CN111549041B - 一种乙烯诱导bahd酰基转移酶erat2基因及其应用 - Google Patents
一种乙烯诱导bahd酰基转移酶erat2基因及其应用 Download PDFInfo
- Publication number
- CN111549041B CN111549041B CN202010321272.7A CN202010321272A CN111549041B CN 111549041 B CN111549041 B CN 111549041B CN 202010321272 A CN202010321272 A CN 202010321272A CN 111549041 B CN111549041 B CN 111549041B
- Authority
- CN
- China
- Prior art keywords
- erat2
- gene
- ethylene
- crispr
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 61
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 239000005977 Ethylene Substances 0.000 title claims abstract description 48
- 102000057234 Acyl transferases Human genes 0.000 title claims abstract description 26
- 108700016155 Acyl transferases Proteins 0.000 title claims abstract description 26
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 claims abstract description 46
- 238000003209 gene knockout Methods 0.000 claims abstract description 29
- 150000003839 salts Chemical class 0.000 claims abstract description 25
- 230000035882 stress Effects 0.000 claims abstract description 25
- RYCNUMLMNKHWPZ-SNVBAGLBSA-N 1-acetyl-sn-glycero-3-phosphocholine Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C RYCNUMLMNKHWPZ-SNVBAGLBSA-N 0.000 claims abstract description 22
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 17
- 230000008723 osmotic stress Effects 0.000 claims abstract description 17
- 230000008641 drought stress Effects 0.000 claims abstract description 13
- 150000002632 lipids Chemical class 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 7
- 239000002773 nucleotide Substances 0.000 claims abstract description 6
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 6
- 230000014509 gene expression Effects 0.000 claims description 50
- 241000219194 Arabidopsis Species 0.000 claims description 27
- 241000196324 Embryophyta Species 0.000 claims description 25
- 230000028160 response to osmotic stress Effects 0.000 claims description 6
- 230000033228 biological regulation Effects 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims description 2
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 230000035784 germination Effects 0.000 abstract description 17
- 230000002829 reductive effect Effects 0.000 abstract description 3
- 108091030071 RNAI Proteins 0.000 abstract description 2
- 238000009395 breeding Methods 0.000 abstract description 2
- 230000001488 breeding effect Effects 0.000 abstract description 2
- 230000009368 gene silencing by RNA Effects 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 30
- 241000219195 Arabidopsis thaliana Species 0.000 description 22
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 19
- 229930195725 Mannitol Natural products 0.000 description 19
- 235000010355 mannitol Nutrition 0.000 description 19
- 239000000594 mannitol Substances 0.000 description 19
- 230000008859 change Effects 0.000 description 15
- 239000002609 medium Substances 0.000 description 15
- 239000011780 sodium chloride Substances 0.000 description 15
- 108020004414 DNA Proteins 0.000 description 12
- 238000011529 RT qPCR Methods 0.000 description 12
- 239000006870 ms-medium Substances 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 10
- 230000019491 signal transduction Effects 0.000 description 9
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000002689 soil Substances 0.000 description 8
- 208000020990 adrenal cortex carcinoma Diseases 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 108091054761 ethylene receptor family Proteins 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 101100279542 Arabidopsis thaliana EIN3 gene Proteins 0.000 description 5
- 108091023040 Transcription factor Proteins 0.000 description 5
- 102000040945 Transcription factor Human genes 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 230000003203 everyday effect Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 238000001353 Chip-sequencing Methods 0.000 description 3
- 102100036576 Coiled-coil domain-containing protein 174 Human genes 0.000 description 3
- 101150101101 EIN2 gene Proteins 0.000 description 3
- 101710196315 High affinity copper uptake protein 1 Proteins 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 101100010909 Arabidopsis thaliana ERF105 gene Proteins 0.000 description 2
- 101150087302 ERD4 gene Proteins 0.000 description 2
- 101150011160 ERF105 gene Proteins 0.000 description 2
- 101150022081 ERF4 gene Proteins 0.000 description 2
- 102100030667 Eukaryotic peptide chain release factor subunit 1 Human genes 0.000 description 2
- 101150037317 HK1 gene Proteins 0.000 description 2
- 101800000637 Hemokinin Proteins 0.000 description 2
- 230000008645 cold stress Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 239000003375 plant hormone Substances 0.000 description 2
- 230000002786 root growth Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000024053 secondary metabolic process Effects 0.000 description 2
- 230000007226 seed germination Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 1
- 101100389641 Arabidopsis thaliana ERF11 gene Proteins 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 101000785259 Crocosmia x crocosmiiflora Myricetin 3-O-glucosyl 1,2-rhamnoside 6'-O-caffeoyltransferase AT2 Proteins 0.000 description 1
- 102100035102 E3 ubiquitin-protein ligase MYCBP2 Human genes 0.000 description 1
- 101150073803 ERF1 gene Proteins 0.000 description 1
- 101150047551 ERF11 gene Proteins 0.000 description 1
- 101150078760 ERF5 gene Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108020005004 Guide RNA Proteins 0.000 description 1
- 101000938776 Homo sapiens ETS domain-containing transcription factor ERF Proteins 0.000 description 1
- 101000732336 Homo sapiens Transcription factor AP-2 gamma Proteins 0.000 description 1
- 101000802094 Homo sapiens mRNA decay activator protein ZFP36L1 Proteins 0.000 description 1
- 108700005081 Overlapping Genes Proteins 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 101100172598 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SHR5 gene Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 102100028509 Transcription factor IIIA Human genes 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 230000004345 fruit ripening Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000030097 organ senescence Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229930195732 phytohormone Natural products 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000012113 quantitative test Methods 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8247—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Botany (AREA)
- Mycology (AREA)
- Nutrition Science (AREA)
- Immunology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明提供了一种乙烯诱导的BAHD酰基转移酶ERAT2基因及其应用。所述乙烯诱导的BAHD酰基转移酶ERAT2基因的核苷酸序列如SEQ ID NO.1所示。本发明构建了ERAT2基因的CRISPR‑Cas9基因敲除载体,并获得了ERAT2基因的CRISPR‑Cas9基因敲除株系,该株系在干旱胁迫和盐胁迫的条件下,野生型株系相比种子的发芽率降低,幼苗的根长变短;并且ERAT2基因的RNAi基因敲除株系能够参与合成多种脂质类物质溶血磷脂酰胆碱,本发明的技术方案为植物中对溶血磷脂酰胆碱的生物合成和抗渗透胁迫育种提供了理论依据和实验基础。
Description
技术领域
本发明属于属于生物基因工程领域,具体涉及一种乙烯诱导BAHD酰基转移酶ERAT2基因及其应用。
背景技术
乙烯是一种气态的植物激素,广泛参与植物的种子萌发、器官衰老、果实成熟、叶片脱落及对逆境和病原菌侵染的反应等过程。拟南芥是植物激素分子生物学研究的模式作物,很多植物激素的信号转导途径都是通过对拟南芥的研究来阐明的,这其中也包括乙烯信号转导途径。在拟南芥的乙烯信号转导途径中,植物体内合成的乙烯首先与位于内质网和高尔基体上的乙烯受体结合,正常情况下,乙烯受体与CTR1蛋白结合,协同负调控下游的乙烯反应,从而抑制下游的信号转导和相应基因的表达。当乙烯与其受体结合后,乙烯受体的蛋白质构象发生改变,乙烯受体与CTR1的结合受到抑制后,乙烯受体与下游的正调控因子EIN2结合,从而激活EIN2蛋白。激活后的EIN2蛋白在S645位点发生去磷酸化后,其C端被剪切下来,进入细胞核并且激活下游的EIN3/EILs转录因子,进而导致AP2/ERFs等一系列生长和抗逆等相关基因的表达。尽管目前针对乙烯的信号转导途径的研究较多,但却没有任何有关于乙烯参与酰基转移酶基因表达及调控功能的报道被公开。
发明内容
本发明提供了一种乙烯诱导的BAHD酰基转移酶ERAT2基因及其应用。本发明通过多种实验的综合分析获得一种能够编码BAHD酰基转移酶的新基因ERAT2(基因编号为AT5G01210),并通过实验验证了其参与对植物溶血磷脂酰胆碱物质的生物合成和渗透胁迫响应的功能。
为达到解决上述生产问题的目的,本发明采用以下技术方案予以实现:
本发明提供了一种乙烯诱导BAHD酰基转移酶ERAT2基因,所述ERAT2基因的核苷酸序列如SEQ ID NO.1所示。
进一步的,所述ERAT2基因的表达受乙烯的诱导调控,并且位于乙烯信号通路的下游。
进一步的,所述ERAT2基因在多种组织器官中发挥功能,不存在组织特异性。
进一步的,所述ERAT2基因具有参与植物渗透胁迫响应的功能。
进一步的,所述ERAT2基因具有参与植物溶血磷脂酰胆碱物质的生物合成的功能。
进一步的,所述ERAT2基因的表达能够受到干旱胁迫和盐胁迫的影响。
进一步的,所述ERAT2基因的表达能够影响植株幼苗对逆境的敏感度。
本发明还提供了一种ERAT2基因的基因敲除载体,所述基因敲除载体为CRISPR-Cas9,其中含有如SEQ ID NO.1所示的ERAT2基因。
本发明还提供了一种erat2突变体,所述erat2突变体含有如SEQ ID NO.1所示的ERAT2基因。
本发明还提供了乙烯诱导BAHD酰基转移酶ERAT2基因在参与植物渗透胁迫中响应的应用。
进一步的,在渗透胁迫条件下,ERAT2基因的CRISPR-Cas9基因敲除株系与野生型株系相比种子发芽率降低。
进一步的,在渗透胁迫条件下,ERAT2基因的CRISPR-Cas9基因敲除株系的幼苗与野生型株系相比根长变短。
进一步的,所述ERAT2基因的RNAi基因敲除株系的幼苗比成苗更敏感。
进一步的,所述植物渗透胁迫包括盐胁迫和干旱胁迫。
本发明还提供了乙烯诱导BAHD酰基转移酶ERAT2基因在参与植物溶血磷脂酰胆碱的生物合成中的应用。
进一步的,所述ERAT2基因的CRISPR-Cas9基因敲除株系能够合成脂质类物质溶血磷脂酰胆碱。
与现有技术相比,本发明的优点和有益技术效果是:
1、本发明通过对乙烯突变体ctr1-8的转录组测序、乙烯信号通路中EIN3转录因子的ChIP-Seq和ACC处理拟南芥根系的基因芯片分析结果的综合分析,获得并首次确定并公开了一种能够编码乙烯诱导的BAHD酰基转移酶的新基因ERAT2(基因编号为AT5G01210)。
2、本发明利用现有的植物基因工程技术,获得了ERAT2基因拟南芥孓DNA插入突变体erat2和CRISPR-Cas9基因敲除载体及其株系,并通过各项实验证实,erat2突变体和CRISPR-Cas9基因敲除株系的幼苗对逆境比成苗更为敏感,干旱和盐胁迫都会影响两种株系幼苗根系的生长,延缓了幼苗根的生长速度且降低植株的发芽率,通过分析erat2突变体和CRISPR-Cas9基因敲除株系渗透胁迫相关基因,从而确定ERAT2基因具有参与植物渗透胁迫响应的功能。本发明还通过实验证实了erat2突变体和CRISPR-Cas9基因敲除株系参与了植物溶血磷脂酰胆碱的生成,进而证实ERAT2基因参与了植物溶血磷脂酰胆碱的生物合成。
3、本发明的技术方案为植物中对溶血磷脂酰胆碱的的生物合成和抗渗透胁迫育种提供了理论依据和实验基础。
附图说明
图1是本发明中综合分析乙烯突变体ctr1-8的转录组测序、乙烯信号通路中EIN3转录因子的ChIP-Seq和ACC处理拟南芥根系的基因芯片分析数据的结果。
图2是本发明中乙烯生物合成前体ACC处理后ERAT2在野生型拟南芥中表达量的变化。
图3是本发明中乙烯生物合成前体ACC处理后ERAT2在乙烯不敏感拟南芥突变体中表达量的变化。
图4是本发明中乙烯生物合成前体ACC处理后ERAT2在乙烯超敏感拟南芥突变体中表达量的变化。
图5是本发明中ERAT2在拟南芥不同组织器官中的相对表达量。
图6是本发明中ERAT2在干旱胁迫下的相对表达量。
图7是本发明中ERAT2在盐胁迫下的相对表达量。
图8是本发明中ERAT2在冷胁迫下的相对表达量。
图9是本发明中ERAT2在突变体中的相对表达量。
图10是本发明中erat2突变体的生长状况,其中A为直接播种在土壤中,萌发后不再生长的突变体幼苗;B为1/2MS培养基上培养三周后,移栽入土壤中正常生长的突变体幼苗。
图11是本发明中野生型拟南芥和erat2突变体在无甘露醇处理时的发芽率。
图12是本发明中野生型拟南芥和erat2突变体在400mM甘露醇处理时的发芽率。
图13是本发明中野生型拟南芥和erat2突变体在400mM甘露醇处理10天时的根长比较。
图14是本发明中野生型拟南芥和erat2突变体在不同浓度甘露醇处理10天时的根长比较。
图15是本发明中野生型拟南芥和erat2突变体在无NaCl处理时的发芽率。
图16是本发明中野生型拟南芥和erat2突变体在100mM NaCl处理时的发芽率。
图17是本发明中野生型拟南芥和erat2突变体在150mM NaCl处理6天时的根长比较。
图18是本发明中野生型拟南芥和erat2突变体在不同浓度NaCl处理6天时的根长比较。
图19是本发明中erat2突变体经甘露醇模拟干旱处理后HK1基因的表达量变化。
图20是本发明中erat2突变体经盐处理后ERD4基因的表达量变化。
图21是本发明中erat2突变体经盐处理后ERF11基因的表达量变化。
图22是本发明中erat2突变体经盐处理后ERF4基因的表达量变化。
图23是本发明中erat2突变体经盐处理后ERF105基因的表达量变化。
图24是本发明中erat2突变体经盐处理后ERF1基因的表达量变化。
图25是本发明中野生型拟南芥和ERAT2的CRISPR-Cas9基因敲除株系在100mM甘露醇处理时的发芽率,其中L1和L2分别是所筛选的2个独立的纯合的敲除株系。
图26本发明中野生型拟南芥和ERAT2的CRISPR-Cas9基因敲除株系在不同浓度甘露醇处理时的根长结果。
图27是本发明中野生型拟南芥和ERAT2的CRISPR-Cas9基因敲除株系在200mMNaCl处理时的发芽率。
图28是本发明中野生型拟南芥和ERAT2的CRISPR-Cas9基因敲除株系在不同浓度NaCl处理时的根长结果。
图29是本发明中ERAT2的CRISPR-Cas9基因敲除株系经甘露醇模拟干旱处理后HK1基因的表达量变化。
图30是本发明中ERAT2的CRISPR-Cas9基因敲除株系经盐处理后ERF105基因的表达量变化。
其中,a、b、c和d均表示不同字母标注下的个体间差异达到0.05的显著水平。
具体实施方式
以下结合附图、附表和具体实施例对本发明的技术方案做进一步详细的说明。
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂、仪器等,如无特殊说明,均为市售商品。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。
实施例1:乙烯诱导BAHD酰基转移酶ERAT2的表达
1、独立实验的综合分析
(1)对乙烯通路突变体ctr1-8的转录组测序结果分析时发现有1702个基因的表达量受CTR1的调控。
(2)下载NCBI上数据号为SRA063695,针对EIN3转录因子的ChIP-Seq的原始数据;
(3)下载ArrayExpress上数据号为E-MEXP-362,对ACC处理3小时的拟南芥根系进行基因芯片分析时的原始数据;
(4)综合分析上述三次独立实验的数据,结果如图1所示,发现有25个基因是完全重叠的;
(5)对上述25个重叠基因进行更进一步的分析发现,存在一个编码BAHD酰基转移酶的未知新基因AT5G01210在这三次独立实验中均受到显著影响。本发明将AT5G01210命名为ERAT2(Ethylene Regulated BAHD AcylTransferase 2),其核苷酸序列如SEQ ID NO.1所示。根据上述结果,推测BAHD酰基转移酶ERAT2受乙烯的诱导,并位于乙烯通路EIN3转录因子的下游。
2、生物信息学的方法分析ERAT2的启动子序列
(1)通过拟南芥数据库(http://www.arabidopsis.org)和NCBI数据库(http://www.ncbi.nlm.nih.gov/guide),查找BAHD酰基转移酶ERAT2起始密码子ATG上游2000bp的序列。
(2)使用网络启动子分析网站PlantCARE,分析ERAT2的启动子序列,启动子序列的核苷酸序列如SEQ ID NO.2所示,ERAT2的启动子序列中含有乙烯响应元件(-ATTTCAAA-),推测ERAT2的表达受乙烯的调控。
3、qRT-PCR证明ERAT2的表达受乙烯的调控
(1)选择野生型拟南芥Col,乙烯不敏感突变体etr1-1和ein2,和乙烯超敏感突变体rte1-3和rte5作为实验材料。
(2)将野生型拟南芥Col以及乙烯通路突变体etr1-1、rte1-3、ein2和rte5种子在1/2MS培养基上培养2周之后,转入加有100μM ACC的1/2MS液体培养基上,密封光照培养6小时。
(3)qRT-PCR检测各个样品中ERAT2在乙烯处理前后的相对表达量的变化,其中检测ERAT2基因所用的qRT-PCR引物序列为:
AtERAT2-FP:5’-CGTCTCCGATCTCCGTCTCT-3’(SEQ ID NO.3);
AtERAT2-RP:5’-GTCGTCGAAGGAGAAGGAAGG-3’(SEQ ID NO.4)。
实验结果显示,在野生型拟南芥中,ERAT2的表达量因乙烯的处理而显著增加(图2);在乙烯不敏感突变体etr1-1和ein2中,ERAT2的表达量在乙烯处理前后无显著变化(图3);而在乙烯超敏感突变体rte1-3和rte5中,ERAT2的表达量在乙烯处理后的增加程度甚至超过了野生型拟南芥对照(图4)。综上说明BAHD酰基转移酶ERAT2的表达受乙烯的调控,并且位于乙烯信号通路的下游,由此可以进一步的证明乙烯诱导BAHD酰基转移酶ERAT2基因的表达。
实施例2:ERAT2突变体对渗透胁迫和溶血磷脂酰胆碱的生物合成的影响
1、ERAT2基因的组织表达模式和渗透胁迫诱导表达模式
(1)收集野生型拟南芥Co1的根、叶、茎、花和果荚,液氮研磨,提取RNA,并反转录成cDNA;qRT-PCR检测ERAT2在这几个组织器官中的相对表达。结果如图5所示,ERAT2在这几个器官中均有表达,说明ERAT2在多种组织器官中发挥功能,不存在组织特异性。
(2)将野生型拟南芥Col种子在MS培养基上培养2周之后,转入加有200mM甘露醇(模拟干旱)或200mM NaCl的MS液体培养基上,密封光照培养0h、3h、6h、9h、12h和24h,取样。
qRT-PCR检测干旱和盐胁迫处理不同时间后,ERAT2表达量的变化趋势。结果显示,ERAT2经甘露醇模拟干旱处理后,表达量不断增加,到6h时达到最高峰,之后短暂下降,但从9h开始出现第二次上升(图6)。而ERAT2经盐处理后,表达量不断增加(图7)。
(3)将培养2周的幼苗转入MS液体培养基上。密封后,将表面皿置于冰水混合物中,进行0℃冷处理0h、3h、6h、9h、12h和24h,取样。
qRT-PCR检测冷胁迫处理不同时间后,ERAT2表达量的变化趋势。结果显示,ERAT2经冷处理后,在12h内几乎无明显表达量的变化(图8)。
综上说明ERAT2参与渗透胁迫(干旱和盐)的响应。
2、ERAT2 T-DNA插入突变体的获得
(1)从tair网站购买了BAHD酰基转移酶ERAT2的拟南芥T-DNA插入突变体,突变体SALK号为:SALKseq_129231。
(2)RT-PCR单株检测突变体的纯合性。只存在2-LP和2-RP扩增条带的个体是野生型的;只存在Lba和2-RP扩增条带的个体是该基因T-DNA插入突变体的纯合个体;既存在2-LP和2-RP扩增条带,也存在Lba和2-RP扩增条带的个体是野生型和T-DNA插入突变体的杂合个体。检测结构显示,所购买的突变体全部是该基因T-DNA插入突变体的纯合个体,符合网站上的标注。
其中,检测erat2 T-DNA插入突变体纯合性所用的PCR引物序列为:
2-LP:5’-AAACCTGGTTTGAACTTTGGC-3’(SEQ ID NO.5);
2-RP:5’-AGTTACACAGGAACGTGGTGG-3’(SEQ ID NO.6);
Lba:5’-TGGTTCACGTAGTGGGCCATCG-3’(SEQ ID NO.7)。
(3)qRT-PCR检测突变体中ERAT2的相对表达量。提取野生型和erat2T-DNA插入突变体的RNA,反转录成cDNA;qRT-PCR检测突变体中ERAT2的相对表达量。结果如图9显示突变体中ERAT2的表达量相对于野生型明显降低,说明购买的突变体合格,可以在后续实验中使用。
3、erat2突变体幼苗对逆境敏感
(1)将突变体种子播种到营养土中,发现erat2突变体在土壤中萌发后,便不再生长,最终死亡(图10A)。
(2)将突变体种子播种在较厚的1/2MS培养基上培养三周后,再转移入土壤中,发现可以正常生长(图10B)。
上述结果说明突变体erat2幼苗对逆境比成苗更为敏感。
4、erat2突变体对干旱胁迫敏感
(1)将erat2突变体的种子撒入甘露醇终浓度分别为0和400mM的1/2MS培养基上。将种子4℃冷处理3天后,光照培养,每天记录发芽率。结果如图11和12所示,相比于野生型拟南芥Col,erat2突变体种子在甘露醇模拟干旱胁迫下,发芽率明显降低。
(2)将erat2突变体的种子撒入1/2MS培养基上,4℃冷处理3天。取出,转入甘露醇终浓度分别为0、100、200、300和400mM的1/2MS培养基上,光照培养3天,观察并测量根长的变化。结果如图13-14所示,经过含不同浓度甘露醇的培养基上培养10天后,erat2突变体幼苗的根明显比野生型拟南芥的短,说明干旱胁迫影响了erat2突变体幼苗根系的生长,也说明ERAT2的突变体对干旱胁迫敏感。
5、erat2突变体对盐胁迫敏感
(1)将erat2突变体的种子撒入NaCl终浓度为0和100mM的1/2MS培养基上。将种子4℃冷处理3天后,光照培养,每天记录发芽率。结果如图15-16所示,相比于野生型拟南芥Col,erat2突变体种子在不同浓度的盐胁迫下,发芽率都明显降低。
(2)将erat2突变体的种子撒入1/2MS培养基上,4℃冷处理3天。取出,光照培养3天后,转入含NaCl终浓度为0、50、100、150和200mM的1/2MS培养基上,光照培养6天,观察并根长的变化。结果如图17-18所示,经过含不同浓度盐的培养基上培养6天后,erat2突变体幼苗的根明显比野生型拟南芥的短,说明盐胁迫影响了erat2突变体幼苗根系的生长,也说明ERAT2的突变体对盐胁迫敏感。
6、qRT-PCR检测突变体中渗透胁迫相关基因的相对表达量变化
将培养2周的拟南芥野生型和erat2突变体幼苗转入MS液体培养基上。之后加入200mM甘露醇或者200mM NaCl溶液处理0h、3h、6h、9h、12h、24h、48h和72h,取样提RNA,反转录成cDNA;qRT-PCR检测渗透胁迫相关基因的表达量变化趋势。结果如图19-24显示,跟野生型拟南芥COL相比,erat2突变体不论是甘露醇模拟干旱处理后还是NaCl处理后,HK1、ERD4、ERF1、ERF4、ERF11和ERF105渗透胁迫相关基因的表达量都呈下降趋势。
综上说明ERAT2基因在植物对渗透胁迫响应中起作用。
7、erat2突变体对溶血磷脂酰胆碱的生物合成的影响
本发明考虑到突变体erat2幼苗对逆境比成苗更为敏感,选择了培养基上的两周龄幼苗作为实验材料,来检测ERAT2在植物次生代谢中的功能。
(1)以野生型拟南芥Col为对照,将两周龄的突变体erat2幼苗液氮冷冻,置于干冰中,送样至武汉迈特维尔生物科技有限公司对样品进行了广泛靶向代谢组学分析。结果如表1显示,BAHD酰基转移酶ERAT2主要涉及脂质类物质溶血磷脂酰胆碱的生成,说明ERAT2基因在植物对脂质类物质溶血磷脂酰胆碱的生物合成中起作用。
表1 BAHD酰基转移酶ERAT2参与脂质类物质溶血磷脂酰胆碱的生成
实施例3:ERAT2的CRISPR-Cas9基因敲除株系对渗透胁迫和溶血磷脂酰胆碱的生物合成的影响
1、获得了ERAT2的CRISPR-Cas9基因敲除株系
(1)利用百格CRISPR-Cas9载体构建试剂盒,设计并生成ERAT2的gRNA靶点序列(http://www.biogle.cn/index/excrispr)。在ERAT2的CDS序列上寻找PAM序列CGG。在ERAT2的CDS序列的前、中、后端各选择一个CGG位点。
(2)将每个CGG位点前端19bp的序列,输入网站www.biogle.cn,设计引物,制备Oligo二聚体,并将Oligo二聚体构建至CRISPR-Cas9载体BGK01上。
(3)将构建的CRISPR-Cas9载体转化大肠杆菌;
(4)PCR验证后,提取阳性菌株质粒,转入农杆菌菌株GV3101中。
(5)利用蘸花法转化拟南芥。PCR鉴定之后,测序确定转化株系。
检测ERAT2的CRISPR-Cas9基因敲除株系所用的PCR引物序列为:
ERAT2CRI-Ff:5’-ATAACTCCTACTCATCACCAATAC-3’(SEQ ID NO.8);
ERAT2CRI-Rf:5’-TCGTTGCAGACAATGGAAAT-3’(SEQ ID NO.9);
ERAT2CRI-Fm:5’-CGTTAGTTACAACGGTCATC-3’(SEQ ID NO.10);
ERAT2CRI-Rm:5’-CTGAGAGATTGGAACGATGA-3’(SEQ ID NO.11)。
(6)不断自交获得了2个独立的纯合的ERAT2的CRISPR-Cas9基因敲除株系L1和L2作为实验材料。
2、ERAT2的CRISPR-Cas9基因敲除株系对逆境敏感
(1)将ERAT2的CRISPR-Cas9基因敲除株系种子直接播种到营养土中,发现其种子在土壤中萌发后,便不再生长,最终死亡。
(2)将ERAT2的CRISPR-Cas9基因敲除株系种子播种在较厚的1/2MS培养基上培养三周后,再转移入土壤中,发现可以正常生长,说明L1和L2的幼苗对逆境比成苗更为敏感。
3、ERAT2的CRISPR-Cas9基因敲除株系对干旱胁迫敏感
(1)将ERAT2 CRISPR-Cas9基因敲除株系的种子撒入甘露醇终浓度分别为100mM的1/2MS培养基上。将种子4℃冷处理3天后,光照培养,每天记录发芽率。结果如图25所示,相比于野生型拟南芥Col,CRISPR-Cas9基因敲除株系种子在甘露醇模拟干旱胁迫下,发芽率明显降低。
(2)将CRISPR-Cas9基因敲除株系的种子撒入1/2MS培养基上,4℃冷处理3天。取出,转入甘露醇终浓度分别为0、100、200、300和400mM的1/2MS培养基上,光照培养3天,观察并测量根长的变化。结果如图26显示,经过含不同浓度甘露醇的培养基上培养10天后,CRISPR-Cas9基因敲除株系幼苗的根明显比野生型拟南芥的短,说明干旱胁迫影响了CRISPR-Cas9基因敲除株系幼苗根系的生长,也说明ERAT2的CRISPR-Cas9基因敲除株系对干旱胁迫敏感。
4、CRISPR-Cas9基因敲除株系对盐胁迫敏感
(1)将CRISPR-Cas9基因敲除株系的种子撒入NaCl终浓度为200mM的1/2MS培养基上。将种子4℃冷处理3天后,光照培养,每天记录发芽率。结果如图27所示,相比于野生型拟南芥Col,CRISPR-Cas9基因敲除株系种子在不同浓度的盐胁迫下,发芽率都明显降低。
(2)将CRISPR-Cas9基因敲除株系的种子撒入1/2MS培养基上,4℃冷处理3天。取出,光照培养3天。转入含NaCl终浓度为0、100、200和400mM的1/2MS培养基上,光照培养6天,观察并根长的变化。结果如图28显示,经过含不同浓度盐的培养基上培养6天后,CRISPR-Cas9基因敲除株系幼苗的根明显比野生型拟南芥的短,说明盐胁迫影响了CRISPR-Cas9基因敲除株系幼苗根系的生长,也说明ERAT2的CRISPR-Cas9基因敲除株系对盐胁迫敏感。
5、qRT-PCR检测突变体中渗透胁迫相关基因的相对表达量变化
将培养2周的拟南芥野生型和CRISPR-Cas9基因敲除株系幼苗转入MS液体培养基上。之后加入200mM甘露醇或者200mM NaCl溶液处理0h、3h、6h、9h、12h、24h、48h和72h,取样提RNA,反转录成cDNA。qRT-PCR检测渗透胁迫相关基因的表达量变化趋势。结果如图29-30显示,跟野生型拟南芥COL相比,CRISPR-Cas9基因敲除株系L-1和L-2不论是甘露醇模拟干旱处理后还是NaCl处理后,HK1和ERF105渗透胁迫相关基因的表达量都呈下降趋势。
综上说明ERAT2基因在植物对渗透胁迫响应中起作用。
6、ERAT2对溶血磷脂酰胆碱的生物合成影响
考虑到CRISPR-Cas9基因敲除株系幼苗对逆境比成苗更为敏感,本发明选择了培养基上的两周龄幼苗作为实验材料,来检测ERAT2在植物次生代谢中的功能。
(1)以野生型拟南芥Col为对照,将两周龄的CRISPR-Cas9基因敲除株系幼苗液氮冷冻,置于-80℃冰箱,备用。
(2)利用LC-MS检测CRISPR-Cas9基因敲除株系中脂质类物质溶血磷脂酰胆碱的差异。结果如表2所示,验证了BAHD酰基转移酶ERAT2涉及脂质类物质溶血磷脂酰胆碱的生成,说明BAHD酰基转移酶ERAT2在植物溶血磷脂酰胆碱的生物合成起作用。
表2 BAHD酰基转移酶ERAT2参与脂质类物质溶血磷脂酰胆碱的生成
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。
序列表
<110> 青岛农业大学
<120> 一种乙烯诱导BAHD酰基转移酶ERAT2基因及其应用
<160> 11
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1428
<212> DNA
<213> 拟南芥(Arabidopsis thaliana)
<400> 1
atgccttctt gttcggtaac tgaaatttca aaatgtatcg tctatccgga gaagaagtcc 60
accgtctccg atctccgtct ctccgtctcc gacctcccta tgctctcatg tcattacatt 120
caaaaaggcg tcctcctcac cagccctcct ccttccttct ccttcgacga ccttgtctcc 180
tctctccgcc gttctctctc ctccactctt tccctcttcc ctgctttagc cggccgtttc 240
tccaccactc ccgccggtca catttccatt gtctgcaacg acgccggagt tgatttcgtc 300
gccgcttccg ctaaacacgt caaactctct gatgttctct taccaggtga agacgttcct 360
ctgcttttcc gtgagttttt cgtcttcgag cgtctcgtta gttacaacgg tcatcataag 420
cctctcgccg ccgttcaagt gacggagctc cacgacggtg tcttcatcgg atgtaccgtg 480
aatcattccg ttactgacgg aacttccttc tggcacttct tcaacacctt tgctgacgtc 540
actagcggtg cttgtaagat caaacacctt ccagatttct cccgccacac cgtcttcgat 600
tctccggtcg ttcttccagt ccctcccggt ggtccacgtg tcactttcga cgccgaccaa 660
cctctacggg agagaatttt tcatttcagc agagaggcga ttaccaaact gaaacagagg 720
acgaataaca gagttaacgg aattgagact gccgttaacg atggaaggaa atgtaacgga 780
gagattaacg gaaaaataac aaccgttttg gatagttttt tgaataataa gaagagttat 840
gatcggacgg ctgagatttc atcgttccaa tctctcagcg ctcagctatg gcgatccgtt 900
acacgagcga ggaatctcga tccgagcaag acgacgacgt ttcgaatggc ggttaattgc 960
cggcaccggc ttgagccgaa gatggatccg tactacttcg gaaacgcgat acagagcata 1020
ccgacgttgg cgtctgcggg agatctgcta agcaaagatc tcaggtggtc cgccgaacag 1080
ttacacagga acgtggtggc gcacgacgac gcgacggtcc gccgtggaat cgccgcttgg 1140
gaaagcgatc cgaggctgtt tcctctcgga aatccagatg gagcttcgat cacgatgggg 1200
agctcgccga gattcccaat gtacgacaat gatttcggat ggggaaaacc gttagctgtg 1260
agaagcggcg gagcgaataa attcgacggg aagatctcgg cgtttcccgg tagagaagga 1320
aacggaagcg tggatctgga agtagttctg gcgccggaga ctatgactgg gattgagaac 1380
gatgctgagt ttatgcaata cgtatcagaa gtcacttacg attgttga 1428
<210> 2
<211> 699
<212> DNA
<213> 拟南芥(Arabidopsis thaliana)
<400> 2
gaatctatta tattactact attacttaga catatatata tttctatatg caaaacagag 60
gatactcaaa tttcctcatt tgtcaaaaat gctggcagat gttatccact acaaataatt 120
acacattagg tcattgtaac ttactgattt tgtcatgttt gtctgttata taaatcgact 180
aactgtatat atagtttgat ctaaaccgaa taatcgaacc aaaacagaat caaaatcaat 240
caaggaagca agcaaacaaa aaaaccaaaa catttcacac ataaaagtcc gaaattgggt 300
tctttctgat tttgatttga aatttcaaag aaaaaacaac caaacacact tttacttatc 360
ctaaaacaaa acattttgct cgtgaaagtg atgttaacac ttgctataaa tattcatcta 420
gaatttgcat ggtgagatat gatactaatt gaggcaagaa tgtgcgtttg atataatttt 480
ttctttagta acaaattaac aatataaata tcaccgggat tttcatatag ttttattata 540
caaacctatt gtgattatag gcttcatagc taaagaaaaa gaaaaaaata tgaaatatag 600
aaaacaacta aaataaaaag acaagaatag taacaactca agttcatgaa tccaaccatt 660
gatccgacca ctatataaac ccctatcccc ccccccccc 699
<210> 3
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
cgtctccgat ctccgtctct 20
<210> 4
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gtcgtcgaag gagaaggaag g 21
<210> 5
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
aaacctggtt tgaactttgg c 21
<210> 6
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
agttacacag gaacgtggtg g 21
<210> 7
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
tggttcacgt agtgggccat cg 22
<210> 8
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
ataactccta ctcatcacca atac 24
<210> 9
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
tcgttgcaga caatggaaat 20
<210> 10
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
cgttagttac aacggtcatc 20
<210> 11
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
ctgagagatt ggaacgatga 20
Claims (3)
1.乙烯诱导BAHD酰基转移酶ERAT2基因在参与植物渗透胁迫响应中的应用,其特征在于,所述ERAT2基因的核苷酸序列如SEQ ID NO.1所示;所述ERAT2基因的表达受乙烯的诱导调控;所述植物渗透胁迫是盐胁迫和干旱胁迫。
2.乙烯诱导BAHD酰基转移酶ERAT2基因在参与植物溶血磷脂酰胆碱的生物合成中的应用,其特征在于,所述ERAT2基因的核苷酸序列如SEQ ID NO.1所示,所述植物为拟南芥。
3.根据权利要求2所述的应用,其特征在于,所述ERAT2基因的CRISPR-Cas9基因敲除株系能够合成脂质类物质溶血磷脂酰胆碱。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010321272.7A CN111549041B (zh) | 2020-04-22 | 2020-04-22 | 一种乙烯诱导bahd酰基转移酶erat2基因及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010321272.7A CN111549041B (zh) | 2020-04-22 | 2020-04-22 | 一种乙烯诱导bahd酰基转移酶erat2基因及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111549041A CN111549041A (zh) | 2020-08-18 |
CN111549041B true CN111549041B (zh) | 2022-07-08 |
Family
ID=72001176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010321272.7A Expired - Fee Related CN111549041B (zh) | 2020-04-22 | 2020-04-22 | 一种乙烯诱导bahd酰基转移酶erat2基因及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111549041B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114940998B (zh) * | 2022-06-20 | 2023-06-06 | 四川农业大学 | 一种玉米转录因子ZmEREB92及应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1488642A (zh) * | 2002-10-11 | 2004-04-14 | 中国科学院遗传与发育生物学研究所 | 一种水稻乙烯受体类蛋白及其编码基因与应用 |
WO2010101884A1 (en) * | 2009-03-05 | 2010-09-10 | Rohm And Haas Company | Control of key ethylene hormone signaling pathway proteins in plants |
CN103173463A (zh) * | 2013-03-18 | 2013-06-26 | 上海交通大学 | 黄瓜乙烯信号转导途径ctr1基因及其编码的蛋白 |
CN104093842A (zh) * | 2011-10-31 | 2014-10-08 | 先锋国际良种公司 | 改善植物耐旱性、氮利用效率和产量 |
CN110753703A (zh) * | 2017-05-23 | 2020-02-04 | 德国亥姆霍兹慕尼黑中心健康与环境研究中心(有限公司) | 新的cd73抗体、其制备和用途 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107142275B (zh) * | 2017-05-05 | 2020-03-31 | 青岛农业大学 | 葡萄早熟基因VvWRKY13在调控植物中乙烯生物合成中的应用 |
-
2020
- 2020-04-22 CN CN202010321272.7A patent/CN111549041B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1488642A (zh) * | 2002-10-11 | 2004-04-14 | 中国科学院遗传与发育生物学研究所 | 一种水稻乙烯受体类蛋白及其编码基因与应用 |
WO2010101884A1 (en) * | 2009-03-05 | 2010-09-10 | Rohm And Haas Company | Control of key ethylene hormone signaling pathway proteins in plants |
CN104093842A (zh) * | 2011-10-31 | 2014-10-08 | 先锋国际良种公司 | 改善植物耐旱性、氮利用效率和产量 |
CN103173463A (zh) * | 2013-03-18 | 2013-06-26 | 上海交通大学 | 黄瓜乙烯信号转导途径ctr1基因及其编码的蛋白 |
CN110753703A (zh) * | 2017-05-23 | 2020-02-04 | 德国亥姆霍兹慕尼黑中心健康与环境研究中心(有限公司) | 新的cd73抗体、其制备和用途 |
Non-Patent Citations (1)
Title |
---|
登录号AK227159.1:Arabidopsis thaliana mRNA for anthranilate N-benzoyltransferase - like protein, complete cds, clone: RAFL09-86-O17;Totoki,Y.等;《GenBank数据库》;20060727;参见序列及信息 * |
Also Published As
Publication number | Publication date |
---|---|
CN111549041A (zh) | 2020-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice | |
Liang et al. | Expression and functional analysis of NUCLEAR FACTOR-Y, subunit B genes in barley | |
US8901376B2 (en) | Methods and compositions for the improvement of plant tolerance to environmental stresses | |
CN110872598B (zh) | 一种棉花抗旱相关基因GhDT1及其应用 | |
US20130298281A1 (en) | Transgenic plants with enhanced agronomic traits | |
Zhou et al. | Photoperiod response-related gene SiCOL1 contributes to flowering in sesame | |
Wang et al. | The novel ethylene-responsive factor CsERF025 affects the development of fruit bending in cucumber | |
CN107177610B (zh) | 一种调控种子大小的拟南芥mpk基因及增加种子大小的方法 | |
Båga et al. | Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development | |
Khatun et al. | Genome-wide identification, genomic organization, and expression profiling of the CONSTANS-like (COL) gene family in petunia under multiple stresses | |
Hasegawa et al. | Mutation of OUR1/OsbZIP1, which encodes a member of the basic leucine zipper transcription factor family, promotes root development in rice through repressing auxin signaling | |
Yang et al. | Identification and expression analyzes of CC-type glutaredoxin in cucumber (Cucumis sativus L.) under abiotic stress | |
CN104903444A (zh) | 对植物赋予高产性的核酸、制备产量增加的转基因植物的方法、使植物的产量增大的方法 | |
CN102226193A (zh) | 甘蓝型油菜及其亲本物种白菜和甘蓝mybl2基因家族及其应用 | |
Zhu et al. | Genome-wide investigation of the PYL genes in Acer palmatum and their role in freezing tolerance | |
Charlton et al. | Non-coordinate expression of peroxisome biogenesis, β-oxidation and glyoxylate cycle genes in mature Arabidopsis plants | |
CN110093353B (zh) | 一种普通野生稻芽期耐冷相关编码基因及其应用 | |
CN111549041B (zh) | 一种乙烯诱导bahd酰基转移酶erat2基因及其应用 | |
CN107828805A (zh) | 水稻环氧类胡萝卜素双加氧酶OsNCED3基因编码序列及其应用 | |
CN103060285B (zh) | OsPP18基因在控制水稻抗旱性中的应用 | |
CN103421809A (zh) | OsHSF08基因在控制水稻抗旱性中的应用 | |
CN105695482A (zh) | 甘蓝型油菜核转录因子NF-YA基因BnNF-YA3及其应用 | |
CN107090462B (zh) | 一种NF-Y类核转录因子基因ZmNF-YA13、其编码的蛋白及其应用 | |
CN111500602B (zh) | 一种乙烯诱导的bahd酰基转移酶erat1基因及其应用 | |
CN105925593B (zh) | 一种液泡膜氢离子焦磷酸酶基因AlVP1、其编码的蛋白及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220708 |
|
CF01 | Termination of patent right due to non-payment of annual fee |