CN111540436B - An adaptive glucose and insulin concentration prediction system and method - Google Patents
An adaptive glucose and insulin concentration prediction system and method Download PDFInfo
- Publication number
- CN111540436B CN111540436B CN202010304292.3A CN202010304292A CN111540436B CN 111540436 B CN111540436 B CN 111540436B CN 202010304292 A CN202010304292 A CN 202010304292A CN 111540436 B CN111540436 B CN 111540436B
- Authority
- CN
- China
- Prior art keywords
- insulin
- concentration
- glucose
- model
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/10—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
- G16H20/17—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14546—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H70/00—ICT specially adapted for the handling or processing of medical references
- G16H70/40—ICT specially adapted for the handling or processing of medical references relating to drugs, e.g. their side effects or intended usage
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Toxicology (AREA)
- Pharmacology & Pharmacy (AREA)
- Emergency Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及糖尿病人的血糖预测领域,特别是涉及一种自适应葡萄糖和胰岛素的浓度预测系统及方法。The present invention relates to the field of blood sugar prediction for diabetics, in particular to an adaptive glucose and insulin concentration prediction system and method.
背景技术Background technique
糖尿病是由于胰岛素分泌绝对或相对不足引起的以空腹或餐后体内高葡萄糖的浓度为主要表现的代谢异常综合症,极易引发全身各种急、慢性并发症。胰岛素是体内唯一的降糖激素,对于依赖外源性胰岛素输注为主要治疗手段的1型糖尿病和严重2型糖尿病患者,胰岛素注射量的控制直接决定了其体内葡萄糖的浓度的控制水平。适时适量的胰岛素输注,将血糖控制在合理范围且不出现严重高或低血糖事件,是医生和患者追求的目标。Diabetes mellitus is a metabolic abnormal syndrome mainly manifested by high glucose concentration in the body on an empty stomach or after meals due to absolute or relative insufficient insulin secretion, which can easily lead to various acute and chronic complications throughout the body. Insulin is the only hypoglycemic hormone in the body. For patients with
血糖包括皮下细胞间质的葡萄糖的浓度和血浆中的葡萄糖的浓度。初始,血糖监测设备可实现人体皮下葡萄糖浓度的实时监测,胰岛素泵可实现外源性胰岛素的皮下持续微量注射。基于上述数据有助于医生及患者简单评估血糖动态变化。但是日常血糖监测设备采集的都是皮下细胞间隙的葡萄糖浓度,而胰岛素与碳水化合物的摄入对血糖的影响直接作用于血浆中的葡萄糖浓度,血浆中的葡萄糖浓度变化影响传递至皮下细胞间质的葡萄糖浓度进而被测量,因此血糖仪测量的血糖值与血浆中的葡萄糖的浓度存在较大的误差。同样,胰岛素输注也从皮下传递血浆中参与降糖的过程会有时滞和损失,外源性胰岛素输注量与血浆中的胰岛素浓度也存在较大误差。因此,建立准确的血糖动力学模型来估计血浆中的葡萄糖浓度和胰岛素浓度是血糖精准预测和控制的前提。Blood sugar includes the concentration of glucose in the subcutaneous interstitium and the concentration of glucose in the plasma. Initially, blood glucose monitoring equipment can realize real-time monitoring of human subcutaneous glucose concentration, and insulin pump can realize subcutaneous continuous micro-injection of exogenous insulin. Based on the above data, it is helpful for doctors and patients to easily assess the dynamic changes of blood glucose. However, the daily blood glucose monitoring equipment collects the glucose concentration in the subcutaneous interstitial space, and the influence of insulin and carbohydrate intake on blood glucose directly affects the glucose concentration in the plasma, and the change of the glucose concentration in the plasma affects the transmission to the subcutaneous interstitium. Therefore, there is a large error between the blood glucose value measured by the blood glucose meter and the glucose concentration in the plasma. Similarly, there will be time lag and loss in the process of insulin infusion from subcutaneously delivered plasma to participate in hypoglycemia, and there is also a large error between the amount of exogenous insulin infusion and the insulin concentration in plasma. Therefore, establishing an accurate glycemic kinetic model to estimate the plasma glucose concentration and insulin concentration is the premise of accurate blood glucose prediction and control.
人体血糖调节系统个体差异大,个体生理状态多变,固定参数的血糖调节系统数学模型难以准确跟踪预测血糖的动态变化规律。因此基于实时采集的数据自适应调整患者的所有血糖系统参数是提高预测精度的重要方法。此外,碳水化合物摄入、运动等外部干扰会引起体内葡萄糖浓度的剧烈波动,手动输入碳水化合物的摄入时间和摄入量会提高模型预测精度,但是会给患者带来生活不便,且容易因个人疏忽增加血糖异常波动的风险。自动识别患者的碳水化合物的摄入状态,自适应调节预测模型,能为患者提供更智能更精准的血糖和胰岛素浓度的预测。The blood sugar regulation system of the human body has great individual differences, and the individual physiological state is changeable. It is difficult for the mathematical model of the blood sugar regulation system with fixed parameters to accurately track and predict the dynamic change law of blood sugar. Therefore, adaptive adjustment of all blood glucose system parameters of patients based on real-time collected data is an important method to improve the prediction accuracy. In addition, external disturbances such as carbohydrate intake and exercise can cause violent fluctuations in the glucose concentration in the body. Manually inputting the carbohydrate intake time and intake will improve the prediction accuracy of the model, but it will bring inconvenience to the patient's life, and it is easy to be caused by Personal negligence increases the risk of abnormal blood sugar fluctuations. Automatically identify the patient's carbohydrate intake status and adaptively adjust the prediction model, which can provide patients with more intelligent and accurate predictions of blood glucose and insulin concentrations.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种自适应葡萄糖和胰岛素的浓度预测系统及方法,实现智能、精准的血浆中葡萄糖和胰岛素的浓度的预测。The purpose of the present invention is to provide an adaptive glucose and insulin concentration prediction system and method, so as to realize intelligent and accurate prediction of the concentration of glucose and insulin in plasma.
