CN111547826A - Integration heap flowing electrode electric capacity deionization device - Google Patents
Integration heap flowing electrode electric capacity deionization device Download PDFInfo
- Publication number
- CN111547826A CN111547826A CN202010519727.6A CN202010519727A CN111547826A CN 111547826 A CN111547826 A CN 111547826A CN 202010519727 A CN202010519727 A CN 202010519727A CN 111547826 A CN111547826 A CN 111547826A
- Authority
- CN
- China
- Prior art keywords
- exchange membrane
- current collector
- electrode
- fixing plate
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4691—Capacitive deionisation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/14—Maintenance of water treatment installations
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明涉及一种一体化堆叠式流动电极电容去离子(FCDI)装置,适用于FCDI反应器处理水量的提升及反应器规模的扩大。该装置包括主体装置与配件,主体装置包括终端固定板、终端集流器、离子交换膜、隔网、内嵌式集流器,配件包括硅胶垫圈、硅胶管、螺杆。本发明通过内嵌式集流器的使用,可将传统单腔室FCDI反应器分为多个连续的独立单元,每个单元均为一个完整的FCDI反应器,且相邻两个单元共用一个集流器,节省了反应器搭建成本,经济性能较强。
The invention relates to an integrated stacked flow electrode capacitive deionization (FCDI) device, which is suitable for increasing the treated water volume of an FCDI reactor and expanding the scale of the reactor. The device includes a main device and accessories, the main device includes a terminal fixing plate, a terminal current collector, an ion exchange membrane, a partition net, and an embedded current collector, and the accessories include a silicone gasket, a silicone tube, and a screw. The present invention can divide the traditional single-chamber FCDI reactor into a plurality of continuous independent units through the use of the in-line current collector, each unit is a complete FCDI reactor, and two adjacent units share one The current collector saves the construction cost of the reactor and has strong economic performance.
Description
技术领域technical field
本发明属于环境技术领域,涉及水处理,特别涉及一种一体化堆叠式流动电极电容去离子(FCDI,flow electrode capacitive deionization)装置。The invention belongs to the field of environmental technology, relates to water treatment, and particularly relates to an integrated stacking flow electrode capacitive deionization (FCDI, flow electrode capacitive deionization) device.
背景技术Background technique
FCDI技术是近年来新兴的一种电化学技术,主要利用电容的作用,使进水中的带电离子定向迁移至电极室内,吸附在电极材料表面的双电层结构中,以此实现对进水中带电离子的去除。相对于传统固定电极电容去离子(CDI)技术来说,FCDI技术使用流动电极悬浊液代替传统的固定电极,大幅度提升了反应器的吸附性能。FCDI technology is an emerging electrochemical technology in recent years. It mainly uses the function of capacitance to make the charged ions in the influent migrate to the electrode chamber in a directional way, and be adsorbed in the electric double layer structure on the surface of the electrode material, so as to realize the control of the influent water. Removal of charged ions. Compared with the traditional fixed electrode capacitive deionization (CDI) technology, the FCDI technology uses a flowing electrode suspension instead of the traditional fixed electrode, which greatly improves the adsorption performance of the reactor.
FCDI技术起源于上世纪60年代,主要用于海水/苦咸水脱盐领域,近年来由于其具有低耗、高效、无二次污染等优势,研究热度不断上升,应用领域也逐渐拓宽,成功应用于饮用水深度处理、工业废水处理、生活污水资源回收等领域。平板式FCDI反应器,是目前最常用的反应器构型,其在平板型集流器上蚀刻流道,形成电极室,电极悬浊液在其中流动;离子交换膜安装在集流器内侧,同时起到离子选择性透过及分隔电极室与进水腔室的作用。待处理废水在进水腔室内流过,通过隔网的作用均匀分布在整个腔室内,避免短流现象的出现。FCDI technology originated in the 1960s and is mainly used in the field of seawater/brackish water desalination. In recent years, due to its advantages of low consumption, high efficiency, and no secondary pollution, the research interest has continued to rise, and the application field has gradually expanded. Successful applications It is used in advanced drinking water treatment, industrial wastewater treatment, domestic sewage resource recovery and other fields. The flat-plate FCDI reactor is currently the most commonly used reactor configuration. The flow channel is etched on the flat-plate current collector to form an electrode chamber, in which the electrode suspension flows; the ion exchange membrane is installed inside the current collector, At the same time, it plays the role of ion selective permeation and separation of the electrode chamber and the water inlet chamber. The waste water to be treated flows through the water inlet chamber, and is evenly distributed in the entire chamber through the action of the partition screen, so as to avoid the phenomenon of short flow.
在平板型的FCDI反应器内,为缩短带电离子定向迁移距离,进水腔室的厚度通常控制在10mm以下,由此导致的反应器处理能力较小,针对待处理水量巨大的海水、城市污水、工业废水等来说,如何有效提升反应器的处理能力,扩大反应器规模,同时保证反应器的高效运行,是近年来研究的热点问题。In the flat-plate FCDI reactor, in order to shorten the directional migration distance of charged ions, the thickness of the inlet chamber is usually controlled below 10mm, which results in a small processing capacity of the reactor. How to effectively improve the treatment capacity of the reactor, expand the scale of the reactor, and ensure the efficient operation of the reactor at the same time, has become a hot research topic in recent years.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术的缺点,解决传统FCDI反应器处理规模有限制的问题,本发明的目的在于提供一种方便操作、易于调控的一体化堆叠式流动电极电容去离子(FCDI)装置,基于传统平板式构型FCDI反应器,通过内嵌式集流器的使用,将反应器内部分隔为多个独立的单元,每一单元内均能完成电容去离子过程,且相邻单元可共用同一个集流器。既保留的传统平板式构型FCDI反应器离子迁移路径短、吸附速率快的优势,又实现了反应器处理规模的扩大,能够根据实际处理需求,调节内嵌式集流器的数量,具有更高的反应灵活性,对工艺整体效率的提升及运行成本的控制具有重要意义,适用于FCDI反应器处理水量的提升及处理规模的扩大。In order to overcome the shortcomings of the prior art and solve the problem that the processing scale of the traditional FCDI reactor is limited, the purpose of the present invention is to provide an integrated stacked flow electrode capacitive deionization (FCDI) device that is convenient to operate and easy to control, based on the traditional Flat-plate configuration FCDI reactor, through the use of in-line current collector, the interior of the reactor is divided into multiple independent units, each unit can complete the capacitive deionization process, and adjacent units can share the same one collector. It not only retains the advantages of short ion migration path and fast adsorption rate of the traditional flat-plate configuration FCDI reactor, but also realizes the expansion of the processing scale of the reactor. The high reaction flexibility is of great significance to the improvement of the overall efficiency of the process and the control of operating costs.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种一体化堆叠式流动电极电容去离子装置,包括平行相对的左侧终端固定板11和右侧终端固定板12,在左侧终端固定板11的右侧面设置左侧终端集流器21,右侧终端固定板12的左侧面设置右侧终端集流器22,左侧终端集流器21的右侧面和右侧终端集流器22的左侧面分别紧贴设置有阳离子交换膜41和阴离子交换膜42或者阴离子交换膜42和阳离子交换膜41,在阳离子交换膜41和阴离子交换膜42之间设置环形的硅胶垫圈5,利用硅胶垫圈5的厚度,在其环形空间内形成进水腔室,各终端固定板、各集流器和各离子交换膜上开设进水口和出水口,并穿入硅胶管分别与各进水腔室形成进出水回路。An integrated stacked flow electrode capacitive deionization device, comprising a left
进一步地,在左侧终端集流器21和右侧终端固定板12之间均匀间隔布置若干内嵌式集流器3,各相邻集流器之间具有空间间隔,各内嵌式集流器3的两侧面均紧贴设置有阳离子交换膜41或者阴离子交换膜42,在每个空间间隔内,阳离子交换膜41和阴离子交换膜42相对布置,形成一对离子交换膜,在每对离子交换膜之间设置环形的硅胶垫圈5。Further, several in-line
进一步地,各集流器紧贴离子交换膜的侧面均蚀刻有回转形的电极液流道,各终端固定板和各集流器上开设电极液流入口和电极液流出口,并穿入硅胶管分别与各电极液流道形成进出电极液回路。Further, the sides of each current collector close to the ion exchange membrane are etched with a rotary electrode liquid flow channel, and each terminal fixing plate and each current collector are provided with an electrode liquid flow inlet and an electrode liquid flow outlet, and penetrate into the silica gel. The tubes and each electrode liquid flow channel respectively form an in-and-out electrode liquid circuit.
进一步地,所述进水口和出水口位于各终端固定板、各集流器和各离子交换膜的两个对角,所述电极液流入口和电极液流出口位于各终端固定板和各集流器的另外两个对角。Further, the water inlet and the water outlet are located at two opposite corners of each terminal fixing plate, each current collector and each ion exchange membrane, and the electrode liquid flow inlet and electrode liquid flow outlet are located at each terminal fixing plate and each collector. the other two opposite corners of the flow device.
进一步地,所述回转形的电极液流道在回转处采用半圆形连接通道。Further, a semicircular connecting channel is adopted at the turning point of the rotating electrode liquid flow channel.
进一步地,所述进出水回路中,在进水腔室内的水流方向为上向流,电极液回路中,在电极液流道内的电极液流动方向为上向流。Further, in the water inlet and outlet circuit, the water flow direction in the water inlet chamber is upward flow, and in the electrode liquid circuit, the electrode liquid flow direction in the electrode liquid flow channel is upward flow.
进一步地,所述硅胶垫圈5的环形空间内设置有与离子交换膜平行的隔网6,隔网6的外边沿连接在硅胶垫圈5的内边沿。Further, a
进一步地,所述隔网6的面积大于等于离子交换膜与电极室的有效接触面积。Further, the area of the
进一步地,所述硅胶垫圈5的外轮廓与阳离子交换膜41和阴离子交换膜42一致,紧贴阳离子交换膜41和阴离子交换膜42设置,内部的环形空间形成进水腔室。Further, the outer contour of the
本发明中,利用螺杆将各终端固定板、各集流器、各离子交换膜和各硅胶垫圈5固定。In the present invention, each terminal fixing plate, each current collector, each ion exchange membrane and each
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明通过内嵌式集流器的使用,扩大了反应器的处理规模,以类似膜堆形式横向扩展反应器处理能力。The invention expands the processing scale of the reactor through the use of the in-line collector, and laterally expands the processing capacity of the reactor in the form of a similar membrane stack.
本发明相邻的单元可共用同一个集流器,而集流器价格昂贵,是反应器建造成本中的主要部分,通过内嵌式集流器的使用,大幅度降低反应器建造成本,为商业化推广应用奠定基础。Adjacent units of the present invention can share the same current collector, and the current collector is expensive, which is the main part of the construction cost of the reactor. Lay the foundation for commercial promotion and application.
本发明内嵌式集流器数量可根据实际处理需求灵活调控,以模块化形式发展,相邻单元相互独立,互不影响,便于在实际操作中的调节与控制。The number of the embedded current collectors of the present invention can be flexibly regulated according to actual processing requirements, and is developed in a modular form.
附图说明Description of drawings
图1是本发明结构示意图(省略内嵌式集流器)。FIG. 1 is a schematic view of the structure of the present invention (the in-line current collector is omitted).
图2是本发明剖面示意图(包含内嵌式集流器)。FIG. 2 is a schematic cross-sectional view of the present invention (including the in-line current collector).
图3是本发明终端固定板的平面示意图。FIG. 3 is a schematic plan view of the terminal fixing plate of the present invention.
图4是本发明终端集流器正视图。Fig. 4 is a front view of the terminal current collector of the present invention.
图5是图4中A-A剖视图。FIG. 5 is an A-A cross-sectional view of FIG. 4 .
图6是图4中B-B剖视图。FIG. 6 is a B-B sectional view in FIG. 4 .
图7是本发明终端集流器三维视图。Figure 7 is a three-dimensional view of the terminal current collector of the present invention.
图8是本发明内嵌式集流器三维视图。Figure 8 is a three-dimensional view of the in-line current collector of the present invention.
图9是两单元FCDI反应器处理效果示意图。Figure 9 is a schematic diagram of the treatment effect of the two-unit FCDI reactor.
具体实施方式Detailed ways
下面结合附图和实施例详细说明本发明的实施方式。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings and examples.
实施例1Example 1
如图1所示,一种一体化堆叠式流动电极电容去离子装置,包括主体装置与配件,主体装置包括:终端固定板、终端集流器、离子交换膜等,配件包括硅胶垫圈、硅胶管、螺杆等。As shown in Figure 1, an integrated stacked flow electrode capacitive deionization device includes a main device and accessories. The main device includes: a terminal fixing plate, a terminal current collector, an ion exchange membrane, etc., and the accessories include a silicone gasket and a silicone tube. , screw, etc.
其中,终端固定板包括平行相对的左侧终端固定板11和右侧终端固定板12。终端集流器包括设置在左侧终端固定板11右侧面的左侧终端集流器21和设置在右侧终端固定板12左侧面的右侧终端集流器22。离子交换膜包括紧贴设置在左侧终端集流器21右侧面的阳离子交换膜41和紧贴设置在右侧终端集流器22左侧面的阴离子交换膜42。本领域技术人员应该知晓,阳离子交换膜41和阴离子交换膜42的位置可以互换。The terminal fixing plate includes a left
硅胶垫圈5为环形,外轮廓与阳离子交换膜41和阴离子交换膜42一致,紧贴设置在阳离子交换膜41和阴离子交换膜42之间,利用硅胶垫圈5的厚度,在其环形空间内形成进水腔室。也可在离子交换膜与集流器侧面之间增设硅胶垫圈5。The
其中可在硅胶垫圈5的环形空间内设置与离子交换膜平行的隔网6,隔网6的外边沿连接在硅胶垫圈5的内边沿,隔网6的孔径1mm左右,面积大于等于离子交换膜与电极室的有效接触面积,起到均匀部水、防止短流的作用。A
各终端固定板、各集流器和各离子交换膜上开设进水口和出水口,并穿入硅胶管分别与各进水腔室形成进出水回路。Each terminal fixing plate, each current collector and each ion exchange membrane are provided with a water inlet and a water outlet, and are penetrated into a silicone tube to form a water inlet and outlet loop with each water inlet chamber respectively.
本发明离子交换膜为普通商业离子交换膜,同时起到离子选择性透过与分离进水与电极液的作用。The ion-exchange membrane of the present invention is a common commercial ion-exchange membrane, and at the same time plays the role of selective ion permeation and separation of influent water and electrode liquid.
终端固定板的四周均匀分布有固定用孔,孔径大小与螺杆直径一致,利用螺杆将各终端固定板、各集流器、各离子交换膜和各硅胶垫圈5固定。Fixing holes are evenly distributed around the terminal fixing plate, and the pore size is consistent with the diameter of the screw.
实施例2Example 2
如图2所示,在实施例1的基础上,还包括了若干内嵌式集流器3,内嵌式集流器3均匀间隔布置在左侧终端集流器21和右侧终端固定板12之间,各相邻集流器之间具有空间间隔。As shown in FIG. 2 , on the basis of Embodiment 1, several embedded
各内嵌式集流器3的两侧面均紧贴设置有阳离子交换膜41或者阴离子交换膜42,在每个空间间隔内,阳离子交换膜41和阴离子交换膜42相对布置,形成一对离子交换膜,在每对离子交换膜之间设置硅胶垫圈5,形成多个进水腔室,每个进水腔室以及其两侧结构为一个处理单元,在图中示出了单元1、单元2、……、单元n-1、单元n共n个单元,图2中的虚线框内表示可重复结构,每增设一个,即可多增加一个处理单元。A
优选地,本发明终端固定板、终端集流器、离子交换膜、硅胶垫圈及内嵌式集流器的尺寸大小均保持一致,且固定孔位置、尺寸也保持一致。Preferably, the dimensions of the terminal fixing plate, the terminal current collector, the ion exchange membrane, the silica gel gasket and the embedded current collector of the present invention are all the same, and the positions and sizes of the fixing holes are also the same.
本实施例通过内嵌式集流器的使用,可将传统单腔室FCDI反应器分为多个连续的独立单元,每个单元均为一个完整的FCDI反应器,且相邻两个单元共用一个集流器,节省了反应器搭建成本,经济性能较强。在实际应用中,可通过调节图2中虚线框内元器件的数量,控制反应器单元数及处理水量。In this embodiment, through the use of the in-line collector, the traditional single-chamber FCDI reactor can be divided into a plurality of continuous independent units, each unit is a complete FCDI reactor, and the two adjacent units share the same A current collector saves the construction cost of the reactor and has strong economic performance. In practical applications, the number of reactor units and the amount of treated water can be controlled by adjusting the number of components in the dotted frame in Figure 2.
实施例3Example 3
参考图1、图2、图3、图4、图5、图6、图7、图8,左侧终端集流器21的右侧面、右侧终端集流器22的左侧面以及各内嵌式集流器3的两侧面,均蚀刻有回转形的电极液流道,回转形的电极液流道在回转处采用半圆形连接通道。流道宽度及深度应小于5mm(推荐2mm),便于电极液在其中流动,又能有效避免电极颗粒发生沉积、阻塞流动等现象的出现。数量可根据实际处理需求灵活调节,相邻单元共用同一个集流器,大幅度降低反应器成本。1 , 2 , 3 , 4 , 5 , 6 , 7 , and 8 , the right side of the left terminal
各终端固定板和各集流器上开设电极液流入口和电极液流出口,并穿入硅胶管分别与各电极液流道形成进出电极液回路。Each terminal fixing plate and each current collector are provided with an electrode liquid inflow inlet and an electrode liquid outflow outlet, and are penetrated into a silicone tube to form an in-and-out electrode liquid circuit with each electrode liquid flow channel respectively.
优选结构中,进水口和出水口可位于各终端固定板、各集流器和各离子交换膜的两个对角,电极液流入口和电极液流出口位于各终端固定板和各集流器的另外两个对角。In a preferred structure, the water inlet and outlet can be located at two opposite corners of each terminal fixing plate, each current collector and each ion exchange membrane, and the electrode liquid flow inlet and electrode liquid flow outlet are located at each terminal fixing plate and each current collector. the other two opposite corners.
优选结构中,在进出水回路,进水腔室内的水流方向为上向流,在电极液回路,电极液流道内的电极液流动方向为上向流。In a preferred structure, in the water inlet and outlet circuits, the water flow direction in the water inlet chamber is upward flow, and in the electrode liquid circuit, the electrode liquid flow direction in the electrode liquid flow channel is upward flow.
以3单元结构为例,装置整体呈平板对称结构,最外侧为一对终端固定板(左侧终端固定板11和右侧终端固定板12),平行且对立放置,内侧为一对终端集流器(左侧终端集流器21和右侧终端集流器22),中间放置两个内嵌式集流器3,由此将反应器内部分为3个独立的处理单元;每一单元的集流器内侧,紧贴集流器平行对立放置一对离子交换膜,中间放置硅胶垫圈5及隔网6,通过硅胶垫圈5的厚度形成进水腔室,硅胶垫圈5中间留出与隔网6大小相同的空隙,利用隔网6的作用,将进水均匀分布在整个腔室内,用螺杆将上述所有组成部分固定。进水进入装置内部后,通过进水管路布置均分成三路,分别进入3个单元的进水腔室中,其流动方向均为上向流。电极液进入装置内部后,通过管路布置,平均分成6路,分别进入每个单元的两个电极室内,流动方向也为上向流。由此构成一个3单元一体化堆叠式反应器。Taking the 3-unit structure as an example, the device as a whole is a flat plate symmetrical structure. The outermost side is a pair of terminal fixing plates (the left
将本一体化堆叠式FCDI反应器,应用于城市污水脱盐处理,以两单元FCDI反应器为例,其中包含1个内嵌式集流器,具体组成为:终端固定板-终端集流器-阴离子交换膜-隔网-阳离子交换膜-内嵌式集流器-阳离子交换膜-隔网-阴离子交换膜-终端集流器-终端固定板。单元1内进水为浓度为100mM的K2SO4溶液,单元2内进水为模拟城市污水,其中NH4Cl的浓度为100mM,CaCl2的浓度为50mM,MgCl2的浓度为50mM;两个单元内待处理废水体积均为600mL,电极液为5wt%的商业电容活性炭悬浊液,体积为150mL,每一单元内的工作电压均为1.2V,电极液及进水的流速均为5.00mL/min,考察反应器对两种不同电解质溶液的吸附情况。The integrated stacked FCDI reactor is applied to the desalination treatment of municipal sewage. Taking the two-unit FCDI reactor as an example, it contains an embedded current collector, and the specific composition is: terminal fixed plate-terminal current collector- Anion exchange membrane-separator net-cation exchange membrane-inline collector-cation exchange membrane-separator net-anion exchange membrane-terminal current collector-terminal fixed plate. The influent in unit 1 is K 2 SO 4 solution with a concentration of 100 mM, and the influent in unit 2 is simulated urban sewage, in which the concentration of NH 4 Cl is 100 mM, the concentration of CaCl 2 is 50 mM, and the concentration of MgCl 2 is 50 mM; The volume of the wastewater to be treated in each unit is 600mL, the electrode solution is 5wt% commercial capacitive activated carbon suspension, the volume is 150mL, the working voltage in each unit is 1.2V, and the flow rate of the electrode solution and the inlet water are both 5.00 mL/min to investigate the adsorption of the reactor on two different electrolyte solutions.
从图9的处理结果可以看到,两个单元内的电导率均随反应过程的进行而不断下降,且两个单元中无明显差异,能够达到脱盐的作用,说明反应器规模的扩大不会影响反应器的处理效果,在保证脱盐过程进行的基础之上,达到了提升反应器处理能力的作用。It can be seen from the processing results in Fig. 9 that the electrical conductivity in the two units decreases continuously with the progress of the reaction process, and there is no significant difference between the two units, which can achieve the effect of desalination, indicating that the expansion of the reactor scale will not Affecting the treatment effect of the reactor, on the basis of ensuring the desalination process, achieves the effect of improving the treatment capacity of the reactor.
综上,本发明应用实施简单,可在现有反应器基础之上,通过内嵌式集流器的使用,提升反应器的处理能力,且相邻单元共用一个集流器,显著降低反应器构造成本,为FCDI反应器的规模扩大提供了一条可行的思路。To sum up, the application and implementation of the present invention is simple, and the processing capacity of the reactor can be improved through the use of the in-line current collector on the basis of the existing reactor, and the adjacent units share a current collector, which significantly reduces the number of reactors. The construction cost provides a feasible idea for the scale expansion of the FCDI reactor.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010519727.6A CN111547826A (en) | 2020-06-09 | 2020-06-09 | Integration heap flowing electrode electric capacity deionization device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010519727.6A CN111547826A (en) | 2020-06-09 | 2020-06-09 | Integration heap flowing electrode electric capacity deionization device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111547826A true CN111547826A (en) | 2020-08-18 |
Family
ID=71997434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010519727.6A Pending CN111547826A (en) | 2020-06-09 | 2020-06-09 | Integration heap flowing electrode electric capacity deionization device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111547826A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112479320A (en) * | 2020-11-30 | 2021-03-12 | 重庆大学 | Series-stacked desalination system and desalination method based on flow electrodes |
CN112939158A (en) * | 2021-02-02 | 2021-06-11 | 同济大学 | Flow electrode capacitance deionization and amplification device based on front current collector |
CN113087089A (en) * | 2021-04-26 | 2021-07-09 | 中南大学 | Stacked three-dimensional rocking chair type capacitive deionization device and deionization method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201232910A (en) * | 2011-01-28 | 2012-08-01 | Univ Fu Jen Catholic | Electrode structure of a vanadium redox flow battery |
CN104495991A (en) * | 2014-12-22 | 2015-04-08 | 上海纳晶科技有限公司 | Efficient membrane capacitive deionizing array based on flowing electrodes |
CN105540764A (en) * | 2015-12-12 | 2016-05-04 | 大连理工大学 | Electrode preparation and application of an asymmetric capacitive deionization module |
EP3045431A1 (en) * | 2015-01-16 | 2016-07-20 | DWI - Leibniz-Institut für Interaktive Materialien e.V. | Apparatus and method for continuous water desalination and ion separation by flow electrode capacitive deionization |
CN106521541A (en) * | 2016-11-18 | 2017-03-22 | 北京化工大学 | Flow-rate-adjustable electrolytic tank reaction device for electrically reducing carbon dioxide |
CN212356662U (en) * | 2020-06-09 | 2021-01-15 | 清华大学 | An Integrated Stacked Flow Electrode Capacitive Deionization Device |
-
2020
- 2020-06-09 CN CN202010519727.6A patent/CN111547826A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201232910A (en) * | 2011-01-28 | 2012-08-01 | Univ Fu Jen Catholic | Electrode structure of a vanadium redox flow battery |
CN104495991A (en) * | 2014-12-22 | 2015-04-08 | 上海纳晶科技有限公司 | Efficient membrane capacitive deionizing array based on flowing electrodes |
EP3045431A1 (en) * | 2015-01-16 | 2016-07-20 | DWI - Leibniz-Institut für Interaktive Materialien e.V. | Apparatus and method for continuous water desalination and ion separation by flow electrode capacitive deionization |
CN105540764A (en) * | 2015-12-12 | 2016-05-04 | 大连理工大学 | Electrode preparation and application of an asymmetric capacitive deionization module |
CN106521541A (en) * | 2016-11-18 | 2017-03-22 | 北京化工大学 | Flow-rate-adjustable electrolytic tank reaction device for electrically reducing carbon dioxide |
CN212356662U (en) * | 2020-06-09 | 2021-01-15 | 清华大学 | An Integrated Stacked Flow Electrode Capacitive Deionization Device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112479320A (en) * | 2020-11-30 | 2021-03-12 | 重庆大学 | Series-stacked desalination system and desalination method based on flow electrodes |
CN112479320B (en) * | 2020-11-30 | 2022-08-19 | 重庆大学 | Series-stacked desalination system and desalination method based on flow electrodes |
CN112939158A (en) * | 2021-02-02 | 2021-06-11 | 同济大学 | Flow electrode capacitance deionization and amplification device based on front current collector |
NL2030218A (en) | 2021-02-02 | 2022-09-08 | Univ Tongji | Flow-electrode capacitance deionization amplification device based on front current collector |
NL2030218B1 (en) | 2021-02-02 | 2022-10-10 | Univ Tongji | Flow-electrode capacitance deionization amplification device based on front current collector |
CN113087089A (en) * | 2021-04-26 | 2021-07-09 | 中南大学 | Stacked three-dimensional rocking chair type capacitive deionization device and deionization method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103991937B (en) | One utilizes the continuous wastewater treatment equipment of membrane capacitance deionization | |
CN111547826A (en) | Integration heap flowing electrode electric capacity deionization device | |
CN106044970A (en) | Method for flow-electrode capacitive deionization (FCDI)-based desalination and application | |
CN104617322A (en) | Microbial capacitive desalination fuel cell technology | |
CN104495991B (en) | A kind of high performance membrane capacitive deionization array based on flow-type electrode | |
CN104817143B (en) | Amberplex multiple multipole capacitive adsorption desalter | |
CN102249380A (en) | Efficient liquid flow type membrane capacitance desalter | |
CN207478339U (en) | A kind of energy-saving electrical electrodialysis apparatus | |
CN108862548A (en) | A kind of microorganism electrolytic desalting pond reactor assembly | |
CN212356662U (en) | An Integrated Stacked Flow Electrode Capacitive Deionization Device | |
CN112479320B (en) | Series-stacked desalination system and desalination method based on flow electrodes | |
CN109692575A (en) | A kind of dual cavity membrane capacitance deionizer | |
CN110214391A (en) | Electrochemical cell including channel-style Flow-through electrode cellular construction | |
CN109692574A (en) | A kind of rodlike membrane capacitance deionization array | |
CN209397045U (en) | An integrated filter electro-adsorption water treatment device | |
CN205076856U (en) | Utilize electrostatic absorption to purify device of high salt waste water | |
CN105253991B (en) | A kind of electromagnetic field couples desalter and method for having the dirty function of drop concurrently | |
CN217650954U (en) | Flowing electrode capacitance deionization device capable of effectively inhibiting scaling | |
CN203820507U (en) | Laboratory wastewater treatment device | |
CN1313386C (en) | Electromigration unidirectional osmosis method for desalination of water | |
KR101929855B1 (en) | Capacitive Deionization Device and Capacitive Deionization Module | |
CN110436618A (en) | A kind of anaerobic membrane bioreactor and control membrane fouling method based on extra electric field | |
CN215626974U (en) | Desalting capacitor device | |
CN211998962U (en) | Flow capacitor deionization device of multiple electrode pipeline | |
CN204400676U (en) | A kind of high performance membrane capacitor deionizing instrument based on flowing-type electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |