CN111540469A - Method for constructing mathematical model for in-vitro detection of gastric cancer and application thereof - Google Patents
Method for constructing mathematical model for in-vitro detection of gastric cancer and application thereof Download PDFInfo
- Publication number
- CN111540469A CN111540469A CN202010482537.1A CN202010482537A CN111540469A CN 111540469 A CN111540469 A CN 111540469A CN 202010482537 A CN202010482537 A CN 202010482537A CN 111540469 A CN111540469 A CN 111540469A
- Authority
- CN
- China
- Prior art keywords
- gastric cancer
- mir
- markers
- marker
- mathematical model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 208000005718 Stomach Neoplasms Diseases 0.000 title claims abstract description 115
- 206010017758 gastric cancer Diseases 0.000 title claims abstract description 112
- 201000011549 stomach cancer Diseases 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000013178 mathematical model Methods 0.000 title claims abstract description 16
- 238000000338 in vitro Methods 0.000 title claims abstract description 14
- 238000001514 detection method Methods 0.000 title claims description 22
- 239000003550 marker Substances 0.000 claims abstract description 25
- 238000007477 logistic regression Methods 0.000 claims abstract description 18
- 238000004458 analytical method Methods 0.000 claims abstract description 6
- -1 CD44v9 Proteins 0.000 claims description 37
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims description 13
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims description 13
- 230000007067 DNA methylation Effects 0.000 claims description 11
- 239000008280 blood Substances 0.000 claims description 11
- 210000004369 blood Anatomy 0.000 claims description 11
- 102100027652 COP9 signalosome complex subunit 2 Human genes 0.000 claims description 10
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 claims description 10
- 108010079362 Core Binding Factor Alpha 3 Subunit Proteins 0.000 claims description 10
- 101710198144 Endopolygalacturonase I Proteins 0.000 claims description 10
- 101000726004 Homo sapiens COP9 signalosome complex subunit 2 Proteins 0.000 claims description 10
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 claims description 10
- 101710191566 Probable endopolygalacturonase I Proteins 0.000 claims description 10
- 101100310648 Mus musculus Sox17 gene Proteins 0.000 claims description 9
- 108010026664 MutL Protein Homolog 1 Proteins 0.000 claims description 9
- 102100025369 Runt-related transcription factor 3 Human genes 0.000 claims description 9
- 235000018102 proteins Nutrition 0.000 claims description 9
- 102000004169 proteins and genes Human genes 0.000 claims description 9
- 108090000623 proteins and genes Proteins 0.000 claims description 9
- 210000001808 exosome Anatomy 0.000 claims description 8
- 108010066264 gastrin 17 Proteins 0.000 claims description 8
- 108091062762 miR-21 stem-loop Proteins 0.000 claims description 8
- 102100026151 Bifunctional apoptosis regulator Human genes 0.000 claims description 7
- 102100025953 Cathepsin F Human genes 0.000 claims description 7
- 102100040278 E3 ubiquitin-protein ligase RNF19A Human genes 0.000 claims description 7
- 101000764928 Homo sapiens Bifunctional apoptosis regulator Proteins 0.000 claims description 7
- 101000933218 Homo sapiens Cathepsin F Proteins 0.000 claims description 7
- 101001104280 Homo sapiens E3 ubiquitin-protein ligase RNF19A Proteins 0.000 claims description 7
- 101000856372 Homo sapiens Pre-mRNA-splicing factor CWC25 homolog Proteins 0.000 claims description 7
- 206010028980 Neoplasm Diseases 0.000 claims description 7
- 102100025585 Pre-mRNA-splicing factor CWC25 homolog Human genes 0.000 claims description 7
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims description 7
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims description 7
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 6
- 102100021571 B-cell CLL/lymphoma 6 member B protein Human genes 0.000 claims description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- 101000971180 Homo sapiens B-cell CLL/lymphoma 6 member B protein Proteins 0.000 claims description 6
- 101001124906 Homo sapiens PR domain zinc finger protein 5 Proteins 0.000 claims description 6
- 101000804792 Homo sapiens Protein Wnt-5a Proteins 0.000 claims description 6
- 102100029132 PR domain zinc finger protein 5 Human genes 0.000 claims description 6
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 6
- 102000043366 Wnt-5a Human genes 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- 239000002207 metabolite Substances 0.000 claims description 6
- 108091025686 miR-199a stem-loop Proteins 0.000 claims description 6
- 229960001153 serine Drugs 0.000 claims description 6
- 108091007854 Cdh1/Fizzy-related Proteins 0.000 claims description 5
- 102000038594 Cdh1/Fizzy-related Human genes 0.000 claims description 5
- 102100024458 Cyclin-dependent kinase inhibitor 2A Human genes 0.000 claims description 5
- 108091061758 Mir-433 Proteins 0.000 claims description 5
- 239000003102 growth factor Substances 0.000 claims description 5
- 230000002757 inflammatory effect Effects 0.000 claims description 5
- 108091045790 miR-106b stem-loop Proteins 0.000 claims description 5
- ALRHLSYJTWAHJZ-UHFFFAOYSA-N 3-hydroxypropionic acid Chemical compound OCCC(O)=O ALRHLSYJTWAHJZ-UHFFFAOYSA-N 0.000 claims description 4
- 102100022464 5'-nucleotidase Human genes 0.000 claims description 4
- 101000678236 Homo sapiens 5'-nucleotidase Proteins 0.000 claims description 4
- 102000003814 Interleukin-10 Human genes 0.000 claims description 4
- 108090000174 Interleukin-10 Proteins 0.000 claims description 4
- 108090001005 Interleukin-6 Proteins 0.000 claims description 4
- 102000004889 Interleukin-6 Human genes 0.000 claims description 4
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims description 4
- 108091028049 Mir-221 microRNA Proteins 0.000 claims description 4
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 4
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 claims description 4
- 108010033711 Telomeric Repeat Binding Protein 1 Proteins 0.000 claims description 4
- 102100036497 Telomeric repeat-binding factor 1 Human genes 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- 108091027034 miR-148a stem-loop Proteins 0.000 claims description 4
- 108091041631 miR-21-1 stem-loop Proteins 0.000 claims description 4
- 108091044442 miR-21-2 stem-loop Proteins 0.000 claims description 4
- 108091061917 miR-221 stem-loop Proteins 0.000 claims description 4
- 108091063489 miR-221-1 stem-loop Proteins 0.000 claims description 4
- 108091055391 miR-221-2 stem-loop Proteins 0.000 claims description 4
- 108091031076 miR-221-3 stem-loop Proteins 0.000 claims description 4
- 229960002429 proline Drugs 0.000 claims description 4
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 claims description 4
- 102100028324 ADP-ribose glycohydrolase MACROD1 Human genes 0.000 claims description 3
- 101150095407 Bfar gene Proteins 0.000 claims description 3
- 102100032912 CD44 antigen Human genes 0.000 claims description 3
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 claims description 3
- 102100039510 Cancer/testis antigen 2 Human genes 0.000 claims description 3
- 108020004414 DNA Proteins 0.000 claims description 3
- 102100038587 Death-associated protein kinase 1 Human genes 0.000 claims description 3
- 102100022820 Disintegrin and metalloproteinase domain-containing protein 28 Human genes 0.000 claims description 3
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 claims description 3
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 claims description 3
- 102100030943 Glutathione S-transferase P Human genes 0.000 claims description 3
- 101000578912 Homo sapiens ADP-ribose glycohydrolase MACROD1 Proteins 0.000 claims description 3
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 claims description 3
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 claims description 3
- 101000889345 Homo sapiens Cancer/testis antigen 2 Proteins 0.000 claims description 3
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 claims description 3
- 101000914321 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 7 Proteins 0.000 claims description 3
- 101000956145 Homo sapiens Death-associated protein kinase 1 Proteins 0.000 claims description 3
- 101000756727 Homo sapiens Disintegrin and metalloproteinase domain-containing protein 23 Proteins 0.000 claims description 3
- 101000756756 Homo sapiens Disintegrin and metalloproteinase domain-containing protein 28 Proteins 0.000 claims description 3
- 101001010139 Homo sapiens Glutathione S-transferase P Proteins 0.000 claims description 3
- 101001044927 Homo sapiens Insulin-like growth factor-binding protein 3 Proteins 0.000 claims description 3
- 101001005719 Homo sapiens Melanoma-associated antigen 3 Proteins 0.000 claims description 3
- 101001036406 Homo sapiens Melanoma-associated antigen C1 Proteins 0.000 claims description 3
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 claims description 3
- 101001103036 Homo sapiens Nuclear receptor ROR-alpha Proteins 0.000 claims description 3
- 101000617725 Homo sapiens Pregnancy-specific beta-1-glycoprotein 2 Proteins 0.000 claims description 3
- 101000883798 Homo sapiens Probable ATP-dependent RNA helicase DDX53 Proteins 0.000 claims description 3
- 101001065541 Homo sapiens Protein LYRIC Proteins 0.000 claims description 3
- 101000834948 Homo sapiens Tomoregulin-2 Proteins 0.000 claims description 3
- 102100022708 Insulin-like growth factor-binding protein 3 Human genes 0.000 claims description 3
- 102100025082 Melanoma-associated antigen 3 Human genes 0.000 claims description 3
- 102100039447 Melanoma-associated antigen C1 Human genes 0.000 claims description 3
- 108091061943 Mir-218 microRNA precursor family Proteins 0.000 claims description 3
- 108091062140 Mir-223 Proteins 0.000 claims description 3
- 101100476480 Mus musculus S100a8 gene Proteins 0.000 claims description 3
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 claims description 3
- 102100039614 Nuclear receptor ROR-alpha Human genes 0.000 claims description 3
- 102100038236 Probable ATP-dependent RNA helicase DDX53 Human genes 0.000 claims description 3
- 102100032133 Protein LYRIC Human genes 0.000 claims description 3
- 102100026160 Tomoregulin-2 Human genes 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 claims description 3
- 238000002795 fluorescence method Methods 0.000 claims description 3
- 108091091360 miR-125b stem-loop Proteins 0.000 claims description 3
- 108091040501 miR-129 stem-loop Proteins 0.000 claims description 3
- 108091045757 miR-129-3 stem-loop Proteins 0.000 claims description 3
- 108091090758 miR-129-4 stem-loop Proteins 0.000 claims description 3
- 108091065139 miR-129-5 stem-loop Proteins 0.000 claims description 3
- 108091083769 miR-199a-1 stem-loop Proteins 0.000 claims description 3
- 108091047470 miR-199a-2 stem-loop Proteins 0.000 claims description 3
- 108091048350 miR-199a-3 stem-loop Proteins 0.000 claims description 3
- 108091056793 miR-199a-4 stem-loop Proteins 0.000 claims description 3
- 108091040176 miR-218 stem-loop Proteins 0.000 claims description 3
- 108091027963 non-coding RNA Proteins 0.000 claims description 3
- 102000042567 non-coding RNA Human genes 0.000 claims description 3
- 238000012163 sequencing technique Methods 0.000 claims description 3
- 210000001519 tissue Anatomy 0.000 claims description 3
- 210000002700 urine Anatomy 0.000 claims description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 2
- 102100034580 AT-rich interactive domain-containing protein 1A Human genes 0.000 claims description 2
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 claims description 2
- 101100339431 Arabidopsis thaliana HMGB2 gene Proteins 0.000 claims description 2
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 claims description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 2
- 102000004480 Cyclin-Dependent Kinase Inhibitor p57 Human genes 0.000 claims description 2
- 108010017222 Cyclin-Dependent Kinase Inhibitor p57 Proteins 0.000 claims description 2
- NQNXERHVLXYXRO-UHFFFAOYSA-N Diacetylspermine Chemical compound Cl.Cl.CC(=O)NCCCNCCCCNCCCNC(C)=O NQNXERHVLXYXRO-UHFFFAOYSA-N 0.000 claims description 2
- 101100044298 Drosophila melanogaster fand gene Proteins 0.000 claims description 2
- 102100037240 E3 ubiquitin-protein ligase UBR2 Human genes 0.000 claims description 2
- 102000001301 EGF receptor Human genes 0.000 claims description 2
- 101150064015 FAS gene Proteins 0.000 claims description 2
- 102100030708 GTPase KRas Human genes 0.000 claims description 2
- 102100025614 Galectin-related protein Human genes 0.000 claims description 2
- 108090001053 Gastrin releasing peptide Proteins 0.000 claims description 2
- 102100035965 Gastrokine-1 Human genes 0.000 claims description 2
- 102100036534 Glutathione S-transferase Mu 1 Human genes 0.000 claims description 2
- 108700010013 HMGB1 Proteins 0.000 claims description 2
- 101150021904 HMGB1 gene Proteins 0.000 claims description 2
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 claims description 2
- 102100037907 High mobility group protein B1 Human genes 0.000 claims description 2
- 102100022103 Histone-lysine N-methyltransferase 2A Human genes 0.000 claims description 2
- 102100027755 Histone-lysine N-methyltransferase 2C Human genes 0.000 claims description 2
- 101000924266 Homo sapiens AT-rich interactive domain-containing protein 1A Proteins 0.000 claims description 2
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 claims description 2
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 claims description 2
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 claims description 2
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 claims description 2
- 101001071694 Homo sapiens Glutathione S-transferase Mu 1 Proteins 0.000 claims description 2
- 101001045846 Homo sapiens Histone-lysine N-methyltransferase 2A Proteins 0.000 claims description 2
- 101001008892 Homo sapiens Histone-lysine N-methyltransferase 2C Proteins 0.000 claims description 2
- 101001033249 Homo sapiens Interleukin-1 beta Proteins 0.000 claims description 2
- 101001076407 Homo sapiens Interleukin-1 receptor antagonist protein Proteins 0.000 claims description 2
- 101000764535 Homo sapiens Lymphotoxin-alpha Proteins 0.000 claims description 2
- 101001013158 Homo sapiens Myeloid leukemia factor 1 Proteins 0.000 claims description 2
- 101000605639 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Proteins 0.000 claims description 2
- 101000635938 Homo sapiens Transforming growth factor beta-1 proprotein Proteins 0.000 claims description 2
- 101000664600 Homo sapiens Tripartite motif-containing protein 3 Proteins 0.000 claims description 2
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 claims description 2
- 101150111463 ID2 gene Proteins 0.000 claims description 2
- 102000000589 Interleukin-1 Human genes 0.000 claims description 2
- 108010002352 Interleukin-1 Proteins 0.000 claims description 2
- 102100039065 Interleukin-1 beta Human genes 0.000 claims description 2
- 102100026018 Interleukin-1 receptor antagonist protein Human genes 0.000 claims description 2
- 102000003815 Interleukin-11 Human genes 0.000 claims description 2
- 108090000177 Interleukin-11 Proteins 0.000 claims description 2
- 102000004388 Interleukin-4 Human genes 0.000 claims description 2
- 108090000978 Interleukin-4 Proteins 0.000 claims description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 2
- 101001089108 Lotus tetragonolobus Anti-H(O) lectin Proteins 0.000 claims description 2
- 102100026238 Lymphotoxin-alpha Human genes 0.000 claims description 2
- 101710119980 Macrophage migration inhibitory factor Proteins 0.000 claims description 2
- 102100028708 Metallothionein-3 Human genes 0.000 claims description 2
- 108091026807 MiR-214 Proteins 0.000 claims description 2
- 108091093189 Mir-375 Proteins 0.000 claims description 2
- 102100029691 Myeloid leukemia factor 1 Human genes 0.000 claims description 2
- GUNURVWAJRRUAV-UHFFFAOYSA-N N(1)-acetylspermine Chemical compound CC(=O)NCCCNCCCCNCCCN GUNURVWAJRRUAV-UHFFFAOYSA-N 0.000 claims description 2
- QIAFMBKCNZACKA-UHFFFAOYSA-N N-benzoylglycine Chemical compound OC(=O)CNC(=O)C1=CC=CC=C1 QIAFMBKCNZACKA-UHFFFAOYSA-N 0.000 claims description 2
- 108010057466 NF-kappa B Proteins 0.000 claims description 2
- 102000003945 NF-kappa B Human genes 0.000 claims description 2
- 102100038332 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Human genes 0.000 claims description 2
- 101100335198 Pneumocystis carinii fol1 gene Proteins 0.000 claims description 2
- 108010064218 Poly (ADP-Ribose) Polymerase-1 Proteins 0.000 claims description 2
- 102100023712 Poly [ADP-ribose] polymerase 1 Human genes 0.000 claims description 2
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 claims description 2
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 claims description 2
- 108010077895 Sarcosine Proteins 0.000 claims description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 2
- 108010002687 Survivin Proteins 0.000 claims description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 claims description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 claims description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 claims description 2
- 102100030742 Transforming growth factor beta-1 proprotein Human genes 0.000 claims description 2
- 102100038798 Tripartite motif-containing protein 3 Human genes 0.000 claims description 2
- 102100040247 Tumor necrosis factor Human genes 0.000 claims description 2
- 102100021657 Tyrosine-protein phosphatase non-receptor type 6 Human genes 0.000 claims description 2
- 101710128901 Tyrosine-protein phosphatase non-receptor type 6 Proteins 0.000 claims description 2
- 101150056689 UBR2 gene Proteins 0.000 claims description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 2
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 claims description 2
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 claims description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims description 2
- 229960003767 alanine Drugs 0.000 claims description 2
- 235000004279 alanine Nutrition 0.000 claims description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 2
- 238000002306 biochemical method Methods 0.000 claims description 2
- 210000001124 body fluid Anatomy 0.000 claims description 2
- 239000010839 body fluid Substances 0.000 claims description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 2
- 229940001468 citrate Drugs 0.000 claims description 2
- 229960004106 citric acid Drugs 0.000 claims description 2
- 235000015165 citric acid Nutrition 0.000 claims description 2
- 238000010205 computational analysis Methods 0.000 claims description 2
- 238000006911 enzymatic reaction Methods 0.000 claims description 2
- 210000003608 fece Anatomy 0.000 claims description 2
- 238000004817 gas chromatography Methods 0.000 claims description 2
- 229960005150 glycerol Drugs 0.000 claims description 2
- 238000009396 hybridization Methods 0.000 claims description 2
- 230000001900 immune effect Effects 0.000 claims description 2
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 claims description 2
- 229960000367 inositol Drugs 0.000 claims description 2
- 229960000310 isoleucine Drugs 0.000 claims description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 2
- 239000004310 lactic acid Substances 0.000 claims description 2
- 229960000448 lactic acid Drugs 0.000 claims description 2
- 235000014655 lactic acid Nutrition 0.000 claims description 2
- 239000004816 latex Substances 0.000 claims description 2
- 229920000126 latex Polymers 0.000 claims description 2
- 108091007427 let-7g Proteins 0.000 claims description 2
- 238000004811 liquid chromatography Methods 0.000 claims description 2
- 239000001630 malic acid Substances 0.000 claims description 2
- 229940099690 malic acid Drugs 0.000 claims description 2
- 235000011090 malic acid Nutrition 0.000 claims description 2
- 108091037426 miR-152 stem-loop Proteins 0.000 claims description 2
- 108091049679 miR-20a stem-loop Proteins 0.000 claims description 2
- 108091047189 miR-29c stem-loop Proteins 0.000 claims description 2
- 108091054490 miR-29c-2 stem-loop Proteins 0.000 claims description 2
- 108091043187 miR-30a stem-loop Proteins 0.000 claims description 2
- 108091029750 miR-30a-1 stem-loop Proteins 0.000 claims description 2
- 108091030035 miR-30a-2 stem-loop Proteins 0.000 claims description 2
- 108091091870 miR-30a-3 stem-loop Proteins 0.000 claims description 2
- 108091067477 miR-30a-4 stem-loop Proteins 0.000 claims description 2
- 108091047664 miR-421 stem-loop Proteins 0.000 claims description 2
- 108091038240 miR-638 stem-loop Proteins 0.000 claims description 2
- 229940107700 pyruvic acid Drugs 0.000 claims description 2
- 238000000611 regression analysis Methods 0.000 claims description 2
- 210000003296 saliva Anatomy 0.000 claims description 2
- 229940043230 sarcosine Drugs 0.000 claims description 2
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 claims description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 claims description 2
- 238000004879 turbidimetry Methods 0.000 claims description 2
- 239000004474 valine Substances 0.000 claims description 2
- 229960004295 valine Drugs 0.000 claims description 2
- 102100028843 DNA mismatch repair protein Mlh1 Human genes 0.000 claims 3
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 claims 1
- 230000005855 radiation Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 2
- 208000024891 symptom Diseases 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 238000003745 diagnosis Methods 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 6
- 102000013609 MutL Protein Homolog 1 Human genes 0.000 description 4
- 210000002784 stomach Anatomy 0.000 description 4
- 201000011591 microinvasive gastric cancer Diseases 0.000 description 3
- 239000012474 protein marker Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 208000007882 Gastritis Diseases 0.000 description 2
- 102100022019 Pregnancy-specific beta-1-glycoprotein 2 Human genes 0.000 description 2
- 208000007107 Stomach Ulcer Diseases 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 201000005917 gastric ulcer Diseases 0.000 description 2
- 238000007901 in situ hybridization Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 208000018556 stomach disease Diseases 0.000 description 2
- 206010000087 Abdominal pain upper Diseases 0.000 description 1
- 206010006895 Cachexia Diseases 0.000 description 1
- 108010052495 Calgranulin B Proteins 0.000 description 1
- 102000012666 Core Binding Factor Alpha 3 Subunit Human genes 0.000 description 1
- 102000008142 Cytochrome P-450 CYP1A1 Human genes 0.000 description 1
- 108010074918 Cytochrome P-450 CYP1A1 Proteins 0.000 description 1
- 208000019505 Deglutition disease Diseases 0.000 description 1
- 206010013082 Discomfort Diseases 0.000 description 1
- 102100022207 E3 ubiquitin-protein ligase parkin Human genes 0.000 description 1
- 108700041152 Endoplasmic Reticulum Chaperone BiP Proteins 0.000 description 1
- 102100021451 Endoplasmic reticulum chaperone BiP Human genes 0.000 description 1
- 206010053155 Epigastric discomfort Diseases 0.000 description 1
- 206010015137 Eructation Diseases 0.000 description 1
- 206010016100 Faeces discoloured Diseases 0.000 description 1
- 101150112743 HSPA5 gene Proteins 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 101000619542 Homo sapiens E3 ubiquitin-protein ligase parkin Proteins 0.000 description 1
- 102000005755 Intercellular Signaling Peptides and Proteins Human genes 0.000 description 1
- 108010070716 Intercellular Signaling Peptides and Proteins Proteins 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 102100032420 Protein S100-A9 Human genes 0.000 description 1
- 201000000660 Pyloric Stenosis Diseases 0.000 description 1
- 206010067171 Regurgitation Diseases 0.000 description 1
- 101100111629 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR2 gene Proteins 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 206010000059 abdominal discomfort Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 230000004791 biological behavior Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 210000002318 cardia Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 208000026500 emaciation Diseases 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 101150028578 grp78 gene Proteins 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 108091028606 miR-1 stem-loop Proteins 0.000 description 1
- 108091029067 miR-11 stem-loop Proteins 0.000 description 1
- 108091023818 miR-7 stem-loop Proteins 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 210000001187 pylorus Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 208000016261 weight loss Diseases 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Data Mining & Analysis (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pathology (AREA)
- Primary Health Care (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biotechnology (AREA)
- Evolutionary Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The application provides a method for constructing a mathematical model for detecting gastric cancer in vitro, which comprises the steps of obtaining the concentrations of at least two gastric cancer markers from a sample, carrying out logistic regression on the concentration value of each marker, substituting the concentration obtained by measurement into a logistic regression model to obtain an analysis result, and carrying out comprehensive gastric cancer analysis by using the concentration of each marker and the logistic regression analysis result. The application also provides an application of the method.
Description
Technical Field
The application relates to the technical field of medical diagnosis, in particular to a method for constructing a mathematical model for in-vitro detection of gastric cancer.
Background
Gastric cancer (gastric cancer) is a malignant tumor originated from gastric mucosal epithelium, the incidence rate of the gastric cancer is the first in various malignant tumors in China, the incidence rate of the gastric cancer is obviously different regionally, and the incidence rate of the gastric cancer is obviously higher in northwest and east coastal areas of China than in south areas. The good hair age is more than 50 years old, and the ratio of the incidence rates of men and women is 2: 1. gastric cancer tends to be younger due to changes in dietary structure, increased working pressure, infection with helicobacter pylori, and the like. Gastric cancer can occur in any part of the stomach, more than half of which occur in antrum, and the greater curvature, lesser curvature, anterior and posterior walls of the stomach can be affected. Most of gastric cancers belong to adenocarcinoma, have no obvious symptoms in the early stage, or have nonspecific symptoms such as epigastric discomfort, eructation and the like, are often similar to the symptoms of chronic stomach diseases such as gastritis, gastric ulcer and the like, and are easy to ignore, so the early diagnosis rate of the gastric cancers in China is still low at present. The prognosis of gastric cancer is related to the pathological stage, location, tissue type, biological behavior, and therapeutic measures of gastric cancer.
Like other cancers, gastric cancer can be found early and the cure rate is quite high. The data show that the 5-year survival rate of early gastric cancer is as high as more than 90%, and the number is about 20% when the later gastric cancer is reached.
However, the discovery rate of the early gastric cancer in China is less than 10%.
Early gastric cancer is mostly free of obvious symptoms, and even with symptoms, the symptoms are similar to the symptoms of common gastric diseases such as common gastritis and gastric ulcer, such as nausea, vomiting, acid regurgitation and the like.
At the advanced stage, symptoms of upper gastrointestinal discomfort are often manifested, such as general discomfort of the stomach, fullness after eating, decreased appetite and the like, and in this stage, stomachache and weight loss are the main clinical symptoms.
As tumors grow larger, tumors growing in different locations also show several different manifestations: if the tumor grows on the cardia and the stomach fundus, symptoms such as poststernal pain, progressive dysphagia and the like can also appear; if the tumor grows in the pylorus, pyloric obstruction and other manifestations may appear.
When the stomach cancer reaches the middle and late stages, the patient can have symptoms of bleeding, black stool, anemia, emaciation and the like.
In the ideal situation, when one needs to screen for gastric cancer, the screening can be done immediately by an effective means. However, to date, none of the screening approaches is perfect, 100% accurate. The invention provides a multidimensional combined method for diagnosing gastric cancer in vitro, which jointly detects protein markers, metabolites, cell-free DNA, cell-free non-coding RNA, autoantibodies, inflammatory factors, growth factors, circulating gastric cancer cells, DNA methylation, exosomes and the like related to gastric cancer, and improves the sensitivity and specificity of gastric cancer detection.
Disclosure of Invention
The main objective of the present application is to provide a method for constructing a mathematical model for in vitro detection of gastric cancer and its application, so as to improve the sensitivity and specificity of clinical detection of gastric cancer, no marker in the present detection of gastric cancer can diagnose gastric cancer with very high sensitivity and specificity results, most of gastric cancers adopt a joint inspection form, but all adopt molecular diagnosis or immunodiagnosis to detect several markers of one type, and do not combine the detections of various dimensions, in order to enhance the accuracy of prediction, it is better to combine the detection of both internal and external aspects: it is an object of the present invention to combine metabolites, exosomes, molecular diagnostics, immunodiagnosis.
The application provides a method for constructing a mathematical model for detecting gastric cancer in vitro, which comprises the steps of obtaining the concentrations of at least two gastric cancer markers from a sample, carrying out logistic regression on the concentration value of each marker, substituting the concentration obtained by measurement into a logistic regression model to obtain an analysis result, and carrying out comprehensive gastric cancer analysis by using the concentration of each marker and the logistic regression analysis result.
Preferably, the gastric cancer markers include at least one of the following categories:
gastric cancer protein markers, gastric cancer metabolite markers, gastric cancer-associated cell-free DNA, gastric cancer-associated DNA methylation markers, gastric cancer cell-free non-coding RNA, gastric cancer autoantibodies, gastric cancer inflammatory factors and growth factors, circulating gastric cancer cells, and gastric cancer exosomes.
Preferably, the gastric cancer protein marker is selected from any one or more of PG I/II, CA724, CA242, CA199, CA50, G-17, HP, CEA, CCDC49, RNF19, BFAR, COPS2, CTSF, NT5E, TERF1, CD44v9, PARP1, IPO-38, CYP1A1, GSTM1, S100A9, GIF, AAT, ANGPTL 2;
the gastric cancer metabolite markers are selected from any one or more of acetyl spermine, diacetyl spermine, lactic acid, succinic acid, malic acid, citric acid, pyruvic acid, 3-hydroxypropionic acid, serine, proline, valine, isoleucine, serine, 3-indole sulfate, hippurate, citrate, sarcosine, alanine, proline, serine, inositol and glycerol;
the gastric cancer molecular diagnostic marker is selected from any one or more of p53, C-erbB-2, ETFR, nm23, E-Cad, BCL6B, HER-2, Ki-67, CD133, cyclinB1, EGFR, Id2, LRP16, NF-kappa B, VEGFR 2, Syn, CgA, CD56, TMEFF2, SHP-1, miR-29C, miR-30a-5p, miR-148a, miR-375, miR-638, miR-106b, miR-20a, miR-221, miR-421, Let-7g, miR-433, miR-214, miR-21, miR-148a, miR-152, miR-451, miR-199a-3p, miR-195, miR-106b, miR-129, miR125b, miR-199a, miR-433, miR-223 and miR-218;
the gastric cancer autoantibody is selected from any one or more of NY-ESO-1, CTAG2, DDX53, MAGEC1, MAGEA3, AEG-1 and GRP 78;
the gastric cancer related inflammatory factors and growth factors are selected from any one or more of ERBB, HER2, EGFR, HER-2, VEGF, TGF, c-MET, IL-6, IL-11, Bcl-2, Fas, survivin, IL-1, IL-10, IL1B, TNFA, LTA, IL6, IL12p40, IL4, IL1RN, IL10 and TGFB 1;
the gastric cancer related exosomes are selected from any one or more of miR-27a, miR-451, miR-21-5p, miR-21, miR-221, TGF-beta 1, HMGB1, CagA, GKN1, UBR2, TRIM3, miR-130a, miR-27a, miR-21-5p, ZFAS1 and ciRS-133;
the gastric cancer related DNA methylation marker is selected from any one or more of Sox17, WNT5A, MLH1, p16, CDH1, RUNX3, MINT25, RORA, GDNF, ADAM23, PRDM5, MLF1, p53, KRAS, PIK3CA, ARID1A, MLL3, MLL, C-MET, ERBB4, CD44, hMLH1, CDKN1C, IGFBP3, PRDM5, MINT25, DAPK and GSTP 1.
Preferably, the formula of the logistic regression is:
wherein Logit (P) is the logistic regression model result of the same or different gastric cancer markers, C is a natural constant obtained by regression, alpha is the coefficient of each marker obtained by regression analysis and is a natural number, the concentration i of the marker is the concentration of the marker in the same or different categories, and n is an integer greater than or equal to 2.
Preferably, the sample tested comprises: human or animal tissue, a blood sample, urine, saliva, body fluid, feces.
Preferably, the detection technique comprises one or more of a radiological method, an immunological method, a fluorescence method, a flow fluorescence, a latex turbidimetry, a biochemical method, an enzymatic method, a PCR method, a sequencing method, a hybridization method, a gas chromatography, a liquid chromatography, a chemiluminescence method, a magnetoelectric conversion method, and a photoelectric conversion method.
Preferably, the gastric cancer markers are gastric cancer protein markers, gastric cancer molecular diagnosis markers and gastric cancer related DNA methylation markers, the gastric cancer protein markers are PG I/II, CA724, CA242, CA50, G-17, CCDC49, RNF19, BFAR, COPS2 and CTSF, the gastric cancer molecular diagnosis markers are p53, C-erbB-2, ETFR, nm23, E-Cad, BCL6B, HER-2, Ki-67, CD133 and EGFR, the gastric cancer related DNA methylation markers are Sox17, WNT5A, MLH1, p16, CDH1, RUNX3 and MINT25, concentration values of the markers in samples are obtained, natural logarithm conversion is carried out, and a logistic regression analysis is carried out to obtain a regression model after non-contributing markers are removed: logit (p) ═ 3.736+1.814 × Ln (PG I/II) +0.854 × Ln (CA724) +0.754 × Ln (CA242) +0.321 × Ln (G-17) +0.784 × Ln (bfar) +1.014 × Ln (COPS2) +0.741 × Ln (p53) +0.654 × Ln (nm23) +0.789 × Ln (HER-2) +0.654 × Ln (Ki-67) +0.714 × Ln (Sox17) +0.324 × Ln (MLH1) +0.874 × Ln (RUNX3), in which the log is natural log.
When the value of the result of the computational analysis obtained from the mathematical model is not less than 3.521, the subject of the sample is considered to be at risk for cancer.
The application has the following advantages: the detection of the gastric cancer with different dimensionalities and different types of combination in combination with transverse and longitudinal combination and internal and external consideration overcomes the defects of low detection sensitivity and specificity and the like of one marker or one dimensionality in the market, greatly improves the accuracy and the precision of the diagnosis of the gastric cancer, can replace the traditional invasive diagnosis such as CT or biopsy puncture and the like, can judge the subtype of the gastric cancer, can also provide early diagnosis, early screening, auxiliary diagnosis or prognosis observation at the same time, and brings good news to patients.
Detailed Description
In order to make the technical solutions in the embodiments of the present application better understood, the technical solutions in the embodiments of the present application are clearly and completely described, and it is obvious that the described embodiments are only some embodiments of the present application, not all embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present application.
It should be noted that the embodiments and features of the embodiments in the present application may be combined with each other without conflict.
The detection methodology used in the examples may be a commercially available reagent test kit or a self-made kit.
Example 1
13 gastric cancer protein marker concentrations (PG I/II, CA724, CA199, G-17, CEA, CCDC49, RNF19, BFAR, COPS2, CTSF, NT5E, TERF1) in blood samples were tested using a commercially available chemiluminescence assay kit, 14 gastric cancer molecular marker concentrations (C-erbB-2, ETFR, nm23, E-Cad, BCL6B, HER-2, Ki-67, CD133, cyclinB1, LRP16, NF- κ B, CgGA, CD56, TMEFF2) in blood samples were tested using fluorescence in situ hybridization or sequencing, and 14 gastric cancer-associated DNA methylation marker concentrations (Sox17, Runx3, WNT5A, MLH1, CDH1, RUNX3, CD44, hMLH1, 686 1, PRKN 849, PRIGP 8653, MIDAPK).
Performing logistic regression analysis on the tested concentration of the related marker to obtain Logit (P) ═ constant + lambda 1. multidot. P1+ lambda 2. multidot. P2+ eta 3. multidot. P3+ eta 4. multidot. P4 … …
And testing the concentration of each marker of the unknown blood sample, substituting the concentration into a regression model, and comprehensively diagnosing whether the patient suffers from the gastric cancer and the risk of the gastric cancer according to the judgment standard of the calculated logit (P) and the value of the logit (P) of the regression model.
Example 2
Testing 10 gastric cancer protein marker concentrations (PG I/II, CA724, G-17, CCDC49, RNF19, BFAR, COPS2, CTSF, NT5E, TERF1) in blood samples by purchased or homemade chemiluminescence method kit, testing 9 gastric cancer molecular markers (miR-199a-3p, miR-195, miR-106b, miR-129, miR125b, miR199a, miR433, miR-223, miR-218) in blood samples by fluorescence in situ hybridization method, testing 7 gastric cancer autoantibodies concentrations (NY-ESO-1, CTAG2, DDX53, MAGEC1, MAGEA3, AEG-1, GRP78) in blood samples by purchased immunofluorescence method, testing 8 gastric cancer phase exosomes (miR-1, HMTGF-beta 1, MAGGB 1, CagA, KN-37, TRIG-1, TRIP 78) in urine or blood by flow-type fluorescence method, testing 8 gastric cancer phase exosomes (miR-11, miR-7 mRNA-7, miR-7-A-7-, RUNX3, MINT25, RORA, GDNF, ADAM23, PRDM5, hMLH1, IGFBP3, PRDM5, DAPK, GSTP1)
Performing logistic regression analysis on the tested concentration of the related marker to obtain Logit (P) ═ constant + lambda 1. multidot. P1+ lambda 2. multidot. P2+ eta 3. multidot. P3+ eta 4. multidot. P4 … …
And testing the concentration of each marker of the unknown blood sample, substituting the concentration into a regression model, and comprehensively diagnosing whether the patient suffers from the gastric cancer and the risk of the gastric cancer according to the judgment standard of the calculated logit (P) and the value of the logit (P) of the regression model.
Example 3
Testing gastric cancer protein markers to be PG I/II, CA724, CA242, CA50, G-17, CCDC49, RNF19, BFAR, COPS2 and CTSF by using a purchased or self-made chemiluminescence method kit, wherein the gastric cancer molecular diagnosis markers are p53, C-erbB-2, ETFR, nm23, E-Cad, BCL6B, HER-2, Ki-67, CD133 and EGFR, the gastric cancer related DNA methylation markers are Sox17, WNT5A, MLH1, p16, CDH1, RUNX3 and MINT25, obtaining concentration values of the markers in a sample, carrying out natural logarithm conversion, carrying out logistic regression analysis, and removing the non-contributing markers to obtain a regression model: logit (p) ═ 3.736+1.814 × Ln (PG I/II) +0.854 × Ln (CA724) +0.754 × Ln (CA242) +0.321 × Ln (G-17) +0.784 × Ln (bfar) +1.014 × Ln (COPS2) +0.741 × Ln (p53) +0.654 × Ln (nm23) +0.789 × Ln (HER-2) +0.654 × Ln (Ki-67) +0.714 × Ln (Sox17) +0.324 × Ln (MLH1) +0.874 × Ln (RUNX3), in which the log is natural log.
And testing the concentration of each marker of the unknown blood sample, substituting the concentration into the regression model, and comprehensively diagnosing whether the stomach cancer is suffered or not and the risk of the stomach cancer according to the judgment standard of the calculated logit (P) and the value of the regression model logit (P).
Through experimental research, the combination of multiple dimensions and the combined mode of gastric cancer detection have higher sensitivity and specificity compared with one or more types of single detection, the sensitivity can reach 99 percent, and the specificity is 100 percent and is far better than gastric cancer diagnosis markers on the market.
The above description is only a preferred embodiment of the present application and is not intended to limit the present application, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, improvement and the like made within the spirit and principle of the present application shall be included in the protection scope of the present application.
Claims (8)
1. A method for constructing a mathematical model for in vitro detection of gastric cancer, the method comprising obtaining concentrations of at least two gastric cancer markers from a sample, performing logistic regression on the concentration values of each marker measured, substituting the concentrations measured into the logistic regression model to obtain analysis results, and performing comprehensive gastric cancer analysis using the concentration of each marker and the logistic regression analysis results.
2. The method of constructing a mathematical model for the in vitro detection of gastric cancer according to claim 1, wherein the gastric cancer markers comprise at least one of the following categories:
gastric cancer protein markers, gastric cancer metabolites, gastric cancer-associated cell-free DNA, gastric cancer DNA methylation markers, gastric cancer-associated cell-free non-coding RNA, gastric cancer autoantibodies, gastric cancer inflammatory factors and growth factors, circulating gastric cancer cells, and gastric cancer exosomes.
3. The method for constructing a mathematical model for detecting gastric cancer in vitro according to claim 1, wherein the gastric cancer protein markers are selected from any one or more of PG I/II, CA724, CA242, CA199, CA50, G-17, HP, CEA, CCDC49, RNF19, BFAR, COPS2, CTSF, NT5E, TERF1, CD44v9, PARP1, IPO-38, CYP1a1, GSTM1, S100a9, GIF, AAT, ANGPTL 2;
the gastric cancer metabolite markers are selected from any one or more of acetyl spermine, diacetyl spermine, lactic acid, succinic acid, malic acid, citric acid, pyruvic acid, 3-hydroxypropionic acid, serine, proline, valine, isoleucine, serine, 3-indole sulfate, hippurate, citrate, sarcosine, alanine, proline, serine, inositol and glycerol;
the gastric cancer molecular diagnostic marker is selected from any one or more of p53, C-erbB-2, ETFR, nm23, E-Cad, BCL6B, HER-2, Ki-67, CD133, cyclinB1, EGFR, Id2, LRP16, NF-kappa B, VEGFR 2, Syn, CgA, CD56, TMEFF2, SHP-1, miR-29C, miR-30a-5p, miR-148a, miR-375, miR-638, miR-106b, miR-20a, miR-221, miR-421, Let-7g, miR-433, miR-214, miR-21, miR-148a, miR-152, miR-451, miR-199a-3p, miR-195, miR-106b, miR-129, miR125b, miR-199a, miR-433, miR-223 and miR-218;
the gastric cancer autoantibody is selected from any one or more of NY-ESO-1, CTAG2, DDX53, MAGEC1, MAGEA3, AEG-1 and GRP 78;
the gastric cancer related inflammatory factors and growth factors are selected from any one or more of ERBB, HER2, EGFR, HER-2, VEGF, TGF, c-MET, IL-6, IL-11, Bcl-2, Fas, survivin, IL-1, IL-10, IL1B, TNFA, LTA, IL6, IL12p40, IL4, IL1RN, IL10 and TGFB 1;
the gastric cancer related exosomes are selected from any one or more of miR-27a, miR-451, miR-21-5p, miR-21, miR-221, TGF-beta 1, HMGB1, CagA, GKN1, UBR2, TRIM3, miR-130a, miR-27a, miR-21-5p, ZFAS1 and ciRS-133;
the gastric cancer related DNA methylation marker is selected from any one or more of Sox17, WNT5A, MLH1, p16, CDH1, RUNX3, MINT25, RORA, GDNF, ADAM23, PRDM5, MLF1, p53, KRAS, PIK3CA, ARID1A, MLL3, MLL, C-MET, ERBB4, CD44, hMLH1, CDKN1C, IGFBP3, PRDM5, MINT25, DAPK and GSTP 1.
4. The method of claim 3, wherein the logistic regression is formulated as:
wherein Logit (P) is the logistic regression model result of the same or different gastric cancer markers, C is a natural constant obtained by regression, alpha is the coefficient of each marker obtained by regression analysis and is a natural number, the concentration i of the marker is the concentration of the marker in the same or different categories, and n is an integer greater than or equal to 2.
5. The method for constructing a mathematical model for in vitro detection of gastric cancer according to claim 1, wherein the samples to be tested comprise: human or animal tissue, a blood sample, urine, saliva, body fluid, feces.
6. The method for constructing mathematical model for in vitro gastric cancer detection according to claim 1, wherein the detection technique comprises one or more of radiation method, immunological method, fluorescence method, flow fluorescence, latex turbidimetry, biochemical method, enzymatic method, PCR method, sequencing method, hybridization method, gas chromatography, liquid chromatography, chemiluminescence method, magnetoelectric and photoelectric conversion method.
7. The method for constructing a mathematical model for in vitro detection of gastric cancer according to claim 1, wherein the gastric cancer markers are gastric cancer protein markers, gastric cancer molecular diagnostic markers and gastric cancer-associated DNA methylation marker combinations, wherein the gastric cancer protein markers are PG I/II, CA724, CA242, CA50, G-17, CCDC49, RNF19, BFAR, COPS2, CTSF, the gastric cancer molecular diagnostic markers are p53, C-erbB-2, ETFR, nm23, E-Cad, BCL6B, HER-2, Ki-67, CD133, EGFR, the gastric cancer-associated DNA methylation markers are Sox17, WNT5A, MLH1, p16, h1, rucdnx 3, MINT25, the concentration values of these markers in the sample are obtained, natural logarithm conversion is performed, logistic regression analysis is performed, and after non-contribution markers are removed, the obtained model is: logit (p) ═ 3.736+1.814 × Ln (PG I/II) +0.854 × Ln (CA724) +0.754 × Ln (CA242) +0.321 × Ln (G-17) +0.784 × Ln (bfar) +1.014 × Ln (COPS2) +0.741 × Ln (p53) +0.654 × Ln (nm23) +0.789 × Ln (HER-2) +0.654 × Ln (Ki-67) +0.714 × Ln (Sox17) +0.324 × Ln (MLH1) +0.874 × Ln (RUNX3), in which the log is natural log.
8. Use of the method of constructing a mathematical model for in vitro detection of gastric cancer according to any one of claims 1 to 7 to obtain a mathematical model for predicting the risk of cancer in a subject sample, wherein the subject sample is considered to have a risk of gastric cancer when the value of the computational analysis result obtained from the mathematical model is equal to or greater than 3.521.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010482537.1A CN111540469A (en) | 2020-05-29 | 2020-05-29 | Method for constructing mathematical model for in-vitro detection of gastric cancer and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010482537.1A CN111540469A (en) | 2020-05-29 | 2020-05-29 | Method for constructing mathematical model for in-vitro detection of gastric cancer and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111540469A true CN111540469A (en) | 2020-08-14 |
Family
ID=71976104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010482537.1A Pending CN111540469A (en) | 2020-05-29 | 2020-05-29 | Method for constructing mathematical model for in-vitro detection of gastric cancer and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111540469A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112462064A (en) * | 2020-10-09 | 2021-03-09 | 吉林大学第一医院 | Application of marker or specific recognition reagent thereof in preparation of kit for diagnosing gastric cancer and diagnostic kit |
CN113721020A (en) * | 2021-09-14 | 2021-11-30 | 大连医科大学附属第二医院 | Application of CTSF (cytokine induced plasma) in non-small cell lung cancer diagnosis |
WO2021238086A1 (en) * | 2020-05-29 | 2021-12-02 | 杭州广科安德生物科技有限公司 | Method for constructing mathematical model for detecting lung cancer in vitro and application |
CN113917148A (en) * | 2021-09-27 | 2022-01-11 | 杭州广科安德生物科技有限公司 | Protein marker combination for gastric cancer diagnosis and application thereof |
CN116386716A (en) * | 2023-06-06 | 2023-07-04 | 浙江省肿瘤医院 | Metabolomics and methods for gastric cancer diagnosis |
CN118191322A (en) * | 2024-05-14 | 2024-06-14 | 哈尔滨脉图精准技术有限公司 | Urine metabolic markers for gastric cancer detection and their applications |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103782174A (en) * | 2011-06-07 | 2014-05-07 | 卡里斯生命科学卢森堡控股有限责任公司 | Circulating biomarkers for cancer |
CN106319038A (en) * | 2015-07-02 | 2017-01-11 | 上海伯豪医学检验所有限公司 | Gene marker for screening early gastric cancer and application thereof |
CN106461663A (en) * | 2013-11-21 | 2017-02-22 | 环太平洋有限公司 | Triaging of patients having asymptomatic hematuria using genotypic and phenotypic biomarkers |
CN107796942A (en) * | 2016-09-02 | 2018-03-13 | 生命基础公司 | For the compound bio mark group of pulmonary cancer diagnosis, pulmonary cancer diagnosis kit, method and computing system using its information |
CN107884491A (en) * | 2017-11-07 | 2018-04-06 | 苏州纳葛诺斯生物科技有限公司 | The combination of stomach cancer amino acid tags thing, screening technique and its application in diagnosing gastric cancer |
CN108474779A (en) * | 2016-03-08 | 2018-08-31 | 马格雷股份有限公司 | The protein and auto-antibody biomarker of diagnosing and treating for lung cancer |
CN109312404A (en) * | 2016-01-29 | 2019-02-05 | 表观基因组股份有限公司 | Method for detecting CpG methylation of tumor-derived DNA in blood samples |
CN110129324A (en) * | 2019-05-14 | 2019-08-16 | 江苏大学 | A method for extraction and detection of gastric cancer serum exosome marker hsa_circ_001477 and its application |
-
2020
- 2020-05-29 CN CN202010482537.1A patent/CN111540469A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103782174A (en) * | 2011-06-07 | 2014-05-07 | 卡里斯生命科学卢森堡控股有限责任公司 | Circulating biomarkers for cancer |
CN106461663A (en) * | 2013-11-21 | 2017-02-22 | 环太平洋有限公司 | Triaging of patients having asymptomatic hematuria using genotypic and phenotypic biomarkers |
CN106319038A (en) * | 2015-07-02 | 2017-01-11 | 上海伯豪医学检验所有限公司 | Gene marker for screening early gastric cancer and application thereof |
CN109312404A (en) * | 2016-01-29 | 2019-02-05 | 表观基因组股份有限公司 | Method for detecting CpG methylation of tumor-derived DNA in blood samples |
CN108474779A (en) * | 2016-03-08 | 2018-08-31 | 马格雷股份有限公司 | The protein and auto-antibody biomarker of diagnosing and treating for lung cancer |
CN107796942A (en) * | 2016-09-02 | 2018-03-13 | 生命基础公司 | For the compound bio mark group of pulmonary cancer diagnosis, pulmonary cancer diagnosis kit, method and computing system using its information |
CN107884491A (en) * | 2017-11-07 | 2018-04-06 | 苏州纳葛诺斯生物科技有限公司 | The combination of stomach cancer amino acid tags thing, screening technique and its application in diagnosing gastric cancer |
CN110129324A (en) * | 2019-05-14 | 2019-08-16 | 江苏大学 | A method for extraction and detection of gastric cancer serum exosome marker hsa_circ_001477 and its application |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021238086A1 (en) * | 2020-05-29 | 2021-12-02 | 杭州广科安德生物科技有限公司 | Method for constructing mathematical model for detecting lung cancer in vitro and application |
CN112462064A (en) * | 2020-10-09 | 2021-03-09 | 吉林大学第一医院 | Application of marker or specific recognition reagent thereof in preparation of kit for diagnosing gastric cancer and diagnostic kit |
CN113721020A (en) * | 2021-09-14 | 2021-11-30 | 大连医科大学附属第二医院 | Application of CTSF (cytokine induced plasma) in non-small cell lung cancer diagnosis |
CN113917148A (en) * | 2021-09-27 | 2022-01-11 | 杭州广科安德生物科技有限公司 | Protein marker combination for gastric cancer diagnosis and application thereof |
CN116386716A (en) * | 2023-06-06 | 2023-07-04 | 浙江省肿瘤医院 | Metabolomics and methods for gastric cancer diagnosis |
CN116386716B (en) * | 2023-06-06 | 2024-03-15 | 浙江省肿瘤医院 | Metabolomics and methods for gastric cancer diagnosis |
CN118191322A (en) * | 2024-05-14 | 2024-06-14 | 哈尔滨脉图精准技术有限公司 | Urine metabolic markers for gastric cancer detection and their applications |
CN118191322B (en) * | 2024-05-14 | 2024-12-13 | 哈尔滨脉图精准技术有限公司 | Urine metabolism marker for gastric cancer detection and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111540469A (en) | Method for constructing mathematical model for in-vitro detection of gastric cancer and application thereof | |
JP7676321B2 (en) | Combination of miRNA markers and kit for diagnosing gastric cancer | |
CN109439749B (en) | Exosome miRNA marker for colorectal cancer diagnosis and diagnosis kit | |
CN105018594B (en) | A kind of colorectal cancer early diagnosis marker and related kit | |
Vansteenkiste et al. | Screening and early—detection of lung cancer | |
CN111584008A (en) | Method for constructing mathematical model for detecting colorectal cancer in vitro and application thereof | |
WO2021238086A1 (en) | Method for constructing mathematical model for detecting lung cancer in vitro and application | |
CN112553344B (en) | Biomarker related to colorectal cancer and application thereof | |
CN105603101B (en) | Detect application of the system of 8 miRNA expression quantity in diagnosis or auxiliary diagnosis of hepatoma product is prepared | |
CN111489829A (en) | Method for constructing mathematical model for detecting pancreatic cancer in vitro and application thereof | |
CN110923322B (en) | Bladder cancer-related DNA methylation biomarker combination and detection kit | |
WO2021238085A1 (en) | Method for constructing mathematical model for in-vitro detection of cancers, and use thereof | |
TWI571514B (en) | Method for accessing the risk of having colorectal cancer | |
CN112410449A (en) | Microbial marker related to colorectal cancer and application thereof | |
CN115961038B (en) | Composition for detecting gastric cancer, kit and application thereof | |
CN105779465A (en) | CDKN2A gene fragment and application of primers of CDKN2A gene fragment in diagnosing tumors | |
CN109825597A (en) | miRNAs marker panel, application and diagnostic system of esophageal precancerous lesions | |
CN111662985B (en) | Application of microRNA combined CEA in preparation of cervical cancer early diagnosis kit | |
CN119855922A (en) | Differential methylation region combinations, kits and uses | |
CN102732522A (en) | Liver cancer serum nucleic acid aptamers | |
CN107916291A (en) | LncRNA compositions and the purposes for preparing diagnosis three negative type breast cancers Bone tumour kits of indication | |
CN117316278A (en) | Cancer noninvasive early screening method and system based on cfDNA fragment length distribution characteristics | |
CN112313345A (en) | Method for diagnosing cancer by biopsy cell sample | |
Gharibi et al. | Evaluation of the Expression of the CK-18 Tumor Marker in Blood Samples of Breast Cancer Patients using Real-Time PCR | |
JP6865800B2 (en) | Breast cancer evaluation method and urinalysis kit for breast cancer evaluation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200814 |