为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides following scheme:
一种自适应葡萄糖和胰岛素的浓度预测系统,包括:An adaptive glucose and insulin concentration prediction system comprising:
数据采集模块,用于采集待监测者的监测数据;所述监测数据包括初始的皮下细胞间质的葡萄糖的浓度、外源性胰岛素输注速率以及所述待监测者的体重;a data collection module for collecting monitoring data of the subject to be monitored; the monitoring data includes the initial subcutaneous intercellular glucose concentration, the exogenous insulin infusion rate and the body weight of the subject to be monitored;
生理模型集构建模块,用于根据所述待监测者的监测数据构建血糖-胰岛素模型;所述血糖-胰岛素模型包括:胰岛素传输子模型、血糖胰岛素动力学子模型以及血糖传输子模型;a physiological model set building module for constructing a blood glucose-insulin model according to the monitoring data of the person to be monitored; the blood glucose-insulin model includes: an insulin transmission sub-model, a blood glucose-insulin kinetics sub-model, and a blood glucose transmission sub-model;
状态空间转换模块,用于将所述血糖-胰岛素模型转换为状态空间模型;所述状态空间模型中的状态变量包括所述血糖胰岛素模型系统变量转换的状态变量以及所述血糖胰岛素模型中系统参数扩展转换为的状态变量;A state space conversion module, used to convert the blood glucose-insulin model into a state space model; the state variables in the state space model include the state variables converted from the blood glucose insulin model system variables and the system parameters in the blood glucose insulin model The state variable that the expansion converts to;
离散状态空间模型构建模块,用于将所述状态空间模型转换为离散状态空间模型;a discrete state space model building module for converting the state space model into a discrete state space model;
粒子波观测器模块,用于将所述离散状态空间模型中的状态变量进行预测和更新;更新后的状态变量包括一胰岛素腔室中的有效胰岛素量、二胰岛素腔室中的有效胰岛素量、血浆中葡萄糖的浓度、皮下细胞间质的葡萄糖的浓度、胰岛素敏感系数、基础有效胰岛素浓度、基础血糖水平、血糖自调节率和碳水化合物摄入因子;The particle wave observer module is used to predict and update the state variables in the discrete state space model; the updated state variables include the effective insulin amount in one insulin chamber, the effective insulin amount in the second insulin chamber, Plasma glucose concentration, subcutaneous interstitial glucose concentration, insulin sensitivity coefficient, basal effective insulin concentration, basal blood glucose level, blood glucose self-regulation rate and carbohydrate intake factor;
进食自动探测模块,用于根据更新后的碳水化合物摄入因子确定所述待监测者的碳水化合物的摄入情况;摄入情况包括有碳水化合物的摄入和没有碳水化合物的摄入;an automatic eating detection module, configured to determine the carbohydrate intake of the person to be monitored according to the updated carbohydrate intake factor; the intake includes carbohydrate intake and no carbohydrate intake;
血糖预测模块,用于根据更新后的状态变量确定未来固定时间间隔内血浆中的胰岛素浓度、血浆中的葡萄糖浓度以及皮下细胞间质的葡萄糖浓度。The blood glucose prediction module is used to determine the insulin concentration in the plasma, the glucose concentration in the plasma and the glucose concentration in the subcutaneous interstitium within a fixed time interval in the future according to the updated state variables.
可选的,所述胰岛素传输子模型具体采用以下公式:Optionally, the insulin transmission sub-model specifically adopts the following formula:
其中,其中,x1(t)为一胰岛素腔室中的有效胰岛素量,x2(t)为二胰岛素腔室中的有效胰岛素量;u(t)为外源性胰岛素输注速率,tI为有效胰岛素的浓度达到最大值的时间,x(t)为血浆中胰岛素的浓度,W为所述待监测者的体重,M为人体胰岛素清除速率,M=0.017(l/kg/min); in, where x 1 (t) is the effective insulin amount in one insulin chamber, x 2 (t) is the effective insulin amount in two insulin chambers; u(t) is the exogenous insulin infusion rate, and t I is The time when the concentration of effective insulin reaches the maximum value, x(t) is the concentration of insulin in the plasma, W is the body weight of the person to be monitored, M is the insulin clearance rate of the human body, and M=0.017 (l/kg/min);
所述血糖胰岛素动力学子模型具体采用以下公式:The blood glucose and insulin dynamics sub-model specifically adopts the following formula:
其中,G(t)为血浆中的葡萄糖的浓度,SI为胰岛素作用的敏感系数,Gb为基础血浆中葡萄糖的浓度水平,K为血浆中葡萄糖的浓度自调节率,U(t)为引起的血浆中的葡萄糖的浓度变化的碳水化合物摄入因子; Among them, G(t) is the concentration of glucose in plasma, S I is the sensitivity coefficient of insulin action, G b is the concentration level of glucose in basal plasma, K is the self-regulation rate of glucose concentration in plasma, and U(t) is Carbohydrate intake factor causing changes in plasma glucose concentration;
所述血糖传输子模型具体采用以下公式:The blood glucose transmission sub-model specifically adopts the following formula:
其中,IG(t)为皮下细胞间质的葡萄糖的浓度,τ为时滞因子。 Here, IG(t) is the glucose concentration in the subcutaneous interstitium, and τ is the time lag factor.
可选的,所述状态空间转换模块具体采用以下公式:Optionally, the state space conversion module specifically adopts the following formula:
其中,X为状态变量,X=[x1,x2,G,IG,Si,tI,K,Gb,τ,U],H=[0,0,0,1,0,0,0,0,0,0],ω(t)为过程噪声,υ(t)为测量噪声,z(t)为测量状态。 Among them, X is the state variable, X=[x 1 ,x 2 ,G,IG,S i ,t I ,K,G b ,τ,U], H=[0,0,0,1,0,0 ,0,0,0,0], ω(t) is the process noise, υ(t) is the measurement noise, and z(t) is the measurement state.
可选的,所述离散状态空间模型构建模块具体采用以下公式:Optionally, the discrete state space model building module specifically adopts the following formula:
其中,Xk-1为k-1时刻的状态变量,uk-1为k-1时刻的外源性胰岛素输注速率,ωk为过程噪声且服从期望为0,方差为σwk的高斯噪声,υk为测量噪声且服从期望为0,方差σvk的高斯噪声。 where X k-1 is the state variable at time k-1, u k-1 is the exogenous insulin infusion rate at time k-1, ω k is the process noise and obeys the expectation of 0, and the variance is Gaussian with σ wk Noise, υ k is the measurement noise and obeys Gaussian noise with an expectation of 0 and a variance σ vk .
可选的,所述粒子波观测器模块具体采用以下公式进行预测和更新:Optionally, the particle wave observer module specifically uses the following formula to predict and update:
p(Xk|z1:k-1)=∫p(Xk|Xk-1)p(Xk-1|z1:k-1)dXk-1 p(X k |z 1:k-1 )=∫p(X k |X k-1 )p(X k-1 |z 1:k-1 )dX k-1
p(Xk|z1:k)∝p(zk|Xk-1)p(Xk|z1:k-1),其中,Xk为k时刻的状态变量,Xk-1为k-1时刻的状态变量,z1:k-1为第k-1时刻前采集到的所有血糖数据序列,z1:k为第k时刻前采集到的所有血糖数据序列。p(X k |z 1:k )∝p(z k |X k-1 )p(X k |z 1:k-1 ), where X k is the state variable at time k, and X k-1 is The state variables at time k-1, z 1:k-1 are all blood sugar data sequences collected before time k-1, and z 1:k are all blood sugar data sequences collected before time k.
可选的,所述进食自动探测模块具体包括:Optionally, the automatic eating detection module specifically includes:
前向差分获取单元,用于获取k时刻的外界干扰因子的前向差分其中,Uk-1为k-1时刻的引起的血浆中的葡萄糖的浓度变化的碳水化合物摄入因子,Uk为k时刻的引起的血浆中的葡萄糖的浓度变化的碳水化合物摄入因子;The forward difference acquisition unit is used to obtain the forward difference of the external interference factor at time k in, U k-1 is the carbohydrate intake factor for the change in plasma glucose concentration at time k-1, and U k is the carbohydrate intake factor for the change in plasma glucose concentration at time k;
判断单元,用于基于所述前向差分判断是否患者是否摄入碳水化合物。a judgment unit for based on the forward difference Determine whether the patient is consuming carbohydrates.
可选的,所述判断单元具体包括:Optionally, the judging unit specifically includes:
判断以及是否同时满足若同时满足则有碳水化合物摄入,否则,无碳水化合物摄入;其中,为k时刻的外界干扰因子的前向差分,为k-1时刻的外界干扰因子的前向差分,Threshold为设定阈值,Flagk-i=0为无碳水化合物摄入的标识。judge as well as Whether it is satisfied at the same time If both meet There is carbohydrate intake, otherwise, there is no carbohydrate intake; of which, is the forward difference of the external disturbance factor at time k, is the forward difference of external interference factors at time k-1, Threshold is the set threshold, and Flag ki =0 is the sign of no carbohydrate intake.
可选的,所述血糖预测模块具体采用以下公式:Optionally, the blood glucose prediction module specifically adopts the following formula:
其中,表示未来一个周期后的血浆中胰岛素浓度预测值,表示未来两个采样周期后的血浆中的胰岛素浓度预测值,表示未来一个周期后的血浆中葡萄糖浓度预测值,表示血浆中的葡萄糖浓度未来两个周期后的血浆中葡萄糖浓度预测值,表示未来一个周期后的皮下细胞间质的葡萄糖浓度预测值,表示未来两个周期后的皮下细胞间质的葡萄糖浓度。in, represents the predicted value of plasma insulin concentration after one cycle in the future, represents the predicted value of insulin concentration in plasma after two sampling periods in the future, represents the predicted value of plasma glucose concentration after one cycle in the future, is the predicted value of plasma glucose concentration after two cycles of plasma glucose concentration, represents the predicted value of glucose concentration in the subcutaneous interstitium after one cycle in the future, Indicates the glucose concentration in the subcutaneous interstitium after the next two cycles.
一种自适应葡萄糖和胰岛素的浓度预测方法,所述预测方法包括:An adaptive glucose and insulin concentration prediction method, the prediction method comprising:
采集待监测者的监测数据;所述监测数据包括初始的皮下细胞间质的葡萄糖的浓度、外源性胰岛素输注速率以及所述待监测者的体重;Collect monitoring data of the subject to be monitored; the monitoring data includes the initial subcutaneous interstitial glucose concentration, the exogenous insulin infusion rate and the body weight of the subject to be monitored;
根据所述待监测者的监测数据构建血糖-胰岛素模型;所述血糖-胰岛素模型包括:胰岛素传输子模型、血糖胰岛素动力学子模型以及血糖传输子模型;A blood glucose-insulin model is constructed according to the monitoring data of the person to be monitored; the blood glucose-insulin model includes: an insulin transmission sub-model, a blood glucose-insulin kinetics sub-model, and a blood glucose transmission sub-model;
将所述血糖-胰岛素模型转换为状态空间模型;converting the blood glucose-insulin model into a state space model;
将所述状态空间模型转换为离散状态空间模型;converting the state space model to a discrete state space model;
将所述离散状态空间模型中的状态变量进行预测和更新;更新后的状态变量包括一胰岛素腔室中的有效胰岛素量、二胰岛素腔室中的有效胰岛素量、血浆中葡萄糖的浓度、皮下细胞间质的葡萄糖的浓度、胰岛素敏感系数、基础有效胰岛素浓度、基础血糖水平、血糖自调节率和碳水化合物摄入因子;Predicting and updating the state variables in the discrete state space model; the updated state variables include the effective insulin amount in one insulin chamber, the effective insulin amount in two insulin chambers, the concentration of glucose in plasma, the subcutaneous cells Interstitial glucose concentration, insulin sensitivity coefficient, basal effective insulin concentration, basal blood glucose level, blood glucose self-regulation rate and carbohydrate intake factor;
根据更新后的碳水化合物摄入因子确定所述待监测者的碳水化合物的摄入情况;摄入情况包括有碳水化合物的摄入和没有碳水化合物的摄入;Determine the carbohydrate intake of the subject to be monitored according to the updated carbohydrate intake factor; the intake includes carbohydrate intake and no carbohydrate intake;
根据更新后的状态变量确定未来固定时间间隔内血浆中的胰岛素浓度、血浆中的葡萄糖浓度以及皮下细胞间质的葡萄糖浓度。The insulin concentration in plasma, the glucose concentration in plasma, and the glucose concentration in the subcutaneous interstitium for a fixed time interval in the future are determined from the updated state variables.
可选的,所述胰岛素传输子模型具体采用以下公式:Optionally, the insulin transmission sub-model specifically adopts the following formula:
其中,x1(t)为一胰岛素腔室中的有效胰岛素量,x2(t)为二胰岛素腔室中的有效胰岛素量;u(t)为外源性胰岛素输注速率,tI为有效胰岛素的浓度达到最大值的时间,x(t)为血浆中胰岛素的浓度,W为所述待监测者的体重,M为人体胰岛素清除速率,M=0.017(l/kg/min); where x 1 (t) is the effective insulin amount in one insulin chamber, x 2 (t) is the effective insulin amount in two insulin chambers; u(t) is the exogenous insulin infusion rate, and t I is The time when the concentration of effective insulin reaches the maximum value, x(t) is the concentration of insulin in the plasma, W is the body weight of the person to be monitored, M is the insulin clearance rate of the human body, and M=0.017 (l/kg/min);
所述血糖胰岛素动力学子模型具体采用以下公式:The blood glucose and insulin dynamics sub-model specifically adopts the following formula:
其中,G(t)为血浆中的葡萄糖的浓度,SI为胰岛素作用的敏感系数,Gb为基础血浆中葡萄糖的浓度水平,K为血浆中葡萄糖的浓度自调节率,U(t)为引起的血浆中的葡萄糖的浓度变化的碳水化合物摄入因子; Among them, G(t) is the concentration of glucose in plasma, S I is the sensitivity coefficient of insulin action, G b is the concentration level of glucose in basal plasma, K is the self-regulation rate of glucose concentration in plasma, and U(t) is Carbohydrate intake factor causing changes in plasma glucose concentration;
所述血糖传输子模型具体采用以下公式:The blood glucose transmission sub-model specifically adopts the following formula:
其中,IG(t)为皮下细胞间质的葡萄糖的浓度,τ为时滞因子。 Here, IG(t) is the glucose concentration in the subcutaneous interstitium, and τ is the time lag factor.
根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:
本发明所提供的一种自适应葡萄糖和胰岛素的浓度预测系统及方法,通过粒子波观测器模块动态更新各个参数与系统状态变量,使得在血浆中胰岛素、葡萄糖的浓度的预测是实时动态的更新的,而不是直接根据固定参数的模型以及采集的数据开环估计血浆中葡萄糖和胰岛素浓度。本发明通过确定血浆中胰岛素、葡萄糖的浓度,能够对体内胰岛素的浓度进行预测,并能够提高血浆中葡萄糖的浓度预测的精确度,进而实现对血浆中葡萄糖的浓度的精确控制。An adaptive glucose and insulin concentration prediction system and method provided by the present invention dynamically update various parameters and system state variables through a particle wave observer module, so that the prediction of the concentrations of insulin and glucose in plasma is a real-time dynamic update rather than open-loop estimates of plasma glucose and insulin concentrations directly from fixed-parameter models and acquired data. The present invention can predict the concentration of insulin in the body by determining the concentrations of insulin and glucose in the plasma, and can improve the accuracy of the prediction of the concentration of glucose in the plasma, thereby realizing the precise control of the concentration of the glucose in the plasma.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative labor.
图1为本发明所提供的一种自适应葡萄糖和胰岛素的浓度预测系统结构图;Fig. 1 is a kind of self-adaptive glucose and insulin concentration prediction system structure diagram provided by the present invention;
图2为本发明的某一型糖尿病患者7天的血浆中葡萄糖浓度预测结果示意图;2 is a schematic diagram of the predicted results of glucose concentration in the plasma of a certain type of diabetes patient of the present invention in 7 days;
图3为本发明的某一型糖尿病患者7天的血浆中胰岛素浓度预测结果示意图;3 is a schematic diagram of the predicted results of insulin concentration in the plasma of a certain type of diabetic patient of the present invention for 7 days;
图4为本发明的某一型糖尿病患者7天的皮下细胞间质葡萄糖浓度预测结果;Fig. 4 is the prediction result of subcutaneous interstitial glucose concentration in 7 days of a certain type of diabetic patient of the present invention;
图5为本发明的某一型糖尿病患者5天的进食自动探测结果;Fig. 5 is the automatic detection result of eating for 5 days of a certain type of diabetes patient of the present invention;
图6为本发明所提供的一种自适应葡萄糖和胰岛素的浓度预测方法流程示意图。FIG. 6 is a schematic flowchart of an adaptive glucose and insulin concentration prediction method provided by the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明的目的是提供一种自适应葡萄糖和胰岛素的浓度预测系统及方法,实现智能、精准的血糖和胰岛素的浓度的预测。The purpose of the present invention is to provide an adaptive glucose and insulin concentration prediction system and method to achieve intelligent and accurate prediction of blood glucose and insulin concentrations.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
图1为本发明所提供的一种自适应葡萄糖和胰岛素的浓度预测系统结构图,如图1所示,本发明所提供得一种自适应葡萄糖和胰岛素的浓度预测系统,包括:数据采集模块101、生理模型集构建模块102、状态空间转换模块103、离散状态空间模型构建模块104、粒子波观测器模块105、进食自动探测模块106和血糖预测模块107。数据采集系统的采样周期为T。FIG. 1 is a structural diagram of an adaptive glucose and insulin concentration prediction system provided by the present invention. As shown in FIG. 1 , an adaptive glucose and insulin concentration prediction system provided by the present invention includes: a
数据采集模块101用于采集待监测者的监测数据;所述监测数据包括初始的皮下细胞间质的葡萄糖的浓度、外源性胰岛素输注速率以及所述待监测者的体重。The
生理模型集构建模块102用于根据所述待监测者的监测数据构建血糖-胰岛素模型;所述血糖-胰岛素模型包括:胰岛素传输子模型、血糖胰岛素动力学子模型以及血糖传输子模型。The physiological model set
状态空间转换模块103用于将所述血糖-胰岛素模型转换为状态空间模型;所述状态空间模型中的状态变量包括所述血糖胰岛素模型系统变量转换的状态变量以及所述血糖胰岛素模型中系统参数扩展转换为的状态变量。The state
离散状态空间模型构建模块104用于将所述状态空间模型转换为离散状态空间模型。粒子波观测器模块105用于将所述离散状态空间模型中的状态变量进行预测和更新;更新后的状态变量包括一胰岛素腔室中的有效胰岛素量、二胰岛素腔室中的有效胰岛素量、血浆中葡萄糖的浓度、皮下细胞间质的葡萄糖的浓度、胰岛素敏感系数、基础有效胰岛素浓度、基础血糖水平、血糖自调节率和碳水化合物摄入因子。The discrete state space model building module 104 is used to convert the state space model into a discrete state space model. The particle
进食自动探测模块106用于根据更新后的碳水化合物摄入因子确定所述待监测者的碳水化合物的摄入情况;摄入情况包括有碳水化合物的摄入和没有碳水化合物的摄入。The automatic
血糖预测模块107用于根据更新后的状态变量确定未来固定时间间隔内血浆中的胰岛素浓度、血浆中的葡萄糖浓度以及皮下细胞间质的葡萄糖浓度。The blood
所述胰岛素传输子模型具体采用以下公式:The insulin delivery sub-model specifically adopts the following formula:
其中,x1(t)为一胰岛素腔室中的有效胰岛素量,x2(t)为二胰岛素腔室中的有效胰岛素量,u(t)为外源性胰岛素输注速率,tI为有效胰岛素的浓度达到最大值的时间,x(t)为血浆中胰岛素的浓度,W为所述待监测者的体重,M为人体胰岛素清除速率,M=0.017(l/kg/min)。 where x 1 (t) is the effective insulin amount in one insulin chamber, x 2 (t) is the effective insulin amount in two insulin chambers, u(t) is the exogenous insulin infusion rate, and t I is The time when the effective insulin concentration reaches the maximum value, x(t) is the insulin concentration in plasma, W is the body weight of the subject to be monitored, M is the human insulin clearance rate, M=0.017 (l/kg/min).
所述血糖胰岛素动力学子模型具体采用以下公式:The blood glucose and insulin dynamics sub-model specifically adopts the following formula:
其中,G(t)为血浆中的葡萄糖的浓度,SI为胰岛素作用的敏感系数,Gb为基础血浆中葡萄糖的浓度水平,K为血浆中葡萄糖的浓度自调节率,U(t)为引起的血浆中的葡萄糖的浓度变化的碳水化合物摄入因子。 Among them, G(t) is the concentration of glucose in plasma, S I is the sensitivity coefficient of insulin action, G b is the concentration level of glucose in basal plasma, K is the self-regulation rate of glucose concentration in plasma, and U(t) is Carbohydrate intake factor caused by changes in plasma glucose concentration.
所述血糖传输子模型具体采用以下公式:The blood glucose transmission sub-model specifically adopts the following formula:
其中,IG(t)为皮下细胞间质的葡萄糖的浓度,τ为时滞因子。 Here, IG(t) is the glucose concentration in the subcutaneous interstitium, and τ is the time lag factor.
所述状态空间转换模块具体采用以下公式:The state space conversion module specifically adopts the following formula:
其中,X为状态变量,X=[x1,x2,G,IG,Si,tI,K,Gb,τ,U],H=[0,0,0,1,0,0,0,0,0,0],ω(t)为过程噪声,υ(t)为测量噪声,z(t)为测量状态。 Among them, X is the state variable, X=[x 1 ,x 2 ,G,IG,S i ,t I ,K,G b ,τ,U], H=[0,0,0,1,0,0 ,0,0,0,0], ω(t) is the process noise, υ(t) is the measurement noise, and z(t) is the measurement state.
所述离散状态空间模型构建模块具体采用以下公式:The discrete state space model building module specifically adopts the following formula:
其中,Xk-1为k-1时刻的状态变量,uk-1为k-1时刻的外源性胰岛素输注速率,ωk为过程噪声且服从期望为0,方差为σwk的高斯噪声,υk为测量噪声且服从期望为0,方差σvk的高斯噪声。 where X k-1 is the state variable at time k-1, u k-1 is the exogenous insulin infusion rate at time k-1, ω k is the process noise and obeys the expectation of 0, and the variance is Gaussian with σ wk Noise, υ k is the measurement noise and obeys Gaussian noise with an expectation of 0 and a variance σ vk .
在具体的实施例中,各状态方差组成的方差向量表示为σw=[10-4,10-4,0.01,1,10-6,10-6,10-6,10-6,10-6,1],观测噪声的方差为σvk=1。In a specific embodiment, the variance vector composed of the variances of each state is expressed as σ w =[10 -4 , 10 -4 , 0.01, 1, 10 -6 , 10 -6 , 10 -6 , 10 -6 , 10 - 6,1 ], the variance of the observed noise is σ vk =1.
根据上式,当数据采集模块每小时采样4次,针对离散数据,将状态空间转换模块的连续状态变量转换为连续离散状态变量。According to the above formula, when the data
所述粒子波观测器模块具体采用以下公式进行预测和更新:The particle wave observer module specifically adopts the following formula to predict and update:
p(Xk|z1:k-1)=∫p(Xk|Xk-1)p(Xk-1|z1:k-1)dXk-1 p(X k |z 1:k-1 )=∫p(X k |X k-1 )p(X k-1 |z 1:k-1 )dX k-1
p(Xk|z1:k)∝p(zk|Xk-1)p(Xk|z1:k-1)p(X k |z 1:k )∝p(z k |X k-1 )p(X k |z 1:k-1 )
其中,Xk为k时刻的状态变量,Xk-1为k-1时刻的状态变量,z1:k-1为第k-1时刻前采集到的所有血糖数据序列,z1:k为第k时刻前采集到的所有血糖数据序列。Among them, X k is the state variable at time k, X k-1 is the state variable at time k-1, z 1:k-1 is all the blood sugar data sequences collected before the k-1th time, z 1:k is All blood glucose data sequences collected before the kth time.
粒子滤波观测器模块中的优化模型基于序贯重要性抽样(SIS)的蒙特卡罗方法求解,即概率密度函数p(Xk|z1:k)用一些随机的粒子及其权重的组合近似,在获得一些加权随机样本后,可以根据测量结果调整权重和粒子的位置。The optimization model in the particle filter observer module is solved based on the Monte Carlo method of sequential importance sampling (SIS), that is, the probability density function p(X k |z 1:k ) uses some random particles and a combined approximation of its weights, after obtaining some weighted random samples, the weights and the positions of the particles can be adjusted based on the measurements.
粒子滤波观测器模块的伪代码为:The pseudocode of the particle filter observer module is:
所述进食自动探测模块具体包括:前向差分获取单元和判断单元。The automatic eating detection module specifically includes: a forward differential acquisition unit and a judgment unit.
前向差分获取单元用于获取k时刻的外界干扰因子的前向差分其中,Uk-1为k-1时刻的引起的血浆中的葡萄糖的浓度变化的碳水化合物摄入因子,Uk为k时刻的引起的血浆中的葡萄糖的浓度变化的碳水化合物摄入因子。The forward difference acquisition unit is used to obtain the forward difference of the external interference factor at time k in, U k-1 is a carbohydrate intake factor for the change in plasma glucose concentration at time k-1, and U k is a carbohydrate intake factor for the change in plasma glucose concentration at time k.
判断单元用于基于所述前向差分判断是否患者是否摄入碳水化合物。The judgment unit is used for the forward difference based on the Determine whether the patient is consuming carbohydrates.
所述判断单元具体包括:The judging unit specifically includes:
判断以及是否同时满足若同时满足则有碳水化合物摄入,否则,无碳水化合物摄入;其中,为k时刻的外界干扰因子的前向差分,为k-1时刻的外界干扰因子的前向差分,Threshold为设定阈值,Flagk-i=0为无碳水化合物摄入的标识。judge as well as Whether it is satisfied at the same time If both meet There is carbohydrate intake, otherwise, there is no carbohydrate intake; of which, is the forward difference of the external disturbance factor at time k, is the forward difference of external interference factors at time k-1, Threshold is the set threshold, and Flag ki =0 is the sign of no carbohydrate intake.
血糖预测模块基于粒子波观测器模块实时更新后的系统状态,动态预测目标对象的未来30分钟血浆中的胰岛素浓度血浆中的葡萄糖浓度以及皮下细胞间质的葡萄糖浓度即:The blood glucose prediction module dynamically predicts the plasma insulin concentration of the target object in the next 30 minutes based on the real-time updated system state of the particle wave observer module plasma glucose concentration and glucose concentration in the subcutaneous interstitium which is:
基于粒子波观测器模块实时更新后的系统状态,动态预测目标对象的未来30分钟血浆中胰岛素浓度血浆中的葡萄糖浓度以及皮下细胞间质的葡萄糖浓度即:Based on the real-time updated system state of the particle wave observer module, dynamically predict the plasma insulin concentration of the target object in the next 30 minutes plasma glucose concentration and glucose concentration in the subcutaneous interstitium which is:
本发明实施例中,应用美国食品药品监督管理局(FDA)认证的血糖模拟软件对本方法进行验证,在该系统中记录有30名患者的详细生理参数,当输入外界条件(胰岛素输注量、进食等信息),该软件基于这些生理数据,模拟这些患者的血糖变化情况。在本实施例中,所有患者的胰岛素输注量都为采集患者参数期间的本身输注量,进食按正常一日三餐给与摄入,根据以上条件产生所有患者的7天的血糖系统变化情况。在本发明实施例中,只利用血糖测量值和外源性胰岛素输注量的时间序列,不断将上述数据输入至本方案设计的系统中,对血浆中的胰岛素浓度、葡萄糖浓度进行跟踪预测,同时预测未来30分钟的血糖值。以其中一名模拟患者为例,经过与血糖模拟软件产生的血浆中的胰岛素浓度、葡萄糖浓度、血糖测量值的对比得到如图2-图5所示结果。统计所有患者试验结果,血浆中胰岛素浓度的预测均方根误差为0.1283,血浆中葡萄糖浓度的预测均方根误差为1.5602,皮下细胞间质葡萄糖浓度的预测均方根误差为0.0145。进食检测的准确率为86.67%,虚报率为18.75%,漏报率为13.33%。In the embodiment of the present invention, the blood glucose simulation software certified by the U.S. Food and Drug Administration (FDA) is used to verify the method, and the detailed physiological parameters of 30 patients are recorded in the system. When inputting external conditions (insulin infusion volume, Information such as eating), the software simulates the blood sugar changes of these patients based on these physiological data. In this embodiment, the insulin infusion amount of all patients is the infusion amount during the collection of patient parameters, and the food intake is given according to the normal three meals a day, and the 7-day blood sugar system changes of all patients are generated according to the above conditions Happening. In the embodiment of the present invention, only the time series of the blood glucose measurement value and the exogenous insulin infusion amount are used to continuously input the above data into the system designed in this scheme to track and predict the insulin concentration and glucose concentration in the plasma. At the same time predict the blood sugar level in the next 30 minutes. Taking one of the simulated patients as an example, the results shown in Figure 2-Figure 5 are obtained by comparing the insulin concentration, glucose concentration, and blood glucose measurement values in the plasma generated by the blood glucose simulation software. Statistics of all patients' test results showed that the predicted root mean square error of plasma insulin concentration was 0.1283, the predicted root mean square error of plasma glucose concentration was 1.5602, and the predicted root mean square error of subcutaneous interstitial glucose concentration was 0.0145. The accuracy rate of eating detection was 86.67%, the false alarm rate was 18.75%, and the false alarm rate was 13.33%.
本发明图6为本发明所提供的一种自适应葡萄糖和胰岛素的浓度预测方法流程示意图,如图6所示本发明所提供的一种自适应葡萄糖和胰岛素的浓度预测方法,包括:FIG. 6 of the present invention is a schematic flowchart of a method for predicting the concentration of an adaptive glucose and insulin provided by the present invention. As shown in FIG. 6, an adaptive method for predicting the concentration of glucose and insulin provided by the present invention includes:
S601,采集待监测者的监测数据;所述监测数据包括初始的皮下细胞间质的葡萄糖的浓度、外源性胰岛素输注速率以及所述待监测者的体重。S601 , collecting monitoring data of the subject to be monitored; the monitoring data includes the initial subcutaneous intercellular glucose concentration, the exogenous insulin infusion rate, and the weight of the subject to be monitored.
S602,根据所述待监测者的监测数据构建血糖-胰岛素模型;所述血糖-胰岛素模型包括:胰岛素传输子模型、血糖胰岛素动力学子模型以及血糖传输子模型。S602, constructing a blood glucose-insulin model according to the monitoring data of the person to be monitored; the blood glucose-insulin model includes an insulin transmission sub-model, a blood glucose-insulin kinetics sub-model, and a blood glucose transmission sub-model.
所述胰岛素传输子模型具体采用以下公式:The insulin delivery sub-model specifically adopts the following formula:
其中,x1(t)为一胰岛素腔室中的有效胰岛素量,x2(t)为二胰岛素腔室中的有效胰岛素量,u(t)为外源性胰岛素输注速率,tI为有效胰岛素的浓度达到最大值的时间,x(t)为血浆中胰岛素的浓度,W为所述待监测者的体重,M为人体胰岛素清除速率,M=0.017(l/kg/min); where x 1 (t) is the effective insulin amount in one insulin chamber, x 2 (t) is the effective insulin amount in two insulin chambers, u(t) is the exogenous insulin infusion rate, and t I is The time when the concentration of effective insulin reaches the maximum value, x(t) is the concentration of insulin in the plasma, W is the body weight of the person to be monitored, M is the insulin clearance rate of the human body, and M=0.017 (l/kg/min);
所述血糖胰岛素动力学子模型具体采用以下公式:The blood glucose and insulin dynamics sub-model specifically adopts the following formula:
其中,G(t)为血浆中的葡萄糖的浓度,SI为胰岛素作用的敏感系数,Gb为基础血浆中葡萄糖的浓度水平,K为血浆中葡萄糖的浓度自调节率,U(t)为引起的血浆中的葡萄糖的浓度变化的碳水化合物摄入因子。 Among them, G(t) is the concentration of glucose in plasma, S I is the sensitivity coefficient of insulin action, G b is the concentration level of glucose in basal plasma, K is the self-regulation rate of glucose concentration in plasma, and U(t) is Carbohydrate intake factor caused by changes in plasma glucose concentration.
所述血糖传输子模型具体采用以下公式:The blood glucose transmission sub-model specifically adopts the following formula:
其中,IG(t)为皮下细胞间质的葡萄糖的浓度,τ为时滞因子。 Here, IG(t) is the glucose concentration in the subcutaneous interstitium, and τ is the time lag factor.
S603,将所述血糖-胰岛素模型转换为状态空间模型。S603, convert the blood glucose-insulin model into a state space model.
其中,X为可以根据测量结果调整权重和粒子的位置。变量,X=[x1,x2,G,IG,Si,tI,K,Gb,τ,U],H=[0,0,0,1,0,0,0,0,0,0],ω(t)为过程噪声,υ(t)为测量噪声,z(t)为测量状态。 Among them, X is the position where the weight and particle can be adjusted according to the measurement result. Variable, X=[x 1 ,x 2 ,G,IG,S i ,t I ,K,G b ,τ,U], H=[0,0,0,1,0,0,0,0, 0,0], ω(t) is the process noise, υ(t) is the measurement noise, and z(t) is the measurement state.
S604,将所述状态空间模型转换为离散状态空间模型。S604. Convert the state space model into a discrete state space model.
S605,将所述离散状态空间模型中的状态变量进行预测和更新;更新后的状态变量包括一胰岛素腔室中的有效胰岛素量、二胰岛素腔室中的有效胰岛素量、血浆中葡萄糖的浓度、皮下细胞间质的葡萄糖的浓度、胰岛素敏感系数、基础有效胰岛素浓度、基础血糖水平、血糖自调节率和碳水化合物摄入因子。S605, predict and update the state variables in the discrete state space model; the updated state variables include the effective insulin amount in the first insulin chamber, the effective insulin amount in the second insulin chamber, the concentration of glucose in the plasma, Subcutaneous interstitial glucose concentration, insulin sensitivity coefficient, basal effective insulin concentration, basal blood glucose level, blood glucose autoregulation rate and carbohydrate intake factor.
S606,根据更新后的碳水化合物摄入因子确定所述待监测者的碳水化合物的摄入情况;摄入情况包括有碳水化合物的摄入和没有碳水化合物的摄入。S606: Determine the carbohydrate intake of the subject to be monitored according to the updated carbohydrate intake factor; the intake includes the intake of carbohydrates and the intake of no carbohydrates.
S607,根据更新后的状态变量确定未来固定时间间隔内血浆中的胰岛素浓度、血浆中的葡萄糖浓度以及皮下细胞间质的葡萄糖浓度。S607 , determining the insulin concentration in the plasma, the glucose concentration in the plasma, and the glucose concentration in the subcutaneous interstitium within a fixed time interval in the future according to the updated state variables.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010304292.3A CN111540436B (en) | 2020-04-17 | 2020-04-17 | An adaptive glucose and insulin concentration prediction system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010304292.3A CN111540436B (en) | 2020-04-17 | 2020-04-17 | An adaptive glucose and insulin concentration prediction system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111540436A CN111540436A (en) | 2020-08-14 |
CN111540436B true CN111540436B (en) | 2022-06-03 |
Family
ID=71978694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010304292.3A Active CN111540436B (en) | 2020-04-17 | 2020-04-17 | An adaptive glucose and insulin concentration prediction system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111540436B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112402732B (en) * | 2020-10-10 | 2023-05-05 | 广东食品药品职业学院 | A Control Method of Insulin Infusion Volume Based on Adaptive Control Weighting Factor Strategy |
CN113506632B (en) * | 2021-06-08 | 2023-12-12 | 山东第一医科大学附属省立医院(山东省立医院) | Non-periodic sampling data-based estimation method for blood sugar of type I diabetes patient |
CN114038566B (en) * | 2021-10-15 | 2025-06-20 | 成都泰盟软件有限公司 | A method for predicting blood sugar changes in patients with type 2 diabetes using mathematical models |
CN116159208B (en) * | 2021-11-24 | 2024-03-15 | 上海微创生命科技有限公司 | Artificial pancreas control method, readable storage medium and blood glucose management system |
CN114949464A (en) * | 2022-06-02 | 2022-08-30 | 山东第一医科大学附属省立医院(山东省立医院) | A control method and system for insulin injection equipment |
CN116504355B (en) * | 2023-04-27 | 2024-04-02 | 广东食品药品职业学院 | Closed-loop insulin infusion control method, device and storage medium based on neural network |
CN119479988B (en) * | 2025-01-13 | 2025-06-20 | 山东银方信息技术有限公司 | A fully closed-loop automatic insulin intravenous infusion analysis method and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1471373A (en) * | 2001-02-05 | 2004-01-28 | ��³��ɭ˹��˾ | Methods of determining concentration of glucose in blood |
CN1696931A (en) * | 2004-05-11 | 2005-11-16 | 希森美康株式会社 | Glucose and insulin concentration simulation system and recording medium |
EP2236077A1 (en) * | 2009-03-31 | 2010-10-06 | Sensile Pat AG | Medical device for measuring an analyte concentration |
CN110869075A (en) * | 2017-04-07 | 2020-03-06 | 生命扫描知识产权控股有限责任公司 | Calculation of residual insulin Activity content in Artificial islet systems |
-
2020
- 2020-04-17 CN CN202010304292.3A patent/CN111540436B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1471373A (en) * | 2001-02-05 | 2004-01-28 | ��³��ɭ˹��˾ | Methods of determining concentration of glucose in blood |
CN1696931A (en) * | 2004-05-11 | 2005-11-16 | 希森美康株式会社 | Glucose and insulin concentration simulation system and recording medium |
EP2236077A1 (en) * | 2009-03-31 | 2010-10-06 | Sensile Pat AG | Medical device for measuring an analyte concentration |
CN110869075A (en) * | 2017-04-07 | 2020-03-06 | 生命扫描知识产权控股有限责任公司 | Calculation of residual insulin Activity content in Artificial islet systems |
Also Published As
Publication number | Publication date |
---|---|
CN111540436A (en) | 2020-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111540436B (en) | An adaptive glucose and insulin concentration prediction system and method | |
US20220370021A1 (en) | Model based variable risk false glucose threshold alarm prevention mechanism | |
CN110869075B (en) | Calculation of residual insulin Activity content in Artificial islet systems | |
CN109999270B (en) | An adaptive active disturbance rejection controller for artificial pancreas based on blood glucose trend | |
JP3594897B2 (en) | Extrapolation system for glucose concentration | |
WO2019072141A1 (en) | Cloud big data-based method and system for insulin pump individualized configuration optimization | |
AU2016291569B2 (en) | System, device and method of dynamic glucose profile response to physiological parameters | |
CN102500013A (en) | Fully automatic intelligent infusion method and device based on model predictive control for large doses of insulin | |
JP2010521222A (en) | Basic speed test using blood glucose input | |
CN107203695A (en) | A kind of diabetes monitoring and interactive system counted based on cloud platform big data with calculating | |
WO2012019746A1 (en) | Method and system for improving glycemic control | |
CN109935331B (en) | A blood glucose prediction method and system based on multi-model dynamic synthesis | |
CN104667368B (en) | Control with calculating the insulin pump dynamic control implementation method separated | |
WO2023151213A1 (en) | Analyte concentration data generation method and apparatus, and system for monitoring analyte concentration | |
Prud'Homme et al. | Preclinically assessed optimal control of postprandial glucose excursions for type 1 patients with diabetes | |
Chase et al. | Active insulin infusion control of the blood glucose derivative | |
CN116942081A (en) | Blood sugar prediction and control method based on deep AR | |
WO2023092908A1 (en) | Artificial pancreas control method, readable storage medium, and blood glucose management system | |
CN117612692B (en) | A system and method for fault diagnosis of insulin pump based on continuous blood glucose monitoring | |
Samadi et al. | 22 Meal Detection Module in an Artificial Pancreas System for People with Type 1 Diabetes | |
WO2024178575A1 (en) | Automatic monitoring method based on rate of change of difference between actual blood glucose values, and closed-loop artificial pancreas | |
CN118576824B (en) | Artificial pancreas control system of physical priori personalized linear model | |
CN114613509B (en) | Artificial pancreas long-term adaptation individualized learning system based on Bayesian optimization | |
CN120241051A (en) | Blood glucose monitoring and regulating method and system based on medical robot | |
Gallardo et al. | Deep Transfer Learning for Glucose Prediction Adding Physical Activity Data in Type 1 Diabetes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |