in particular to a self-energy type structure monitoring wireless sensor based on piezoelectric effect.
背景技术Background technique
无线传感器因其采用低功耗设计、无线传输的优点可以作为结构健康监测技术手段。把传感器网络安置到监测结构(如桥梁、建筑和飞机)中,利用无线传感器进行结构健康监测是一种可靠且不昂贵的做法,可以在第一时间检测到缺陷的形成。这种网络可以提早监测出结构中出现的缺陷,从而避免灾难性事故。然而如果没有有效的数据处理方法,无线传感器在进行结构监测时产生的庞大、复杂的电信号就无法被计算终端及时而准确的识别。由此可知,无线传感器数据处理的灵活性成为限制无线传感器应用性的影响因素,该问题成为领域内亟待解决的关键技术问题。Wireless sensors can be used as structural health monitoring technology because of their advantages of low power consumption design and wireless transmission. Structural health monitoring using wireless sensors is a reliable and inexpensive way to detect defect formation in the first place by incorporating sensor networks into monitored structures such as bridges, buildings, and aircraft. Such a network can detect defects in the structure early, thereby avoiding catastrophic accidents. However, if there is no effective data processing method, the huge and complex electrical signals generated by the wireless sensor during structural monitoring cannot be identified by the computing terminal in a timely and accurate manner. It can be seen that the flexibility of wireless sensor data processing has become an influencing factor limiting the applicability of wireless sensors, and this problem has become a key technical problem to be solved urgently in the field.
利用压电效应制造的压电材料可以利用其自发电特性用于产生电能。其优点是利用压电原理收集结构产生的微弱振动机械能,转化为电能,为传感器提供电源,保证整套装置自供给。有效规避了传统监测设备需使用电池或外接电路的局限性,保证设备长期持久工作并节约能源。Piezoelectric materials fabricated using the piezoelectric effect can be used to generate electrical energy using their self-generating properties. Its advantage is to use the piezoelectric principle to collect the weak vibration mechanical energy generated by the structure, convert it into electrical energy, provide power for the sensor, and ensure the self-supply of the whole set of devices. It effectively avoids the limitation that traditional monitoring equipment needs to use batteries or external circuits, and ensures long-term lasting operation of the equipment and saves energy.
目前,压电材料已经被开发应用于压电传感器制造,利用其机电转换特性,在机械激励下产生电学响应。这部分的电学相应被信号网络处理成可被计算终端识别的电信号,通过应变与电信号的联系,计算终端即反映出结构产生的实时形变。At present, piezoelectric materials have been developed and applied in the manufacture of piezoelectric sensors, using their electromechanical conversion properties to generate electrical responses under mechanical excitation. This part of the electrical response is processed by the signal network into an electrical signal that can be recognized by the computing terminal. Through the connection between the strain and the electrical signal, the computing terminal reflects the real-time deformation of the structure.
与现有的结构健康监测技术相比,基于压电效应的自能量式无线传感器在自能量的前提下更有效、更精确地监测结构的动态机械响应过程,提前做出预警,以便技术人员采取预防措施,减轻结构损坏造成的生命财产安全。因为所提出的传感器信号网络数据处理方法用于简化由特定形变引起的电信号,与现有的长期监测技术相比,大大减少了监测数据量。Compared with the existing structural health monitoring technology, the self-energy wireless sensor based on the piezoelectric effect can monitor the dynamic mechanical response process of the structure more effectively and accurately under the premise of self-energy, and make early warnings so that technicians can take measures. Preventive measures to mitigate the safety of life and property caused by structural damage. Because the proposed sensor signal network data processing method is used to simplify the electrical signals caused by specific deformations, the amount of monitoring data is greatly reduced compared to existing long-term monitoring techniques.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明的目的在于提供一种基于压电效应的自能量式结构监测无线传感器的技术方案。In view of the problems existing in the prior art, the purpose of the present invention is to provide a technical solution for a self-energy structure monitoring wireless sensor based on the piezoelectric effect.
所述的一种基于压电效应的自能量式结构监测无线传感器,其特征在于包括无线传感器组件和能量采集组件,无线传感器组件包括信号处理集成电路板、无线信号发射模块及贴附于监测物体表面的压电薄片,信号处理集成电路板上设置传感器芯片模块和储存单元模块,能量采集组件包括振动放大器和锆钛酸铅压电梁。The self-energy structure monitoring wireless sensor based on piezoelectric effect is characterized in that it includes a wireless sensor component and an energy collection component. The piezoelectric sheet on the surface, the sensor chip module and the storage unit module are arranged on the signal processing integrated circuit board, and the energy collection component includes a vibration amplifier and a lead zirconate titanate piezoelectric beam.
所述的一种基于压电效应的自能量式结构监测无线传感器,其特征在于压电薄片通过导线与信号处理集成电路板连接。The self-energy structure monitoring wireless sensor based on piezoelectric effect is characterized in that the piezoelectric sheet is connected with the signal processing integrated circuit board through wires.
所述的一种基于压电效应的自能量式结构监测无线传感器,其特征在于信号处理集成电路板上设置无线信号设备外接口,无线信号设备外接口上设置有无线信号发射模块插槽,无线信号发射模块插槽通过排线与无线信号发射模块连接。The described self-energy structure monitoring wireless sensor based on piezoelectric effect is characterized in that the signal processing integrated circuit board is provided with an external interface of the wireless signal device, the external interface of the wireless signal device is provided with a slot for a wireless signal transmission module, and the wireless The signal transmitting module slot is connected with the wireless signal transmitting module through a cable.
所述的一种基于压电效应的自能量式结构监测无线传感器,其特征在于锆钛酸铅压电梁用于将机械振动转化电能,锆钛酸铅压电梁上设置有压电陶瓷片。The self-energy structure monitoring wireless sensor based on piezoelectric effect is characterized in that the lead zirconate titanate piezoelectric beam is used to convert mechanical vibration into electrical energy, and the lead zirconate titanate piezoelectric beam is provided with a piezoelectric ceramic sheet .
所述的一种基于压电效应的自能量式结构监测无线传感器,其特征在于能量采集组件通过导线为无线传感器部分供电。The self-energy structure monitoring wireless sensor based on piezoelectric effect is characterized in that the energy collection component supplies power to the wireless sensor part through wires.
本发明创新性地将电压阀值处理方法应用于无线传感器中,提高了结构监测持续性、效率性;本发明创新型地结合两种压电形式,首次实现了压电材料自发电与机电信号转变的两用性;本发明较其他结构监测无线传感技术具有更加优秀的测量灵敏性,准确性和能耗节约性。The invention innovatively applies the voltage threshold processing method to the wireless sensor, which improves the continuity and efficiency of structural monitoring; the invention innovatively combines two piezoelectric forms, and realizes the self-generation of piezoelectric materials and electromechanical signals for the first time. Convertible dual-purpose; compared with other wireless sensing technologies for structural monitoring, the present invention has better measurement sensitivity, accuracy and energy saving.
附图说明Description of drawings
图1为本发明结构示意图;Fig. 1 is the structural representation of the present invention;
图2为本发明中的信号处理集成电路板与压电薄片连接结构示意图;2 is a schematic diagram of the connection structure of the signal processing integrated circuit board and the piezoelectric sheet in the present invention;
图3为本发明中的信号处理集成电路板与能量采集组件连接结构示意图;3 is a schematic diagram of the connection structure of the signal processing integrated circuit board and the energy harvesting component in the present invention;
图4为本发明中的信号处理集成电路板与无线信号发射模块连接结构示意图;4 is a schematic diagram of the connection structure of the signal processing integrated circuit board and the wireless signal transmitting module in the present invention;
图5为本发明的电路结构示意图;5 is a schematic diagram of the circuit structure of the present invention;
图中:1-信号处理集成电路板;2-传感芯片;3-存储单元组;4-无线信号外接口;5-无线信号发射模块;6-压电薄片;7-振动放大器;8-锆钛酸铅压电梁;9-压电陶瓷片;10-导线;11-排线。In the figure: 1-signal processing integrated circuit board; 2-sensing chip; 3-storage unit group; 4-wireless signal external interface; 5-wireless signal transmitting module; 6-piezoelectric sheet; 7-vibration amplifier; 8- Lead zirconate titanate piezoelectric beam; 9-piezoelectric ceramic sheet; 10-wire; 11-line.
具体实施方式Detailed ways
如图所示,一种基于压电效应的自能量式结构监测无线传感器,包括无线传感器组件和能量采集组件,无线传感器组件包括信号处理集成电路板1、无线信号发射模块5及贴附于监测物体表面的压电薄片6,信号处理集成电路板1上设置传感器芯片模块2和储存单元模块3,能量采集组件包括振动放大器7和锆钛酸铅压电梁8。As shown in the figure, a self-energy structure monitoring wireless sensor based on piezoelectric effect includes a wireless sensor component and an energy collection component. The wireless sensor component includes a signal processing integrated
作为本发明的优化结构:压电薄片6贴附于监测物体表面,通过导线10与信号处理集成电路板1连接。As an optimized structure of the present invention, the
作为本发明的优化结构:存储单元组3用来记录监测电压发生的持续时间,存储单元组3与计算电路相邻放置。As an optimized structure of the present invention, the
作为本发明的优化结构:信号处理集成电路板1上设置无线信号设备外接口4,无线信号设备外接口4上设置有无线信号发射模块插槽,无线信号发射模块插槽通过排线11与无线信号发射模块5连接。As the optimized structure of the present invention: the signal processing integrated
作为本发明的优化结构:能量采集组件上设置有振动放大器7、用于将机械振动转化电能的锆钛酸铅压电梁8及用于于储能的储能模块,锆钛酸铅压电梁8上设置有压电陶瓷片9。As an optimized structure of the present invention, the energy collection component is provided with a
作为本发明的优化结构:能量采集组件通过导线10直接给无线传感器部分供电。As an optimized structure of the present invention: the energy collection component directly supplies power to the wireless sensor part through the
本发明的电路结构为:压电陶瓷片9分别与振动放大器7和储能模块电连接,储能模块与无线信号发射模块5电连接,振动放大器7与传感器芯片模块2电连接,传感器芯片模块2与存储单元模块3及压电薄片6电连接。The circuit structure of the present invention is as follows: the piezoelectric
以图1为例解释一种基于压电效应的自能量式结构监测无线传感器的使用过程。例如,结构发生形变时细微的振动经振动放大器7感应放大压迫锆钛酸铅压电梁8,在产生震动的情况下,通过压电陶瓷片9将机械能有效的转化为电能并被储能装置捕捉。储能装置再将电能送至集成电路板1给无线传感器供电,起到持续为无线传感器供电的作用。同时,若压电薄片6置于正在发生形变的结构表面,压电薄片6根据所受形变程度转换为相应的电压信号,通过导线10输送到无线传感器芯片2上。此时,传感器接收到电信号,并记录下监测电压发生的持续时间,当来自压电片的输入监测电压幅度超过预设的不同阈值时,存储单元记录下超过各个阀值电压总时间。通过转换,传感器输出栅级电压直方图信号,通过外接口4,接入无线信号发射模块发送到计算终端。通过对终端不同栅极上电压阈值的计算,进行反演而得出所监测的目标结构表面所发生的变形。Taking Figure 1 as an example to explain the use process of a self-energy structure monitoring wireless sensor based on piezoelectric effect. For example, when the structure is deformed, the subtle vibration is induced and amplified by the
最后应说明的是,以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the scope of the technical solutions of the examples of the present invention .
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010393271.3A CN111551139A (en) | 2020-05-11 | 2020-05-11 | A wireless sensor for self-energy structure monitoring based on piezoelectric effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010393271.3A CN111551139A (en) | 2020-05-11 | 2020-05-11 | A wireless sensor for self-energy structure monitoring based on piezoelectric effect |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111551139A true CN111551139A (en) | 2020-08-18 |
Family
ID=71999954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010393271.3A Pending CN111551139A (en) | 2020-05-11 | 2020-05-11 | A wireless sensor for self-energy structure monitoring based on piezoelectric effect |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111551139A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112764054A (en) * | 2020-12-13 | 2021-05-07 | 浙江大学 | Bridge underwater wireless monitoring reconstruction device based on three-dimensional laser scanning technology |
CN112977760A (en) * | 2021-03-08 | 2021-06-18 | 浙江大学 | Environment self-adaptation intelligent life buoy based on piezoelectric effect |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080231294A1 (en) * | 2007-03-19 | 2008-09-25 | Ndsu Research Foundation | Structural health monitoring circuit |
CN101839684A (en) * | 2010-03-09 | 2010-09-22 | 南京航空航天大学 | Piezoelectric transducer and intelligent wireless sensing network node based on piezoelectric energy recovery |
CN101917031A (en) * | 2010-07-13 | 2010-12-15 | 宁波杉工结构监测与控制工程中心有限公司 | Wireless sensor device for monitoring health of civil engineering structure |
CN103731065A (en) * | 2013-12-13 | 2014-04-16 | 东南大学 | Self-powered type wireless tunnel health monitoring device based on vibration electricity generation |
WO2015039103A1 (en) * | 2013-09-16 | 2015-03-19 | Board Of Trustees Of Michigan State University | Self-powered sensors monitoring quasi-static structural response |
CN106053388A (en) * | 2016-05-24 | 2016-10-26 | 昆明理工大学 | Fiber sensor-based self-powered bridge damage condition real-time monitoring device |
CN106787944A (en) * | 2017-02-27 | 2017-05-31 | 河海大学 | A kind of piezoelectric transducer |
CN207395885U (en) * | 2017-11-21 | 2018-05-22 | 北京市市政工程研究院 | Carry electric oscillation monitoring device and vibration monitor system |
CN209017079U (en) * | 2018-12-07 | 2019-06-21 | 河南蓝信科技有限责任公司 | A kind of transponder monitoring protection device based on Internet of Things |
-
2020
- 2020-05-11 CN CN202010393271.3A patent/CN111551139A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080231294A1 (en) * | 2007-03-19 | 2008-09-25 | Ndsu Research Foundation | Structural health monitoring circuit |
CN101839684A (en) * | 2010-03-09 | 2010-09-22 | 南京航空航天大学 | Piezoelectric transducer and intelligent wireless sensing network node based on piezoelectric energy recovery |
CN101917031A (en) * | 2010-07-13 | 2010-12-15 | 宁波杉工结构监测与控制工程中心有限公司 | Wireless sensor device for monitoring health of civil engineering structure |
WO2015039103A1 (en) * | 2013-09-16 | 2015-03-19 | Board Of Trustees Of Michigan State University | Self-powered sensors monitoring quasi-static structural response |
CN103731065A (en) * | 2013-12-13 | 2014-04-16 | 东南大学 | Self-powered type wireless tunnel health monitoring device based on vibration electricity generation |
CN106053388A (en) * | 2016-05-24 | 2016-10-26 | 昆明理工大学 | Fiber sensor-based self-powered bridge damage condition real-time monitoring device |
CN106787944A (en) * | 2017-02-27 | 2017-05-31 | 河海大学 | A kind of piezoelectric transducer |
CN207395885U (en) * | 2017-11-21 | 2018-05-22 | 北京市市政工程研究院 | Carry electric oscillation monitoring device and vibration monitor system |
CN209017079U (en) * | 2018-12-07 | 2019-06-21 | 河南蓝信科技有限责任公司 | A kind of transponder monitoring protection device based on Internet of Things |
Non-Patent Citations (3)
Title |
---|
AMIR H. ALAVI等: "Continuous health monitoring of pavement systems using smart sensing technology", 《CONSTRUCTION AND BUILDING MATERIALS》 * |
HASNI, HASSENE等: "A new method for detection of fatigue cracking in steel bridge girders using self-powered wireless sensors", 《SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2017》 * |
HASSENE HASNI等: "Structural health monitoring of steel frames using a network of self-powered strain and acceleration sensors:A numerical study", 《AUTOMATION IN CONSTRUCTION》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112764054A (en) * | 2020-12-13 | 2021-05-07 | 浙江大学 | Bridge underwater wireless monitoring reconstruction device based on three-dimensional laser scanning technology |
CN112977760A (en) * | 2021-03-08 | 2021-06-18 | 浙江大学 | Environment self-adaptation intelligent life buoy based on piezoelectric effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107561123B (en) | A concrete beam damage monitoring system and monitoring method | |
CN101451977B (en) | A reference-free Lamb wave damage monitoring method based on dual-element piezoelectric sensing array and time window function | |
US9879971B2 (en) | Device for film thickness measurement and method for film thickness measurement | |
CN111551139A (en) | A wireless sensor for self-energy structure monitoring based on piezoelectric effect | |
CN110794032A (en) | Bridge expansion joint monitoring devices | |
CN106706241B (en) | Active self-checking device and method for damage of wind turbine blade | |
CN115980621A (en) | A DC Power Grid Leakage Monitoring System | |
CN113189506A (en) | Lithium ion battery state of charge characterization method based on sound wave time domain characteristics | |
CN108549001B (en) | System and method for detecting strain state of power electronic module | |
CN207318399U (en) | A kind of beams of concrete damage monitoring system | |
CN104076187B (en) | Piezoelectric signal peak-value detection method and device thereof | |
CN103994032B (en) | A kind of remotely monitoring wind electricity blade interlayer structure damage method | |
CN203163919U (en) | PVDF piezoelectric film force sensor for impact force dynamic measurement | |
CN111928893A (en) | On-line monitoring method and monitoring device for whole process of carbon fiber composite material | |
US10495681B2 (en) | System and method for determining if deterioration occurs in interface of semiconductor die of electric power module | |
CN111693844A (en) | Test device and test method for pressure-bonding type semiconductor device, and electronic apparatus | |
CN111595941A (en) | An ultrasonic concrete deterioration detector based on wireless communication and big data | |
CN209570267U (en) | A Structural Damage Identification Sensor Based on Wheatstone Full Bridge Principle | |
CN215811370U (en) | Bolt tightness monitoring system based on piezoelectric active sensing | |
CN217331227U (en) | An online monitoring system for wind-induced vibration of tensile insulator strings | |
CN115828144A (en) | Signal sparse representation and fusion detection method, storage medium and electronic device | |
CN114814479A (en) | Power cable performance measurement method, apparatus, storage medium, and program product | |
CN113410797B (en) | Strain clamp crimping monitoring method | |
CN218724344U (en) | Force-thermoelectric coupling distributed sensor, battery and battery module | |
CN114441075B (en) | Power distribution cable joint mechanical stress ultrasonic evaluation method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200818 |