[go: up one dir, main page]

CN111538687A - Memory control method, memory storage device, and memory control circuit unit - Google Patents

Memory control method, memory storage device, and memory control circuit unit Download PDF

Info

Publication number
CN111538687A
CN111538687A CN202010322828.4A CN202010322828A CN111538687A CN 111538687 A CN111538687 A CN 111538687A CN 202010322828 A CN202010322828 A CN 202010322828A CN 111538687 A CN111538687 A CN 111538687A
Authority
CN
China
Prior art keywords
voltage level
data
read
read voltage
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010322828.4A
Other languages
Chinese (zh)
Other versions
CN111538687B (en
Inventor
林纬
曾士家
许祐诚
杨宇翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phison Electronics Corp
Original Assignee
Phison Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phison Electronics Corp filed Critical Phison Electronics Corp
Priority to CN202010322828.4A priority Critical patent/CN111538687B/en
Publication of CN111538687A publication Critical patent/CN111538687A/en
Application granted granted Critical
Publication of CN111538687B publication Critical patent/CN111538687B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Read Only Memory (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

The invention provides a memory control method, which comprises the following steps: sending a first read command sequence instructing to read a first physical unit using a first read voltage level to obtain first data; decoding the first data; if the first data decoding fails, sending a second read command sequence indicating that the first entity unit is read by using a second read voltage level to obtain second data; if the second read voltage level meets the first condition or the second data meets the second condition, decoding the second data by using the auxiliary information to improve the decoding success rate of the second data; and if the second read voltage level does not meet the first condition and the second data does not meet the second condition, decoding the second data without using the auxiliary information. In addition, the invention also provides a memory storage device and a memory control circuit unit.

Description

存储器控制方法、存储器存储装置及存储器控制电路单元Memory control method, memory storage device, and memory control circuit unit

技术领域technical field

本发明涉及一种存储器控制技术,尤其涉及一种存储器控制方法、存储器存储装置及存储器控制电路单元。The present invention relates to a memory control technology, and in particular, to a memory control method, a memory storage device and a memory control circuit unit.

背景技术Background technique

数字相机、移动电话与MP3播放器在这几年来的成长十分迅速,使得消费者对存储媒体的需求也急速增加。由于可复写式非易失性存储器模块(rewritable non-volatilememory module)(例如,快闪存储器)具有数据非易失性、省电、体积小,以及无机械结构等特性,所以非常适合内建于上述所举例的各种可携式多媒体装置中。Digital cameras, mobile phones and MP3 players have grown rapidly over the past few years, resulting in a rapid increase in consumer demand for stored media. Because rewritable non-volatile memory modules (eg, flash memory) have the characteristics of data non-volatility, power saving, small size, and no mechanical structure, they are very suitable for built-in Among the various portable multimedia devices exemplified above.

部分类型的存储器存储装置同时支持硬比特模式解码与软比特模式解码。硬比特模式解码具有较快的解码速度,而软比特模式解码则具有较高的解码成功率。在硬比特模式解码中,每当解码失败时,用来读取可复写式非易失性存储器模块中的存储单元的读取电压电平可参照重读表格而被调整,而调整后的读取电压电平可用来重读数据(亦称为硬比特)。一旦硬比特模式解码的重试次数超过一预设值,软比特模式解码可被执行。在软比特模式解码中,更多的读取电压电平可被用于读取存储单元以获得与硬比特有关的额外信息(亦称为软比特),以通过导入所述额外信息来提高解码成功率。Some types of memory storage devices support both hard-bit mode decoding and soft-bit mode decoding. Hard-bit mode decoding has a faster decoding speed, while soft-bit mode decoding has a higher decoding success rate. In hard bit mode decoding, whenever decoding fails, the read voltage level used to read the memory cells in the rewritable non-volatile memory module can be adjusted with reference to the reread table, and the adjusted read voltage level The voltage levels can be used to reread data (also known as hard bits). Once the number of retries for hard-bit mode decoding exceeds a predetermined value, soft-bit mode decoding can be performed. In soft bit mode decoding, more read voltage levels can be used to read memory cells to obtain additional information about the hard bits (also known as soft bits) to improve decoding by importing the additional information Success rate.

但是,针对电压偏移较严重的可复写式非易失性存储器模块而言,硬比特模式解码的解码成功率低落,导致系统需要花费许多时间在等待硬比特模式解码结束后才能在软比特模式解码中顺利解码数据。However, for the rewritable non-volatile memory module with serious voltage offset, the decoding success rate of hard-bit mode decoding is low, so that the system needs to spend a lot of time waiting for the end of hard-bit mode decoding before the soft-bit mode is completed. The data is successfully decoded during decoding.

发明内容SUMMARY OF THE INVENTION

本发明提供一种存储器控制方法、存储器存储装置及存储器控制电路单元,可有效提高数据在硬比特模式解码中的解码成功率。The present invention provides a memory control method, a memory storage device and a memory control circuit unit, which can effectively improve the decoding success rate of data in hard bit mode decoding.

本发明的范例实施例提供一种存储器控制方法,其用于可复写式非易失性存储器模块。所述可复写式非易失性存储器模块包括多个实体单元。所述存储器控制方法包括:发送第一读取指令序列,其指示使用第一读取电压电平读取所述多个实体单元中的第一实体单元以获得第一数据;解码所述第一数据;若所述第一数据的解码失败,发送第二读取指令序列,其指示使用第二读取电压电平读取所述第一实体单元以获得第二数据,其中所述第二读取电压电平不同于所述第一读取电压电平;若所述第二读取电压电平符合第一条件或所述第二数据符合第二条件,使用辅助信息解码所述第二数据,其中所述辅助信息用以提高所述第二数据的解码成功率;以及若所述第二读取电压电平不符合所述第一条件且所述第二数据不符合所述第二条件,不使用所述辅助信息而解码所述第二数据。Exemplary embodiments of the present invention provide a memory control method for a rewritable non-volatile memory module. The rewritable non-volatile memory module includes a plurality of physical units. The memory control method includes: sending a first read instruction sequence, which instructs to read a first physical unit of the plurality of physical units using a first read voltage level to obtain first data; decoding the first physical unit data; if the decoding of the first data fails, a second read command sequence is sent, which instructs the first physical unit to be read using a second read voltage level to obtain second data, wherein the second read The voltage level is different from the first read voltage level; if the second read voltage level meets the first condition or the second data meets the second condition, use auxiliary information to decode the second data , wherein the auxiliary information is used to improve the decoding success rate of the second data; and if the second read voltage level does not meet the first condition and the second data does not meet the second condition , the second data is decoded without using the auxiliary information.

在本发明的一范例实施例中,所述的存储器控制方法还包括:根据所述第二读取电压电平是否位于特定电压范围内,决定所述第二读取电压电平是否符合所述第一条件。In an exemplary embodiment of the present invention, the memory control method further includes: according to whether the second read voltage level is within a specific voltage range, determining whether the second read voltage level conforms to the first condition.

在本发明的一范例实施例中,所述的存储器控制方法还包括:获得所述第二数据的校验子数值,其中所述校验子数值与所述第二数据的比特错误率有关;以及根据所述校验子数值是否小于预设值,决定所述第二数据是否符合所述第二条件。In an exemplary embodiment of the present invention, the memory control method further includes: obtaining a syndrome value of the second data, wherein the syndrome value is related to a bit error rate of the second data; and determining whether the second data meets the second condition according to whether the syndrome value is less than a preset value.

在本发明的一范例实施例中,所述的存储器控制方法还包括:在发送所述第一读取指令序列之前,发送第三读取指令序列,其指示使用第三读取电压电平读取所述第一实体单元以获得第三数据;解码所述第三数据;以及根据所述第一读取电压电平与所述第三读取电压电平决定特定电压范围,其中所述第一读取电压电平与所述第三读取电压电平的其中之一用以界定所述特定电压范围的上边界,且所述第一读取电压电平与所述第三读取电压电平的其中之另一用以界定所述特定电压范围的下边界。In an exemplary embodiment of the present invention, the memory control method further includes: before sending the first read command sequence, sending a third read command sequence, which instructs to use a third read voltage level to read fetching the first physical unit to obtain third data; decoding the third data; and determining a specific voltage range according to the first read voltage level and the third read voltage level, wherein the first read voltage level One of a read voltage level and the third read voltage level is used to define the upper boundary of the specific voltage range, and the first read voltage level and the third read voltage level The other of the levels is used to define the lower boundary of the specific voltage range.

在本发明的一范例实施例中,所述的存储器控制方法还包括:根据所述第二读取电压电平更新所述特定电压范围的边界。In an exemplary embodiment of the present invention, the memory control method further includes: updating the boundary of the specific voltage range according to the second read voltage level.

在本发明的一范例实施例中,根据所述第二读取电压电平更新所述特定电压范围的所述边界值的步骤包括:根据所述第二读取电压电平与所述特定电压范围的相对关系决定是否更新所述特定电压范围的所述边界。In an exemplary embodiment of the present invention, the step of updating the boundary value of the specific voltage range according to the second read voltage level includes: according to the second read voltage level and the specific voltage The relative relationship of the ranges determines whether to update the boundaries of the particular voltage range.

在本发明的一范例实施例中,所述的存储器控制方法还包括:若所述第二读取电压电平符合所述第一条件或所述第二数据符合所述第二条件,根据所述第一读取电压电平与所述第二读取电压电平划分多个电压区间;以及根据所划分的所述多个电压区间决定所述辅助信息。In an exemplary embodiment of the present invention, the memory control method further includes: if the second read voltage level meets the first condition or the second data meets the second condition, according to the The first read voltage level and the second read voltage level are divided into a plurality of voltage intervals; and the auxiliary information is determined according to the divided voltage intervals.

本发明的范例实施例另提供一种存储器存储装置,其包括连接接口单元、可复写式非易失性存储器模块及存储器控制电路单元。所述连接接口单元用以连接至主机系统。所述可复写式非易失性存储器模块包括多个实体单元。所述存储器控制电路单元连接至所述连接接口单元与所述可复写式非易失性存储器模块。所述存储器控制电路单元用以发送第一读取指令序列,其指示使用第一读取电压电平读取所述多个实体单元中的第一实体单元以获得第一数据。所述存储器控制电路单元还用以解码所述第一数据。若所述第一数据的解码失败,所述存储器控制电路单元还用以发送第二读取指令序列,其指示使用第二读取电压电平读取所述第一实体单元以获得第二数据。所述第二读取电压电平不同于所述第一读取电压电平。若所述第二读取电压电平符合第一条件或所述第二数据符合第二条件,所述存储器控制电路单元还用以使用辅助信息解码所述第二数据,其中所述辅助信息用以提高所述第二数据的解码成功率。若所述第二读取电压电平不符合所述第一条件且所述第二数据不符合所述第二条件,所述存储器控制电路单元还用以不使用所述辅助信息而解码所述第二数据。Exemplary embodiments of the present invention further provide a memory storage device, which includes a connection interface unit, a rewritable non-volatile memory module, and a memory control circuit unit. The connection interface unit is used for connecting to the host system. The rewritable non-volatile memory module includes a plurality of physical units. The memory control circuit unit is connected to the connection interface unit and the rewritable nonvolatile memory module. The memory control circuit unit is configured to send a first read command sequence, which instructs to read a first physical unit of the plurality of physical units using a first read voltage level to obtain first data. The memory control circuit unit is further used for decoding the first data. If the decoding of the first data fails, the memory control circuit unit is further configured to send a second read command sequence, which instructs to use the second read voltage level to read the first physical unit to obtain the second data . The second read voltage level is different from the first read voltage level. If the second read voltage level meets the first condition or the second data meets the second condition, the memory control circuit unit is further configured to decode the second data using auxiliary information, wherein the auxiliary information is In order to improve the decoding success rate of the second data. If the second read voltage level does not meet the first condition and the second data does not meet the second condition, the memory control circuit unit is further configured to decode the auxiliary information without using the auxiliary information Second data.

在本发明的一范例实施例中,所述存储器控制电路单元还用以根据所述第二读取电压电平是否位于特定电压范围内,决定所述第二读取电压电平是否符合所述第一条件。In an exemplary embodiment of the present invention, the memory control circuit unit is further configured to determine whether the second read voltage level conforms to the first condition.

在本发明的一范例实施例中,所述存储器控制电路单元还用以获得所述第二数据的校验子数值,所述校验子数值与所述第二数据的比特错误率有关。所述存储器控制电路单元还用以根据所述校验子数值是否小于预设值,决定所述第二数据是否符合所述第二条件。In an exemplary embodiment of the present invention, the memory control circuit unit is further configured to obtain a syndrome value of the second data, where the syndrome value is related to a bit error rate of the second data. The memory control circuit unit is further configured to determine whether the second data meets the second condition according to whether the syndrome value is less than a preset value.

在本发明的一范例实施例中,在发送所述第一读取指令序列之前,所述存储器控制电路单元还用以发送第三读取指令序列,其指示使用第三读取电压电平读取所述第一实体单元以获得第三数据。所述存储器控制电路单元还用以解码所述第三数据。所述存储器控制电路单元还用以根据所述第一读取电压电平与所述第三读取电压电平决定特定电压范围。所述第一读取电压电平与所述第三读取电压电平的其中之一用以界定所述特定电压范围的上边界。所述第一读取电压电平与所述第三读取电压电平的其中之另一用以界定所述特定电压范围的下边界。In an exemplary embodiment of the present invention, before sending the first read command sequence, the memory control circuit unit is further configured to send a third read command sequence, which instructs to use a third read voltage level to read The first entity unit is taken to obtain third data. The memory control circuit unit is further used for decoding the third data. The memory control circuit unit is further configured to determine a specific voltage range according to the first read voltage level and the third read voltage level. One of the first read voltage level and the third read voltage level is used to define an upper boundary of the specific voltage range. The other of the first read voltage level and the third read voltage level is used to define a lower boundary of the specific voltage range.

在本发明的一范例实施例中,所述存储器控制电路单元还用以根据所述第二读取电压电平更新所述特定电压范围的边界。In an exemplary embodiment of the present invention, the memory control circuit unit is further configured to update the boundary of the specific voltage range according to the second read voltage level.

在本发明的一范例实施例中,所述存储器控制电路单元根据所述第二读取电压电平更新所述特定电压范围的所述边界值的操作包括:根据所述第二读取电压电平与所述特定电压范围的一相对关系决定是否更新所述特定电压范围的所述边界。In an exemplary embodiment of the present invention, the operation of the memory control circuit unit updating the boundary value of the specific voltage range according to the second read voltage level includes: according to the second read voltage level A relative relationship between the level and the specific voltage range determines whether to update the boundary of the specific voltage range.

在本发明的一范例实施例中,若所述第二读取电压电平符合所述第一条件或所述第二数据符合所述第二条件,所述存储器控制电路单元还用以根据所述第一读取电压电平与所述第二读取电压电平划分多个电压区间。所述存储器控制电路单元还用以根据所划分的所述多个电压区间决定所述辅助信息。In an exemplary embodiment of the present invention, if the second read voltage level meets the first condition or the second data meets the second condition, the memory control circuit unit is further configured to The first read voltage level and the second read voltage level are divided into a plurality of voltage intervals. The memory control circuit unit is further configured to determine the auxiliary information according to the divided voltage intervals.

本发明的范例实施例另提供一种存储器控制电路单元,其用以控制存储器存储装置。所述存储器存储装置包括可复写式非易失性存储器模块。所述可复写式非易失性存储器模块包括多个实体单元。所述存储器控制电路单元包括主机接口、存储器接口、解码电路及存储器管理电路。所述主机接口用以连接至主机系统。所述存储器接口用以连接至所述可复写式非易失性存储器模块。所述存储器管理电路连接至所述主机接口、所述存储器接口及所述解码电路。所述存储器管理电路用以发送第一读取指令序列,其指示使用第一读取电压电平读取所述多个实体单元中的第一实体单元以获得第一数据。所述解码电路用以解码所述第一数据。若所述第一数据的解码失败,所述存储器管理电路还用以发送第二读取指令序列,其指示使用第二读取电压电平读取所述第一实体单元以获得第二数据。所述第二读取电压电平不同于所述第一读取电压电平。若所述第二读取电压电平符合第一条件或所述第二数据符合第二条件,所述解码电路还用以使用辅助信息解码所述第二数据,其中所述辅助信息用以提高所述第二数据的解码成功率。若所述第二读取电压电平不符合所述第一条件且所述第二数据不符合所述第二条件,所述解码电路还用以不使用所述辅助信息而解码所述第二数据。Exemplary embodiments of the present invention further provide a memory control circuit unit for controlling a memory storage device. The memory storage device includes a rewritable non-volatile memory module. The rewritable non-volatile memory module includes a plurality of physical units. The memory control circuit unit includes a host interface, a memory interface, a decoding circuit and a memory management circuit. The host interface is used to connect to a host system. The memory interface is used to connect to the rewritable non-volatile memory module. The memory management circuit is connected to the host interface, the memory interface, and the decoding circuit. The memory management circuit is configured to send a first read command sequence, which instructs to read a first physical unit of the plurality of physical units using a first read voltage level to obtain first data. The decoding circuit is used for decoding the first data. If the decoding of the first data fails, the memory management circuit is further configured to send a second read command sequence, which instructs to use the second read voltage level to read the first physical unit to obtain the second data. The second read voltage level is different from the first read voltage level. If the second read voltage level meets the first condition or the second data meets the second condition, the decoding circuit is further configured to decode the second data using auxiliary information, wherein the auxiliary information is used to improve The decoding success rate of the second data. If the second read voltage level does not meet the first condition and the second data does not meet the second condition, the decoding circuit is further configured to decode the second data without using the auxiliary information data.

在本发明的一范例实施例中,所述存储器管理电路还用以根据所述第二读取电压电平是否位于特定电压范围内,决定所述第二读取电压电平是否符合所述第一条件。In an exemplary embodiment of the present invention, the memory management circuit is further configured to determine whether the second read voltage level conforms to the first read voltage level according to whether the second read voltage level is within a specific voltage range. a condition.

在本发明的一范例实施例中,所述存储器管理电路还用以获得所述第二数据的校验子数值。所述校验子数值与所述第二数据的比特错误率有关。所述存储器管理电路还用以根据所述校验子数值是否小于预设值,决定所述第二数据是否符合所述第二条件。In an exemplary embodiment of the present invention, the memory management circuit is further configured to obtain a syndrome value of the second data. The syndrome value is related to the bit error rate of the second data. The memory management circuit is further configured to determine whether the second data meets the second condition according to whether the syndrome value is less than a preset value.

在本发明的一范例实施例中,在发送所述第一读取指令序列之前,所述存储器管理电路还用以发送第三读取指令序列,其指示使用第三读取电压电平读取所述第一实体单元以获得第三数据。所述解码电路还用以解码所述第三数据。所述存储器管理电路还用以根据所述第一读取电压电平与所述第三读取电压电平决定特定电压范围。所述第一读取电压电平与所述第三读取电压电平的其中之一用以界定所述特定电压范围的上边界。所述第一读取电压电平与所述第三读取电压电平的其中之另一用以界定所述特定电压范围的下边界。In an exemplary embodiment of the present invention, before sending the first read command sequence, the memory management circuit is further configured to send a third read command sequence, which instructs to use a third read voltage level to read The first entity unit obtains third data. The decoding circuit is also used for decoding the third data. The memory management circuit is further configured to determine a specific voltage range according to the first read voltage level and the third read voltage level. One of the first read voltage level and the third read voltage level is used to define an upper boundary of the specific voltage range. The other of the first read voltage level and the third read voltage level is used to define a lower boundary of the specific voltage range.

在本发明的一范例实施例中,所述存储器管理电路还用以根据所述第二读取电压电平更新所述特定电压范围的边界。In an exemplary embodiment of the present invention, the memory management circuit is further configured to update the boundary of the specific voltage range according to the second read voltage level.

在本发明的一范例实施例中,所述存储器管理电路根据所述第二读取电压电平更新所述特定电压范围的所述边界值的操作包括:根据所述第二读取电压电平与所述特定电压范围的相对关系决定是否更新所述特定电压范围的所述边界。In an exemplary embodiment of the present invention, the operation of the memory management circuit updating the boundary value of the specific voltage range according to the second read voltage level includes: according to the second read voltage level The relative relationship with the specific voltage range determines whether to update the boundary of the specific voltage range.

在本发明的一范例实施例中,若所述第二读取电压电平符合所述第一条件或所述第二数据符合所述第二条件,所述存储器管理电路还用以根据所述第一读取电压电平与所述第二读取电压电平划分多个电压区间。所述存储器管理电路还用以根据所划分的所述多个电压区间决定所述辅助信息。In an exemplary embodiment of the present invention, if the second read voltage level meets the first condition or the second data meets the second condition, the memory management circuit is further configured to The first read voltage level and the second read voltage level are divided into a plurality of voltage intervals. The memory management circuit is further configured to determine the auxiliary information according to the divided voltage intervals.

基于上述,在至少一次读取第一实体单元且经历至少一次解码失败后,可提高数据的解码成功率的辅助信息只在满足特定条件时被使用,而非在每一次的重读与解码中无条件使用。藉此,可在尝试提高数据在硬比特模式解码中的解码成功率的前提下,避免因过度使用或调整辅助信息而反而降低解码成功率。Based on the above, after reading the first physical unit at least once and experiencing at least one decoding failure, the auxiliary information that can improve the decoding success rate of the data is only used when certain conditions are met, rather than unconditional in each re-reading and decoding. use. In this way, under the premise of trying to improve the decoding success rate of data in hard-bit mode decoding, it is possible to avoid reducing the decoding success rate due to excessive use or adjustment of auxiliary information.

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.

附图说明Description of drawings

图1是根据本发明的一范例实施例所示出的主机系统、存储器存储装置及输入/输出(I/O)装置的示意图;1 is a schematic diagram of a host system, a memory storage device, and an input/output (I/O) device according to an exemplary embodiment of the present invention;

图2是根据本发明的另一范例实施例所示出的主机系统、存储器存储装置及I/O装置的示意图;2 is a schematic diagram of a host system, a memory storage device, and an I/O device according to another exemplary embodiment of the present invention;

图3是根据本发明的另一范例实施例所示出的主机系统与存储器存储装置的示意图;3 is a schematic diagram of a host system and a memory storage device according to another exemplary embodiment of the present invention;

图4是根据本发明的一范例实施例所示出的存储器存储装置的概要方块图;4 is a schematic block diagram of a memory storage device according to an exemplary embodiment of the present invention;

图5是根据本发明的一范例实施例所示出的存储器控制电路单元的概要方块图;5 is a schematic block diagram of a memory control circuit unit according to an exemplary embodiment of the present invention;

图6是根据本发明的一范例实施例所示出的管理可复写式非易失性存储器模块的示意图;FIG. 6 is a schematic diagram of managing a rewritable non-volatile memory module according to an exemplary embodiment of the present invention;

图7是根据本发明的一范例实施例所示出的存储单元的临界电压分布的示意图;FIG. 7 is a schematic diagram of a threshold voltage distribution of a memory cell according to an exemplary embodiment of the present invention;

图8是根据本发明的一范例实施例所示出的临界电压分布与硬比特解码模式中使用的读取电压电平的示意图;FIG. 8 is a schematic diagram illustrating threshold voltage distributions and read voltage levels used in a hard-bit decoding mode according to an exemplary embodiment of the present invention;

图9是根据本发明的一范例实施例所示出的临界电压分布与软比特解码模式中使用的读取电压电平的示意图;9 is a schematic diagram illustrating a threshold voltage distribution and a read voltage level used in a soft bit decoding mode according to an exemplary embodiment of the present invention;

图10是根据本发明的一范例实施例所示出的特定电压范围的示意图;FIG. 10 is a schematic diagram illustrating a specific voltage range according to an exemplary embodiment of the present invention;

图11是根据本发明的一范例实施例所示出的特定电压范围与多个读取电压电平的示意图;11 is a schematic diagram illustrating a specific voltage range and a plurality of read voltage levels according to an exemplary embodiment of the present invention;

图12是根据本发明的一范例实施例所示出的奇偶检查操作的示意图;12 is a schematic diagram of a parity check operation according to an exemplary embodiment of the present invention;

图13是根据本发明的一范例实施例所示出的更新特定电压范围的边界的示意图;13 is a schematic diagram of updating the boundary of a specific voltage range according to an exemplary embodiment of the present invention;

图14是根据本发明的一范例实施例所示出的根据硬比特模式解码中使用的多个读取电压电平来划分多个电压区间的示意图;14 is a schematic diagram of dividing a plurality of voltage intervals according to a plurality of read voltage levels used in hard-bit mode decoding according to an exemplary embodiment of the present invention;

图15是根据本发明的一范例实施例所示出的根据硬比特模式解码中使用的多个读取电压电平来划分多个电压区间的示意图;15 is a schematic diagram of dividing a plurality of voltage intervals according to a plurality of read voltage levels used in hard-bit mode decoding according to an exemplary embodiment of the present invention;

图16是根据本发明的一范例实施例所示出的临界电压分布与硬比特解码模式中使用的读取电压电平的示意图;16 is a schematic diagram illustrating threshold voltage distributions and read voltage levels used in a hard-bit decoding mode according to an exemplary embodiment of the present invention;

图17是根据本发明的一范例实施例所示出的特定电压范围与多个读取电压电平的示意图;17 is a schematic diagram illustrating a specific voltage range and a plurality of read voltage levels according to an exemplary embodiment of the present invention;

图18是根据本发明的一范例实施例所示出的临界电压分布与硬比特解码模式中使用的读取电压电平的示意图;18 is a schematic diagram of threshold voltage distribution and read voltage levels used in hard-bit decoding mode according to an exemplary embodiment of the present invention;

图19是根据本发明的一范例实施例所示出的特定电压范围与多个读取电压电平的示意图;19 is a schematic diagram illustrating a specific voltage range and a plurality of read voltage levels according to an exemplary embodiment of the present invention;

图20是根据本发明的一范例实施例所示出的存储器控制方法的流程图;20 is a flowchart of a memory control method according to an exemplary embodiment of the present invention;

图21是根据本发明的一范例实施例所示出的存储器控制方法的流程图。FIG. 21 is a flowchart of a memory control method according to an exemplary embodiment of the present invention.

具体实施方式Detailed ways

一般而言,存储器存储装置(亦称,存储器存储系统)包括可复写式非易失性存储器模块(rewritable non-volatile memory module)与控制器(亦称,控制电路)。通常存储器存储装置是与主机系统一起使用,以使主机系统可将数据写入至存储器存储装置或从存储器存储装置中读取数据。Generally, a memory storage device (also called a memory storage system) includes a rewritable non-volatile memory module and a controller (also called a control circuit). Typically a memory storage device is used with a host system so that the host system can write data to or read data from the memory storage device.

图1是根据本发明的一范例实施例所示出的主机系统、存储器存储装置及输入/输出(I/O)装置的示意图。图2是根据本发明的另一范例实施例所示出的主机系统、存储器存储装置及I/O装置的示意图。FIG. 1 is a schematic diagram of a host system, a memory storage device, and an input/output (I/O) device according to an exemplary embodiment of the present invention. FIG. 2 is a schematic diagram of a host system, a memory storage device, and an I/O device according to another exemplary embodiment of the present invention.

请参照图1与图2,主机系统11一般包括处理器111、随机存取存储器(randomaccess memory,RAM)112、只读存储器(read only memory,ROM)113及数据传输接口114。处理器111、随机存取存储器112、只读存储器113及数据传输接口114皆连接至系统总线(system bus)110。Referring to FIGS. 1 and 2 , the host system 11 generally includes a processor 111 , a random access memory (RAM) 112 , a read only memory (ROM) 113 and a data transmission interface 114 . The processor 111 , the random access memory 112 , the ROM 113 and the data transmission interface 114 are all connected to a system bus 110 .

在本范例实施例中,主机系统11是通过数据传输接口114与存储器存储装置10连接。例如,主机系统11可经由数据传输接口114将数据存储至存储器存储装置10或从存储器存储装置10中读取数据。此外,主机系统11是通过系统总线110与I/O装置12连接。例如,主机系统11可经由系统总线110将输出信号传送至I/O装置12或从I/O装置12接收输入信号。In this exemplary embodiment, the host system 11 is connected to the memory storage device 10 through the data transmission interface 114 . For example, host system 11 may store data to or read data from memory storage device 10 via data transfer interface 114 . In addition, the host system 11 is connected to the I/O device 12 via the system bus 110 . For example, host system 11 may transmit output signals to or receive input signals from I/O device 12 via system bus 110 .

在本范例实施例中,处理器111、随机存取存储器112、只读存储器113及数据传输接口114可设置在主机系统11的主机板20上。数据传输接口114的数目可以是一或多个。通过数据传输接口114,主机板20可以经由有线或无线方式连接至存储器存储装置10。存储器存储装置10可例如是U盘201、存储卡202、固态硬盘(Solid State Drive,SSD)203或无线存储器存储装置204。无线存储器存储装置204可例如是近距离无线通信(Near FieldCommunication,NFC)存储器存储装置、无线传真(WiFi)存储器存储装置、蓝牙(Bluetooth)存储器存储装置或低功耗蓝牙存储器存储装置(例如,iBeacon)等以各式无线通信技术为基础的存储器存储装置。此外,主机板20也可以通过系统总线110连接至全球定位系统(Global Positioning System,GPS)模块205、网络接口卡206、无线传输装置207、键盘208、荧幕209、喇叭210等各式I/O装置。例如,在一范例实施例中,主机板20可通过无线传输装置207存取无线存储器存储装置204。In this exemplary embodiment, the processor 111 , the random access memory 112 , the read-only memory 113 and the data transmission interface 114 may be disposed on the motherboard 20 of the host system 11 . The number of data transfer interfaces 114 may be one or more. Through the data transfer interface 114, the motherboard 20 may be connected to the memory storage device 10 via wired or wireless means. The memory storage device 10 may be, for example, a USB flash drive 201 , a memory card 202 , a Solid State Drive (SSD) 203 or a wireless memory storage device 204 . The wireless memory storage device 204 may be, for example, a Near Field Communication (NFC) memory storage device, a wireless fax (WiFi) memory storage device, a Bluetooth (Bluetooth) memory storage device, or a Bluetooth low energy memory storage device (eg, iBeacon ) and other memory storage devices based on various wireless communication technologies. In addition, the motherboard 20 can also be connected to various I/O modules such as a Global Positioning System (GPS) module 205 , a network interface card 206 , a wireless transmission device 207 , a keyboard 208 , a screen 209 , a speaker 210 and the like through the system bus 110 . O device. For example, in an exemplary embodiment, the motherboard 20 can access the wireless memory storage device 204 through the wireless transmission device 207 .

在一范例实施例中,所提及的主机系统为可实质地与存储器存储装置配合以存储数据的任意系统。虽然在上述范例实施例中,主机系统是以电脑系统来作说明,然而,图3是根据本发明的另一范例实施例所示出的主机系统与存储器存储装置的示意图。请参照图3,在另一范例实施例中,主机系统31也可以是数字相机、摄影机、通信装置、音频播放器、视频播放器或平板电脑等系统,而存储器存储装置30可为其所使用的安全数字(SecureDigital,SD)卡32、小型快闪(Compact Flash,CF)卡33或嵌入式存储装置34等各式非易失性存储器存储装置。嵌入式存储装置34包括嵌入式多媒体卡(embedded Multi MediaCard,eMMC)341和/或嵌入式多芯片封装(embedded Multi Chip Package,eMCP)存储装置342等各类型将存储器模块直接连接于主机系统的基板上的嵌入式存储装置。In an example embodiment, reference to a host system is substantially any system that can cooperate with a memory storage device to store data. Although in the above exemplary embodiment, the host system is described as a computer system, FIG. 3 is a schematic diagram of a host system and a memory storage device according to another exemplary embodiment of the present invention. Referring to FIG. 3 , in another exemplary embodiment, the host system 31 may also be a digital camera, a video camera, a communication device, an audio player, a video player, or a tablet computer, and the memory storage device 30 may be used therefor Various non-volatile memory storage devices such as a Secure Digital (SD) card 32, a Compact Flash (Compact Flash, CF) card 33 or an embedded storage device 34. The embedded storage device 34 includes various types of embedded multimedia card (embedded Multi Media Card, eMMC) 341 and/or embedded multi-chip package (embedded Multi Chip Package, eMCP) storage device 342 and other types to directly connect the memory module to the substrate of the host system on the embedded storage device.

图4是根据本发明的一范例实施例所示出的存储器存储装置的概要方块图。请参照图4,存储器存储装置10包括连接接口单元402、存储器控制电路单元404与可复写式非易失性存储器模块406。4 is a schematic block diagram of a memory storage device according to an exemplary embodiment of the present invention. Referring to FIG. 4 , the memory storage device 10 includes a connection interface unit 402 , a memory control circuit unit 404 and a rewritable non-volatile memory module 406 .

连接接口单元402用以将存储器存储装置10连接至主机系统11。存储器存储装置10可通过连接接口单元402与主机系统11通信。在本范例实施例中,连接接口单元402是相容于串行高级技术附件(Serial Advanced Technology Attachment,SATA)标准。然而,必须了解的是,本发明不限于此,连接接口单元402亦可以是符合并行高级技术附件(Parallel Advanced Technology Attachment,PATA)标准、电气和电子工程师协会(Institute of Electrical and Electronic Engineers,IEEE)1394标准、高速周边零件连接接口(Peripheral Component Interconnect Express,PCI Express)标准、通用串行总线(Universal Serial Bus,USB)标准、SD接口标准、超高速一代(Ultra High Speed-I,UHS-I)接口标准、超高速二代(Ultra High Speed-II,UHS-II)接口标准、存储棒(MemoryStick,MS)接口标准、MCP接口标准、MMC接口标准、eMMC接口标准、通用快闪存储器(Universal Flash Storage,UFS)接口标准、eMCP接口标准、CF接口标准、整合式驱动电子接口(Integrated Device Electronics,IDE)标准或其他适合的标准。连接接口单元402可与存储器控制电路单元404封装在一个芯片中,或者连接接口单元402是布设于一包含存储器控制电路单元404的芯片外。The connection interface unit 402 is used to connect the memory storage device 10 to the host system 11 . The memory storage device 10 may communicate with the host system 11 through the connection interface unit 402 . In this exemplary embodiment, the connection interface unit 402 is compatible with the Serial Advanced Technology Attachment (SATA) standard. However, it must be understood that the present invention is not limited to this, and the connection interface unit 402 may also conform to the Parallel Advanced Technology Attachment (PATA) standard, Institute of Electrical and Electronic Engineers (IEEE) 1394 standard, Peripheral Component Interconnect Express (PCI Express) standard, Universal Serial Bus (USB) standard, SD interface standard, Ultra High Speed-I (UHS-I) Interface standard, Ultra High Speed-II (UHS-II) interface standard, Memory Stick (MS) interface standard, MCP interface standard, MMC interface standard, eMMC interface standard, Universal Flash memory (Universal Flash) Storage, UFS) interface standard, eMCP interface standard, CF interface standard, Integrated Device Electronics (IDE) standard or other suitable standards. The connection interface unit 402 and the memory control circuit unit 404 may be packaged in one chip, or the connection interface unit 402 may be arranged outside a chip including the memory control circuit unit 404 .

存储器控制电路单元404用以执行以硬件型式或固体型式实作的多个逻辑门或控制指令并且根据主机系统11的指令在可复写式非易失性存储器模块406中进行数据的写入、读取与抹除等运作。The memory control circuit unit 404 is used to execute a plurality of logic gates or control instructions implemented in a hardware type or a solid-state type and perform data writing and reading in the rewritable non-volatile memory module 406 according to the instructions of the host system 11 operations such as fetching and erasing.

可复写式非易失性存储器模块406是连接至存储器控制电路单元404并且用以存储主机系统11所写入的数据。可复写式非易失性存储器模块406可以是单阶存储单元(Single Level Cell,SLC)NAND型快闪存储器模块(即,一个存储单元中可存储1个比特的快闪存储器模块)、多阶存储单元(Multi Level Cell,MLC)NAND型快闪存储器模块(即,一个存储单元中可存储2个比特的快闪存储器模块)、三阶存储单元(Triple Level Cell,TLC)NAND型快闪存储器模块(即,一个存储单元中可存储3个比特的快闪存储器模块)、四阶存储单元(Quad Level Cell,QLC)NAND型快闪存储器模块(即,一个存储单元中可存储4个比特的快闪存储器模块)、其他快闪存储器模块或其他具有相同特性的存储器模块。The rewritable non-volatile memory module 406 is connected to the memory control circuit unit 404 and used to store data written by the host system 11 . The rewritable non-volatile memory module 406 may be a single level cell (Single Level Cell, SLC) NAND type flash memory module (ie, a flash memory module that can store 1 bit in one memory cell), a multi-level memory module. Multi Level Cell (MLC) NAND flash memory module (ie, a flash memory module that can store 2 bits in one memory cell), triple level cell (Triple Level Cell, TLC) NAND flash memory Module (that is, a flash memory module that can store 3 bits in one memory cell), quad-level memory cell (Quad Level Cell, QLC) NAND flash memory module (that is, a memory cell that can store 4 bits of flash memory module) flash memory modules), other flash memory modules, or other memory modules with the same characteristics.

可复写式非易失性存储器模块406中的每一个存储单元是以电压(以下亦称为临界电压)的改变来存储一或多个比特。具体来说,每一个存储单元的控制栅极(controlgate)与通道之间有一个电荷捕捉层。通过施予一写入电压至控制栅极,可以改变电荷补捉层的电子量,进而改变存储单元的临界电压。此改变存储单元的临界电压的操作亦称为“把数据写入至存储单元”或“程序化(programming)存储单元”。随着临界电压的改变,可复写式非易失性存储器模块406中的每一个存储单元具有多个存储状态。通过施予读取电压可以判断一个存储单元是属于哪一个存储状态,藉此取得此存储单元所存储的一或多个比特。Each memory cell in the rewritable non-volatile memory module 406 stores one or more bits with a change in voltage (also referred to as a threshold voltage hereinafter). Specifically, there is a charge trapping layer between the control gate and the channel of each memory cell. By applying a write voltage to the control gate, the amount of electrons in the charge trapping layer can be changed, thereby changing the threshold voltage of the memory cell. This operation of changing the threshold voltage of the memory cell is also referred to as "writing data to the memory cell" or "programming the memory cell". Each memory cell in the rewritable non-volatile memory module 406 has multiple storage states as the threshold voltage changes. By applying a read voltage, it is possible to determine which memory state a memory cell belongs to, thereby obtaining one or more bits stored in the memory cell.

在本范例实施例中,可复写式非易失性存储器模块406的存储单元可构成多个实体程序化单元,并且此些实体程序化单元可构成多个实体抹除单元。具体来说,同一条字线上的存储单元可组成一或多个实体程序化单元。若每一个存储单元可存储2个以上的比特,则同一条字线上的实体程序化单元可至少可被分类为下实体程序化单元与上实体程序化单元。例如,一存储单元的最低有效位(Least Significant Bit,LSB)是属于下实体程序化单元,并且一存储单元的最高有效位(Most Significant Bit,MSB)是属于上实体程序化单元。一般来说,在MLC NAND型快闪存储器中,下实体程序化单元的写入速度会大于上实体程序化单元的写入速度,和/或下实体程序化单元的可靠度是高于上实体程序化单元的可靠度。In this exemplary embodiment, the storage units of the rewritable non-volatile memory module 406 may constitute a plurality of physical programming units, and these physical programming units may constitute a plurality of physical erasing units. Specifically, memory cells on the same word line can form one or more physical programming units. If each memory cell can store more than 2 bits, the physical programming unit on the same word line can be at least classified into a lower physical programming unit and an upper physical programming unit. For example, the Least Significant Bit (LSB) of a memory cell belongs to the lower physical programming unit, and the Most Significant Bit (MSB) of a memory cell belongs to the upper physical programming unit. Generally speaking, in MLC NAND flash memory, the writing speed of the lower physical programming unit is higher than the writing speed of the upper physical programming unit, and/or the reliability of the lower physical programming unit is higher than that of the upper physical programming unit Programmable unit reliability.

在本范例实施例中,实体程序化单元为程序化的最小单元。即,实体程序化单元为写入数据的最小单元。例如,实体程序化单元可为实体页面(page)或是实体扇(sector)。若实体程序化单元为实体页面,则此些实体程序化单元可包括数据比特区与冗余(redundancy)比特区。数据比特区包含多个实体扇,用以存储使用者数据,而冗余比特区用以存储系统数据(例如,错误更正码等管理数据)。在本范例实施例中,数据比特区包含32个实体扇,且一个实体扇的大小为512字节(byte,B)。然而,在其他范例实施例中,数据比特区中也可包含8个、16个或数目更多或更少的实体扇,并且每一个实体扇的大小也可以是更大或更小。另一方面,实体抹除单元为抹除的最小单位。亦即,每一实体抹除单元含有最小数目的一并被抹除的存储单元。例如,实体抹除单元为实体区块(block)。In this exemplary embodiment, the physical programming unit is the smallest unit of programming. That is, the physical programming unit is the smallest unit in which data is written. For example, the physical programming unit may be a physical page or a physical sector. If the physical programming unit is a physical page, the physical programming unit may include a data bit area and a redundancy bit area. The data bit area includes a plurality of physical sectors for storing user data, and the redundant bit area is used for storing system data (eg, management data such as error correction codes). In this exemplary embodiment, the data bit area includes 32 physical sectors, and the size of one physical sector is 512 bytes (byte, B). However, in other exemplary embodiments, the data bit region may also include 8, 16, or more or less physical sectors, and the size of each physical sector may also be larger or smaller. On the other hand, the physical erasing unit is the smallest unit of erasing. That is, each physical erase unit contains a minimum number of memory units that are erased together. For example, the physical erasing unit is a physical block.

图5是根据本发明的一范例实施例所示出的存储器控制电路单元的概要方块图。请参照图5,存储器控制电路单元404包括存储器管理电路502、主机接口504、存储器接口506及错误检查与校正电路508。FIG. 5 is a schematic block diagram of a memory control circuit unit according to an exemplary embodiment of the present invention. Referring to FIG. 5 , the memory control circuit unit 404 includes a memory management circuit 502 , a host interface 504 , a memory interface 506 and an error checking and correction circuit 508 .

存储器管理电路502用以控制存储器控制电路单元404的整体运作。具体来说,存储器管理电路502具有多个控制指令,并且在存储器存储装置10运作时,此些控制指令会被执行以进行数据的写入、读取与抹除等运作。以下说明存储器管理电路502的操作时,等同于说明存储器控制电路单元404的操作。The memory management circuit 502 is used to control the overall operation of the memory control circuit unit 404 . Specifically, the memory management circuit 502 has a plurality of control commands, and when the memory storage device 10 operates, these control commands are executed to perform operations such as data writing, reading, and erasing. The following description of the operation of the memory management circuit 502 is equivalent to the description of the operation of the memory control circuit unit 404 .

在本范例实施例中,存储器管理电路502的控制指令是以固体型式来实作。例如,存储器管理电路502具有微处理器单元(未示出)与只读存储器(未示出),并且此些控制指令是被烧录至此只读存储器中。当存储器存储装置10运作时,此些控制指令会由微处理器单元来执行以进行数据的写入、读取与抹除等运作。In this exemplary embodiment, the control commands of the memory management circuit 502 are implemented in a solid state. For example, the memory management circuit 502 has a microprocessor unit (not shown) and a read-only memory (not shown), and the control commands are programmed into the read-only memory. When the memory storage device 10 operates, the control commands are executed by the microprocessor unit to perform operations such as data writing, reading and erasing.

在另一范例实施例中,存储器管理电路502的控制指令亦可以程序码型式存储于可复写式非易失性存储器模块406的特定区域(例如,存储器模块中专用于存放系统数据的系统区)中。此外,存储器管理电路502具有微处理器单元(未示出)、只读存储器(未示出)及随机存取存储器(未示出)。特别是,此只读存储器具有开机码(boot code),并且当存储器控制电路单元404被致能时,微处理器单元会先执行此开机码来将存储于可复写式非易失性存储器模块406中的控制指令载入至存储器管理电路502的随机存取存储器中。之后,微处理器单元会运转此些控制指令以进行数据的写入、读取与抹除等运作。In another exemplary embodiment, the control commands of the memory management circuit 502 can also be stored in a specific area of the rewritable non-volatile memory module 406 in the form of program codes (eg, a system area in the memory module dedicated to storing system data) middle. In addition, the memory management circuit 502 has a microprocessor unit (not shown), a read only memory (not shown), and a random access memory (not shown). In particular, the ROM has a boot code, and when the memory control circuit unit 404 is enabled, the microprocessor unit will first execute the boot code to store the boot code in the rewritable non-volatile memory module The control instructions in 406 are loaded into the random access memory of memory management circuit 502 . Afterwards, the microprocessor unit will run these control commands to perform operations such as data writing, reading and erasing.

此外,在另一范例实施例中,存储器管理电路502的控制指令亦可以一硬件型式来实作。例如,存储器管理电路502包括微控制器、存储单元管理电路、存储器写入电路、存储器读取电路、存储器抹除电路与数据处理电路。存储单元管理电路、存储器写入电路、存储器读取电路、存储器抹除电路与数据处理电路是连接至微控制器。存储单元管理电路用以管理可复写式非易失性存储器模块406的存储单元或存储单元群组。存储器写入电路用以对可复写式非易失性存储器模块406下达写入指令序列以将数据写入至可复写式非易失性存储器模块406中。存储器读取电路用以对可复写式非易失性存储器模块406下达读取指令序列以从可复写式非易失性存储器模块406中读取数据。存储器抹除电路用以对可复写式非易失性存储器模块406下达抹除指令序列以将数据从可复写式非易失性存储器模块406中抹除。数据处理电路用以处理欲写入至可复写式非易失性存储器模块406的数据以及从可复写式非易失性存储器模块406中读取的数据。写入指令序列、读取指令序列及抹除指令序列可分别包括一或多个程序码或指令码并且用以指示可复写式非易失性存储器模块406执行相对应的写入、读取及抹除等操作。在一范例实施例中,存储器管理电路502还可以下达其他类型的指令序列给可复写式非易失性存储器模块406以指示执行相对应的操作。In addition, in another exemplary embodiment, the control commands of the memory management circuit 502 may also be implemented in a hardware form. For example, the memory management circuit 502 includes a microcontroller, a memory cell management circuit, a memory write circuit, a memory read circuit, a memory erase circuit, and a data processing circuit. The memory cell management circuit, the memory write circuit, the memory read circuit, the memory erase circuit and the data processing circuit are connected to the microcontroller. The memory cell management circuit is used to manage the memory cells or memory cell groups of the rewritable non-volatile memory module 406 . The memory write circuit is used to issue a write command sequence to the rewritable non-volatile memory module 406 to write data into the rewritable non-volatile memory module 406 . The memory read circuit is used to issue a read command sequence to the rewritable non-volatile memory module 406 to read data from the rewritable non-volatile memory module 406 . The memory erase circuit is used to issue an erase command sequence to the rewritable non-volatile memory module 406 to erase data from the rewritable non-volatile memory module 406 . The data processing circuit is used to process the data to be written into the rewritable non-volatile memory module 406 and the data read from the rewritable non-volatile memory module 406 . The write command sequence, the read command sequence, and the erase command sequence may include one or more program codes or command codes, respectively, and are used to instruct the rewritable non-volatile memory module 406 to perform the corresponding write, read, and Erase, etc. In an exemplary embodiment, the memory management circuit 502 may also issue other types of instruction sequences to the rewritable non-volatile memory module 406 to instruct the corresponding operations to be performed.

主机接口504是连接至存储器管理电路502。存储器管理电路502可通过主机接口504与主机系统11通信。主机接口504可用以接收与识别主机系统11所传送的指令与数据。例如,主机系统11所传送的指令与数据可通过主机接口504来传送至存储器管理电路502。此外,存储器管理电路502可通过主机接口504将数据传送至主机系统11。在本范例实施例中,主机接口504是相容于SATA标准。然而,必须了解的是本发明不限于此,主机接口504亦可以是相容于PATA标准、IEEE 1394标准、PCI Express标准、USB标准、SD标准、UHS-I标准、UHS-II标准、MS标准、MMC标准、eMMC标准、UFS标准、CF标准、IDE标准或其他适合的数据传输标准。The host interface 504 is connected to the memory management circuit 502 . Memory management circuitry 502 may communicate with host system 11 through host interface 504 . The host interface 504 can be used to receive and identify commands and data transmitted by the host system 11 . For example, instructions and data transmitted by the host system 11 may be transmitted to the memory management circuit 502 through the host interface 504 . Additionally, the memory management circuit 502 may communicate data to the host system 11 through the host interface 504 . In this exemplary embodiment, the host interface 504 is compliant with the SATA standard. However, it must be understood that the present invention is not limited thereto, and the host interface 504 can also be compatible with PATA standard, IEEE 1394 standard, PCI Express standard, USB standard, SD standard, UHS-I standard, UHS-II standard, MS standard , MMC standard, eMMC standard, UFS standard, CF standard, IDE standard or other suitable data transmission standard.

存储器接口506是连接至存储器管理电路502并且用以存取可复写式非易失性存储器模块406。也就是说,欲写入至可复写式非易失性存储器模块406的数据会经由存储器接口506转换为可复写式非易失性存储器模块406所能接受的格式。具体来说,若存储器管理电路502要存取可复写式非易失性存储器模块406,存储器接口506会传送对应的指令序列。例如,这些指令序列可包括指示写入数据的写入指令序列、指示读取数据的读取指令序列、指示抹除数据的抹除指令序列、以及用以指示各种存储器操作(例如,改变读取电压电平或执行垃圾回收操作等)的相对应的指令序列。这些指令序列例如是由存储器管理电路502产生并且通过存储器接口506传送至可复写式非易失性存储器模块406。这些指令序列可包括一或多个信号,或是在总线上的数据。这些信号或数据可包括指令码或程序码。例如,在读取指令序列中,会包括读取的识别码、存储器地址等信息。The memory interface 506 is connected to the memory management circuit 502 and used to access the rewritable non-volatile memory module 406 . That is, the data to be written into the rewritable non-volatile memory module 406 will be converted into a format acceptable to the rewritable non-volatile memory module 406 through the memory interface 506 . Specifically, if the memory management circuit 502 wants to access the rewritable non-volatile memory module 406, the memory interface 506 will transmit a corresponding command sequence. For example, these instruction sequences may include a write instruction sequence to instruct to write data, a read instruction sequence to instruct to read data, an erase instruction sequence to instruct to erase data, and to instruct various memory operations (eg, change read take a voltage level or perform a garbage collection operation, etc.) These sequences of instructions are generated, for example, by the memory management circuit 502 and transmitted to the rewritable non-volatile memory module 406 through the memory interface 506 . These command sequences may include one or more signals, or data on the bus. These signals or data may include instruction code or program code. For example, in the read command sequence, the read identification code, memory address and other information will be included.

错误检查与校正电路(亦称为解码电路)508是连接至存储器管理电路502并且用以执行错误检查与校正操作以确保数据的正确性。具体来说,当存储器管理电路502从主机系统11中接收到写入指令时,错误检查与校正电路508会为对应此写入指令的数据产生对应的错误更正码(error correcting code,ECC)和/或错误检查码(error detectingcode,EDC),并且存储器管理电路502会将对应此写入指令的数据与对应的错误更正码和/或错误检查码写入至可复写式非易失性存储器模块406中。之后,当存储器管理电路502从可复写式非易失性存储器模块406中读取数据时会同时读取此数据对应的错误更正码和/或错误检查码,并且错误检查与校正电路508会依据此错误更正码和/或错误检查码对所读取的数据执行错误检查与校正操作。An error checking and correction circuit (also referred to as a decoding circuit) 508 is connected to the memory management circuit 502 and is used to perform error checking and correction operations to ensure the correctness of the data. Specifically, when the memory management circuit 502 receives a write command from the host system 11, the error checking and correction circuit 508 generates a corresponding error correcting code (ECC) and and/or an error detecting code (EDC), and the memory management circuit 502 writes the data corresponding to this write instruction and the corresponding error correcting code and/or error checking code to the rewritable non-volatile memory module 406. Afterwards, when the memory management circuit 502 reads data from the rewritable non-volatile memory module 406, it simultaneously reads the error correction code and/or error check code corresponding to the data, and the error check and correction circuit 508 will This error correction code and/or error checking code performs error checking and correction operations on the read data.

须注意的是,错误检查与校正电路508可支持硬比特模式解码操作与软比特模式解码操作。硬比特模式解码操作每一次的解码速度快于软比特模式解码操作每一次的解码速度。但是,软比特模式解码操作每一次的解码成功率高于硬比特模式解码操作每一次的解码成功率。It should be noted that the error checking and correction circuit 508 can support hard bit mode decoding operations and soft bit mode decoding operations. The decoding speed of each decoding operation in hard bit mode is faster than the decoding speed of each decoding operation in soft bit mode. However, the decoding success rate of each decoding operation in the soft-bit mode is higher than the decoding success rate of each decoding operation in the hard-bit mode.

在一范例实施例中,存储器控制电路单元404还包括缓冲存储器510与电源管理电路512。缓冲存储器510是连接至存储器管理电路502并且用以暂存来自于主机系统11的数据与指令或来自于可复写式非易失性存储器模块406的数据。电源管理电路512是连接至存储器管理电路502并且用以控制存储器存储装置10的电源。In an exemplary embodiment, the memory control circuit unit 404 further includes a buffer memory 510 and a power management circuit 512 . The buffer memory 510 is connected to the memory management circuit 502 and used to temporarily store data and instructions from the host system 11 or data from the rewritable non-volatile memory module 406 . The power management circuit 512 is connected to the memory management circuit 502 and used to control the power supply of the memory storage device 10 .

在一范例实施例中,图4的可复写式非易失性存储器模块406亦称为快闪(flash)存储器模块,且存储器控制电路单元404亦称为用于控制快闪存储器模块的快闪存储器控制器。在一范例实施例中,图5的存储器管理电路502亦称为快闪存储器管理电路。In an exemplary embodiment, the rewritable non-volatile memory module 406 of FIG. 4 is also referred to as a flash memory module, and the memory control circuit unit 404 is also referred to as a flash for controlling the flash memory module. memory controller. In an example embodiment, the memory management circuit 502 of FIG. 5 is also referred to as a flash memory management circuit.

图6是根据本发明的一范例实施例所示出的管理可复写式非易失性存储器模块的示意图。请参照图6,存储器管理电路502可将可复写式非易失性存储器模块406的实体单元610(0)~610(B)逻辑地分组至存储区601与替换区602。存储区601中的实体单元610(0)~610(A)是用以存储数据,而替换区602中的实体单元610(A+1)~610(B)则是用以替换存储区601中损坏的实体单元。例如,若从某一个实体单元中读取的数据所包含的错误过多而无法被更正时,此实体单元会被视为是损坏的实体单元。须注意的是,若替换区602中没有可用的实体抹除单元,则存储器管理电路502可能会将整个存储器存储装置10宣告为写入保护(write protect)状态,而无法再写入数据。FIG. 6 is a schematic diagram of managing a rewritable non-volatile memory module according to an exemplary embodiment of the present invention. Referring to FIG. 6 , the memory management circuit 502 can logically group the physical units 610( 0 ) to 610(B) of the rewritable non-volatile memory module 406 into the storage area 601 and the replacement area 602 . The physical units 610(0)-610(A) in the storage area 601 are used to store data, and the physical units 610(A+1)-610(B) in the replacement area 602 are used to replace the storage area 601 Damaged solid unit. For example, if the data read from a physical unit contains too many errors to be corrected, the physical unit is considered a damaged physical unit. It should be noted that if there is no available physical erase unit in the replacement area 602, the memory management circuit 502 may declare the entire memory storage device 10 to be in a write protect state, and no data can be written.

在本范例实施例中,每一个实体单元是指一个实体程序化单元。然而,在另一范例实施例中,一个实体单元亦可以是指一个实体地址、一个实体抹除单元或由多个连续或不连续的实体地址组成。存储器管理电路502会配置逻辑单元612(0)~612(C)以映射存储区601中的实体单元610(0)~610(A)。在本范例实施例中,每一个逻辑单元是指一个逻辑地址。然而,在另一范例实施例中,一个逻辑单元也可以是指一个逻辑程序化单元、一个逻辑抹除单元或者由多个连续或不连续的逻辑地址组成。此外,逻辑单元612(0)~612(C)中的每一者可被映射至一或多个实体单元。In this exemplary embodiment, each physical unit refers to a physical programming unit. However, in another exemplary embodiment, a physical unit may also refer to a physical address, a physical erasing unit, or consists of a plurality of consecutive or discontinuous physical addresses. The memory management circuit 502 configures the logical units 612(0)-612(C) to map the physical units 610(0)-610(A) in the memory area 601. In this exemplary embodiment, each logical unit refers to a logical address. However, in another exemplary embodiment, a logical unit may also refer to a logical programming unit, a logical erasing unit, or is composed of a plurality of consecutive or discontinuous logical addresses. Furthermore, each of logical units 612(0)-612(C) may be mapped to one or more physical units.

存储器管理电路502可将逻辑单元与实体单元之间的映射关系(亦称为逻辑-实体地址映射关系)记录于至少一逻辑-实体地址映射表。当主机系统11欲从存储器存储装置10读取数据或写入数据至存储器存储装置10时,存储器管理电路502可根据此逻辑-实体地址映射表来执行对于存储器存储装置10的数据存取操作。The memory management circuit 502 can record the mapping relationship between the logical unit and the physical unit (also referred to as the logical-physical address mapping relationship) in at least one logical-physical address mapping table. When the host system 11 wants to read data from or write data to the memory storage device 10 , the memory management circuit 502 can perform data access operations to the memory storage device 10 according to the logical-physical address mapping table.

图7是根据本发明的一范例实施例所示出的存储单元的临界电压分布的示意图。请参照图7,以TLC NAND型快闪存储器模块为例,在程序化某一个实体单元(亦称为第一实体单元)后,第一实体单元中经程序化的每一个存储单元的临界电压可能会属于状态701~708的其中之一。例如,若经程序化的多个存储单元分别用以存储比特“111”、“011”、“001”、“000”、“010”、“110”、“100”及“101”,则此些存储单元会分别属于状态701~708。当欲读取此些存储单元所存储的数据时,读取电压电平V1~V7可被施予至第一实体单元。根据第一实体单元中各存储单元响应于读取电压电平V1~V7的导通状态,各存储单元所属的状态可被识别,进而获得各存储单元所存储的数据。FIG. 7 is a schematic diagram illustrating a threshold voltage distribution of a memory cell according to an exemplary embodiment of the present invention. Please refer to FIG. 7 , taking a TLC NAND flash memory module as an example, after programming a certain physical unit (also referred to as the first physical unit), the threshold voltage of each programmed memory cell in the first physical unit May belong to one of the states 701-708. For example, if multiple memory cells are programmed to store the bits "111", "011", "001", "000", "010", "110", "100" and "101", respectively, then this These memory cells will belong to states 701-708, respectively. When data stored in these memory cells is to be read, the read voltage levels V1-V7 can be applied to the first physical unit. According to the conduction states of the memory cells in the first physical unit in response to the read voltage levels V1-V7, the state to which each memory cell belongs can be identified, and then the data stored in each memory cell can be obtained.

须注意的是,在另一范例实施例中,若以SLC NAND型快闪存储器模块、MLC NAND型快闪存储器模块或QLC NAND型快闪存储器模块为例,则每一个存储单元所存储的比特的数目可能不同。因此,存储单元的临界电压分布中可能具有更多或更少的状态,本发明不加以限制。It should be noted that, in another exemplary embodiment, if an SLC NAND type flash memory module, an MLC NAND type flash memory module or a QLC NAND type flash memory module is taken as an example, the bits stored in each memory cell are may vary. Therefore, there may be more or less states in the threshold voltage distribution of the memory cell, which is not limited by the present invention.

图8是根据本发明的一范例实施例所示出的临界电压分布与硬比特解码模式中使用的读取电压电平的示意图。请参照图8,状态801与802可为图7中的任两个相邻的状态。受到使用环境(例如环境温度)和/或使用程度(例如使用时间)的影响,状态801与802之间可能会发生重叠,使得后续从此重叠区域中读取的数据有很高的机率包含错误比特。FIG. 8 is a schematic diagram illustrating threshold voltage distributions and read voltage levels used in a hard-bit decoding mode according to an exemplary embodiment of the present invention. Referring to FIG. 8 , states 801 and 802 may be any two adjacent states in FIG. 7 . Depending on the usage environment (eg, ambient temperature) and/or the degree of usage (eg, usage time), there may be an overlap between states 801 and 802, so that subsequent data read from this overlapping area has a high chance of containing erroneous bits .

在硬比特解码模式中,存储器管理电路502可发送一读取指令序列,其指示可复写式非易失性存储器模块406使用一读取电压电平(例如读取电压电平VR(1))读取第一实体单元。存储器管理电路502可获得反映此读取电压电平的读取结果的数据。错误检查与校正电路508可解码此数据。若此数据的解码成功,则解码成功的数据可被输出(例如传送给主机系统)。若此数据的解码失败,则存储器管理电路502可发送另一读取指令序列,其指示可复写式非易失性存储器模块406使用另一读取电压电平(例如读取电压电平VR(2))读取第一实体单元。存储器管理电路502可获得反映此读取电压电平的读取结果的数据。错误检查与校正电路508可解码此数据。In hard-bit decoding mode, memory management circuit 502 may send a read command sequence that instructs rewritable non-volatile memory module 406 to use a read voltage level (eg, read voltage level VR (1) ) to read the first entity unit. The memory management circuit 502 can obtain data reflecting the read result of this read voltage level. Error checking and correction circuitry 508 can decode this data. If decoding of this data is successful, the successfully decoded data may be output (eg, transmitted to the host system). If decoding of this data fails, memory management circuit 502 may send another read command sequence that instructs rewritable non-volatile memory module 406 to use another read voltage level (eg, read voltage level VR (2) ) Read the first entity unit. The memory management circuit 502 can obtain data reflecting the read result of this read voltage level. Error checking and correction circuitry 508 can decode this data.

依此类推,在硬比特解码模式中,在重试次数超过一个重试临界值之前,每当解码失败,下一个不同的读取电压电平(例如读取电压电平VR(3)和/或读取电压电平VR(4))可被再次用于读取第一实体单元,且所读取的数据可被解码。此外,硬比特解码模式中所使用的读取电压电平的信息可以是记载于一重试表格。根据此重试表格,多个读取电压电平(例如读取电压电平VR(1)~VR(4))可在硬比特解码模式中被依序使用。And so on, in hard-bit decoding mode, before the number of retries exceeds a retry threshold, whenever decoding fails, the next different read voltage level (eg read voltage level VR (3) and /or the read voltage level VR (4) ) can be used again to read the first physical unit, and the read data can be decoded. In addition, the information of the read voltage level used in the hard bit decoding mode may be recorded in a retry table. According to this retry table, multiple read voltage levels (eg, read voltage levels VR (1) ˜VR (4) ) can be used sequentially in the hard-bit decoding mode.

在一范例实施例中,若硬比特解码模式的重试次数超过此重试临界值,表示以硬比特解码模式的解码能力无法更正所读取的数据中的所有错误。因此,错误检查与校正电路508可进入软比特解码模式,以提高对于数据的解码能力。In an exemplary embodiment, if the number of retries in the hard-bit decoding mode exceeds the retry threshold, it means that the decoding capability of the hard-bit decoding mode cannot correct all errors in the read data. Therefore, the error checking and correction circuit 508 can enter a soft bit decoding mode to improve the decoding ability of the data.

图9是根据本发明的一范例实施例所示出的临界电压分布与软比特解码模式中使用的读取电压电平的示意图。请参照图9,在软比特解码模式中,存储器管理电路502可发送多个读取指令序列,其指示可复写式非易失性存储器模块406使用多个读取电压电平(例如读取电压电平VS(1)~VS(5))读取第一实体单元。存储器管理电路502可获得反映此些读取电压电平的读取结果的数据。根据此些读取电压电平的读取结果,各存储单元的临界电压可被识别为属于多个电压区间(例如电压区间901~906)的其中之一并且被赋予相应的可靠度信息。以对数相似性比值(Log Likelihood Ratio,LLR)作为可靠度信息的范例,越往左的电压区间所对应的可靠度信息的数值越小。FIG. 9 is a schematic diagram illustrating threshold voltage distributions and read voltage levels used in a soft bit decoding mode according to an exemplary embodiment of the present invention. Referring to FIG. 9, in the soft-bit decoding mode, the memory management circuit 502 may send multiple read command sequences, which instruct the rewritable non-volatile memory module 406 to use multiple read voltage levels (eg, read voltage The levels V S(1) ˜V S(5) ) read the first physical unit. Memory management circuitry 502 may obtain data reflecting read results of such read voltage levels. According to the reading results of the reading voltage levels, the threshold voltage of each memory cell can be identified as belonging to one of a plurality of voltage intervals (eg, the voltage intervals 901 to 906 ) and assigned corresponding reliability information. Taking the log similarity ratio (Log Likelihood Ratio, LLR) as an example of the reliability information, the value of the reliability information corresponding to the voltage interval to the left is smaller.

在根据此些读取电压电平的读取结果决定各电压区间所对应的可靠度信息后,根据各存储单元所属的电压区间,错误检查与校正电路508可使用相应的可靠度信息来解码使用一个特定读取电压电平从此些存储单元读取的数据。例如,此特定读取电压电平亦称为正负号读取电压电平并且用以初步决定从每一存储单元读取出的比特是“0”或“1”。以图9为例,此特定读取电压电平可为读取电压电平VS(1)After the reliability information corresponding to each voltage interval is determined according to the reading results of the read voltage levels, the error checking and correction circuit 508 can use the corresponding reliability information to decode and use the voltage interval to which each memory cell belongs. A particular read voltage level reads data from these memory cells. For example, this particular read voltage level is also referred to as a signed read voltage level and is used to preliminarily determine whether the bit read from each memory cell is a "0" or a "1". Taking FIG. 9 as an example, the specific read voltage level may be the read voltage level VS (1) .

从另一角度而言,在图8的硬比特解码模式中,每施予一个读取电压电平,反映此读取电压电平的读取结果的数据就会被解码一次。然而,在图9的软比特解码模式中,在连续施予多个读取电压电平之后,反映特定读取电压电平的读取结果的数据才会被解码一次。From another perspective, in the hard-bit decoding mode of FIG. 8 , each time a read voltage level is applied, the data reflecting the read result of the read voltage level is decoded once. However, in the soft-bit decoding mode of FIG. 9 , data reflecting the read result of a specific read voltage level is decoded only once after a plurality of read voltage levels are continuously applied.

传统上,硬比特解码模式中的每一次解码皆仅是对每一次施予读取电压电平所获得的数据进行解码,而不像软比特解码模式中会动态产生或更新可用以提高解码成功率的可靠度信息。因此,才会导致硬比特解码模式的解码成功率普遍偏低。在存储单元的临界电压偏移较为严重的情况下,系统可能需要等到硬比特解码模式中的所有读取电压电平都被使用过后,才会进入软比特解码模式,导致解码时间延长。Traditionally, each decoding in the hard-bit decoding mode only decodes the data obtained by each application of the read voltage level, unlike the soft-bit decoding mode, which is dynamically generated or updated to improve decoding success. rate reliability information. Therefore, the decoding success rate of the hard-bit decoding mode is generally low. In the case where the critical voltage shift of the memory cell is severe, the system may need to wait until all read voltage levels in the hard-bit decoding mode have been used before entering the soft-bit decoding mode, resulting in prolonged decoding time.

在一范例实施例中,在硬比特解码模式中,存储器管理电路502可发送一读取指令序列(亦称为第一读取指令序列),其指示使用一读取电压电平(亦称为第一读取电压电平)读取第一实体单元以获得一数据(亦称为第一数据)。第一数据可反映第一读取电压电平对第一实体单元中各存储单元的读取结果。错误检查与校正电路508可解码第一数据。若第一数据的解码成功,解码成功的第一数据可被输出。In an example embodiment, in hard-bit decoding mode, the memory management circuit 502 may send a read command sequence (also referred to as the first read command sequence) that instructs the use of a read voltage level (also referred to as The first read voltage level) reads the first physical unit to obtain a data (also referred to as first data). The first data can reflect the read result of each memory cell in the first physical unit by the first read voltage level. The error checking and correction circuit 508 can decode the first data. If the decoding of the first data is successful, the successfully decoded first data may be output.

若第一数据的解码失败,存储器管理电路502可发送另一读取指令序列(亦称为第二读取指令序列),其指示使用另一读取电压电平(亦称为第二读取电压电平)读取第一实体单元以获得另一数据(亦称为第二数据)。第二数据可反映第二读取电压电平对第一实体单元中各存储单元的读取结果。第二读取电压电平不同于第一读取电压电平。以图8为例,第一读取电压电平与第二读取电压电平可为读取电压电平VR(1)~VR(4)中的任两者。If the decoding of the first data fails, the memory management circuit 502 may send another read command sequence (also referred to as a second read command sequence) that instructs the use of another read voltage level (also referred to as a second read) voltage level) to read the first physical unit to obtain another data (also referred to as second data). The second data can reflect the read result of each memory cell in the first physical unit by the second read voltage level. The second read voltage level is different from the first read voltage level. Taking FIG. 8 as an example, the first reading voltage level and the second reading voltage level may be any two of the reading voltage levels VR (1) -VR (4) .

在获得第二数据后,存储器管理电路502可判断第二读取电压电平是否符合一特定条件(亦称为第一条件)和/或第二数据是否符合一特定条件(亦称为第二条件)。若第二读取电压电平符合第一条件或第二数据符合第二条件,错误检查与校正电路508可使用辅助信息解码第二数据。此辅助信息可用以提高第二数据的解码成功率。例如,此辅助信息可包括对应于多个电压区间而动态决定的可靠度信息(类似于图9的范例实施例中动态决定的可靠度信息)。在导入此辅助信息来解码第二数据后,即便在硬比特解码模式中,第二数据的解码成功率也可被显著提升。After obtaining the second data, the memory management circuit 502 can determine whether the second read voltage level meets a specific condition (also referred to as a first condition) and/or whether the second data meets a specific condition (also referred to as a second condition) condition). If the second read voltage level meets the first condition or the second data meets the second condition, the error checking and correction circuit 508 may decode the second data using the auxiliary information. The auxiliary information can be used to improve the decoding success rate of the second data. For example, the auxiliary information may include dynamically determined reliability information corresponding to a plurality of voltage intervals (similar to the dynamically determined reliability information in the exemplary embodiment of FIG. 9 ). After importing the auxiliary information to decode the second data, even in the hard-bit decoding mode, the decoding success rate of the second data can be significantly improved.

然而,若第二读取电压电平不符合第一条件且第二数据不符合第二条件,错误检查与校正电路508可不使用此辅助信息而解码第二数据。例如,若第二读取电压电平不符合第一条件且第二数据不符合第二条件,则错误检查与校正电路508可维持硬比特解码模式中预设的解码操作来解码第二数据,而不额外参考动态决定的可靠度信息。换言之,通过在硬比特解码模式中适度且正确地使用辅助信息,也可避免因过度使用或调整辅助信息而反而降低数据的解码成功率。However, if the second read voltage level does not meet the first condition and the second data does not meet the second condition, the error checking and correction circuit 508 may decode the second data without using this auxiliary information. For example, if the second read voltage level does not meet the first condition and the second data does not meet the second condition, the error checking and correction circuit 508 can maintain the predetermined decoding operation in the hard-bit decoding mode to decode the second data, Without additional reference to dynamically determined reliability information. In other words, by appropriately and correctly using the auxiliary information in the hard-bit decoding mode, it is also possible to avoid excessive use or adjustment of the auxiliary information, which may reduce the decoding success rate of the data.

在一范例实施例中,存储器管理电路502可根据第二读取电压电平是否位于一特定电压范围内,决定第二读取电压电平是否符合第一条件。在一范例实施例中,若第二读取电压电平位于特定电压范围内,存储器管理电路502可判定第二读取电压电平符合第一条件。在一范例实施例中,若第二读取电压电平不位于特定电压范围内,存储器管理电路502可判定第二读取电压电平不符合第一条件。In an exemplary embodiment, the memory management circuit 502 can determine whether the second read voltage level meets the first condition according to whether the second read voltage level is within a specific voltage range. In an exemplary embodiment, if the second read voltage level is within a specific voltage range, the memory management circuit 502 may determine that the second read voltage level meets the first condition. In an exemplary embodiment, if the second read voltage level is not within a specific voltage range, the memory management circuit 502 may determine that the second read voltage level does not meet the first condition.

图10是根据本发明的一范例实施例所示出的特定电压范围的示意图。请参照图8与图10,在一范例实施例中,在使用了读取电压电平VR(1)与VR(2)来读取第一实体单元且未成功解码数据后,存储器管理电路502可根据读取电压电平VR(1)与VR(2)决定特定电压范围1010。例如,存储器管理电路502可根据读取电压电平VR(1)决定特定电压范围1010的边界1011并根据读取电压电平VR(2)决定特定电压范围1010的边界1012。换言之,特定电压范围1010包含边界1011与1012之间的电压范围。FIG. 10 is a schematic diagram illustrating a specific voltage range according to an exemplary embodiment of the present invention. Referring to FIG. 8 and FIG. 10, in an exemplary embodiment, after the read voltage levels VR (1) and VR (2) are used to read the first physical unit and the data is not successfully decoded, the memory management The circuit 502 can determine the specific voltage range 1010 according to the read voltage levels VR (1) and VR (2) . For example, the memory management circuit 502 may determine the boundary 1011 of the specific voltage range 1010 according to the read voltage level VR( 1 ) and determine the boundary 1012 of the specific voltage range 1010 according to the read voltage level VR(2). In other words, the specific voltage range 1010 includes the voltage range between the boundaries 1011 and 1012 .

图11是根据本发明的一范例实施例所示出的特定电压范围与多个读取电压电平的示意图。请参照图11,在一范例实施例中,在决定了特定电压范围1010后,假设使用了读取电压电平VR(3)来读取第一实体单元(即读取电压电平VR(3)为第二读取电压电平)。响应于读取电压电平VR(3)非位于特定电压范围1010内,存储器管理电路502可判定读取电压电平VR(3)不符合第一条件。响应于读取电压电平VR(3)不符合第一条件,存储器管理电路502可指示错误检查与校正电路508在不参考额外的辅助信息的前提下解码反映读取电压电平VR(3)的读取结果的数据(即第二数据)。11 is a schematic diagram illustrating a specific voltage range and a plurality of read voltage levels according to an exemplary embodiment of the present invention. Referring to FIG. 11 , in an exemplary embodiment, after the specific voltage range 1010 is determined, it is assumed that the read voltage level VR (3) is used to read the first physical unit (ie, the read voltage level VR (3) is the second read voltage level). In response to the read voltage level VR (3) not being within the specific voltage range 1010, the memory management circuit 502 may determine that the read voltage level VR (3) does not meet the first condition. In response to the read voltage level VR (3) not meeting the first condition, the memory management circuit 502 may instruct the error checking and correction circuit 508 to decode the reflected read voltage level VR ( 3) without reference to additional auxiliary information. 3) The data of the read result (ie, the second data).

或者,在另一范例实施例中,在决定了特定电压范围1010后,假设使用了读取电压电平VR(4)来读取第一实体单元(即读取电压电平VR(4)为第二读取电压电平)。响应于读取电压电平VR(4)位于特定电压范围1010内,存储器管理电路502可判定读取电压电平VR(4)符合第一条件。响应于读取电压电平VR(4)符合第一条件,存储器管理电路502可指示错误检查与校正电路508参考额外的辅助信息来解码反映读取电压电平VR(4)的读取结果的数据(即第二数据)。Or, in another exemplary embodiment, after the specific voltage range 1010 is determined, it is assumed that the read voltage level VR (4) is used to read the first physical unit (ie the read voltage level VR (4) ) is the second read voltage level). In response to the read voltage level VR (4) being within the specified voltage range 1010, the memory management circuit 502 may determine that the read voltage level VR (4) meets the first condition. In response to the read voltage level VR (4) meeting the first condition, the memory management circuit 502 may instruct the error checking and correction circuit 508 to reference the additional side information to decode the read reflecting the read voltage level VR (4) The resulting data (ie, the second data).

在一范例实施例中,存储器管理电路502可获得第二数据的校验子数值。此校验子数值与第二数据的比特错误率有关。例如,存储器管理电路502(或错误检查与校正电路508)可对第二数据执行一个奇偶检查(parity check)操作以获得第二数据的校验子数值。存储器管理电路502可根据此校验子数值是否小于一个预设值,决定第二数据是否符合第二条件。例如,若此校验子数值小于此预设值,存储器管理电路502可判定第二数据符合第二条件。若此校验子数值不小于此预设值,存储器管理电路502可判定第二数据不符合第二条件。In an exemplary embodiment, the memory management circuit 502 can obtain the syndrome value of the second data. The syndrome value is related to the bit error rate of the second data. For example, memory management circuit 502 (or error checking and correction circuit 508) may perform a parity check operation on the second data to obtain a syndrome value for the second data. The memory management circuit 502 can determine whether the second data meets the second condition according to whether the syndrome value is less than a predetermined value. For example, if the syndrome value is smaller than the predetermined value, the memory management circuit 502 may determine that the second data meets the second condition. If the syndrome value is not less than the predetermined value, the memory management circuit 502 may determine that the second data does not meet the second condition.

图12是根据本发明的一范例实施例所示出的奇偶检查操作的示意图。请参照图12,在一范例实施例中,假设第二数据包含码字1202。码字1202中包含多个比特V0~V8。存储器管理电路502(或错误检查与校正电路508)可将矩阵(亦称为奇偶检查矩阵,标记为H)1201乘上码字1202以获得校验子向量1203。校验子向量1203中包含多个校验子S0~S7。若码字1202中没有错误比特,则校验子S0~S7应皆为比特“0”。校验子S0~S7中的比特“1”越多(或校验子S0~S7中的比特“0”越少),表示码字1202中的错误比特可能越多。FIG. 12 is a schematic diagram illustrating a parity check operation according to an exemplary embodiment of the present invention. Referring to FIG. 12 , in an exemplary embodiment, it is assumed that the second data includes a codeword 1202 . The codeword 1202 includes a plurality of bits V 0 to V 8 . Memory management circuit 502 (or error checking and correction circuit 508 ) may multiply codeword 1202 by a matrix (also known as a parity check matrix, denoted H) 1201 to obtain syndrome vector 1203 . The syndrome vector 1203 includes a plurality of syndromes S 0 to S 7 . If there is no error bit in the codeword 1202, the syndromes S 0 to S 7 should all be bits "0". The more bits "1" in the syndromes S 0 -S 7 (or the fewer "0" bits in the syndromes S 0 -S 7 ), the more erroneous bits in the codeword 1202 may be.

在一范例实施例中,存储器管理电路502可根据校验子S0~S7的总和决定第二数据的校验子数值。例如,第二数据的校验子数值可反映校验子S0~S7的总和。例如,第二数据的校验子数值可正相关于校验子S0~S7的总和。若校验子S0~S7中的比特“1”越多(或校验子S0~S7中的比特“0”越少),则第二数据的校验子数值越大。In an exemplary embodiment, the memory management circuit 502 may determine the syndrome value of the second data according to the sum of the syndromes S 0 -S 7 . For example, the syndrome value of the second data may reflect the sum of the syndromes S 0 -S 7 . For example, the syndrome value of the second data may be positively related to the sum of the syndromes S 0 ˜ S 7 . If there are more bits "1" in the syndromes S 0 -S 7 (or fewer "0" bits in the syndromes S 0 -S 7 ), the syndrome value of the second data is larger.

在一范例实施例中,存储器管理电路502可根据第二读取电压电平更新所述特定电压范围的边界,以扩大所述特定电压范围的涵盖范围。在一范例实施例中,存储器管理电路502可根据第二读取电压电平是否位于所述特定电压范围内或者其余第二读取电压电平与所述特定电压范围的相对关系,决定是否更新所述特定电压范围的边界。藉此,可提高后续在硬比特解码模式中,所使用的读取电压电平符合第一条件的机率。In an exemplary embodiment, the memory management circuit 502 can update the boundary of the specific voltage range according to the second read voltage level to expand the coverage of the specific voltage range. In an exemplary embodiment, the memory management circuit 502 can determine whether to update the memory according to whether the second read voltage level is within the specific voltage range or the relative relationship between the remaining second read voltage levels and the specific voltage range. the boundaries of the specified voltage range. In this way, the probability that the read voltage level used in the subsequent hard-bit decoding mode meets the first condition can be improved.

图13是根据本发明的一范例实施例所示出的更新特定电压范围的边界的示意图。请参照图13,假设读取电压电平VR(3)不位于特定电压范围1010内。在使用读取电压电平VR(3)来读取第一实体单元后,存储器管理电路502可将特定电压范围1010的边界从原先对应于读取电压电平VR(1)的边界1010更新至对应于读取电压电平VR(3)的边界1301,从而扩大特定电压范围1010的涵盖范围。FIG. 13 is a schematic diagram of updating the boundary of a specific voltage range according to an exemplary embodiment of the present invention. Referring to FIG. 13 , it is assumed that the read voltage level VR ( 3 ) is not within the specific voltage range 1010 . After reading the first physical cell using the read voltage level VR (3) , the memory management circuit 502 can change the boundary of the specific voltage range 1010 from the boundary 1010 originally corresponding to the read voltage level VR (1) Updated to the boundary 1301 corresponding to the read voltage level VR (3) , thereby expanding the coverage of the specific voltage range 1010.

在一范例实施例中,在判定第二读取电压电平符合第一条件或第二数据符合第二条件后,存储器管理电路502可根据第一读取电压电平与第二读取电压电平等至少部分在硬比特模式解码中使用的多个读取电压电平来划分多个电压区间。然后,存储器管理电路502可根据所划分的多个电压区间决定所述辅助信息。In an exemplary embodiment, after it is determined that the second read voltage level meets the first condition or the second data meets the second condition, the memory management circuit 502 can generate a voltage according to the first read voltage level and the second read voltage level. The plurality of voltage intervals are divided equally among the plurality of read voltage levels used at least in part in hard bit mode decoding. Then, the memory management circuit 502 can determine the auxiliary information according to the divided voltage intervals.

图14是根据本发明的一范例实施例所示出的根据硬比特模式解码中使用的多个读取电压电平来划分多个电压区间的示意图。请参照图14,在一范例实施例中,响应于读取电压电平VR(4)符合第一条件,存储器管理电路502可根据硬比特模式解码中已使用的读取电压电平VR(1)、VR(2)及VR(4)来划分电压区间1401~1404。FIG. 14 is a schematic diagram of dividing a plurality of voltage intervals according to a plurality of read voltage levels used in hard-bit mode decoding according to an exemplary embodiment of the present invention. Referring to FIG. 14 , in an exemplary embodiment, in response to the read voltage level VR (4) meeting the first condition, the memory management circuit 502 may decode the read voltage level VR according to the hard bit pattern used for the read voltage level VR (1) , VR (2) and VR (4) to divide the voltage intervals 1401-1404.

根据读取电压电平VR(1)、VR(2)及VR(4)的读取结果,第一实体单元中各存储单元的临界电压可被识别为属于电压区间1401~1404的其中之一并且被赋予相应的可靠度信息。所述辅助信息可包含此时获得的可靠度信息。以对数相似性比值(LLR)作为可靠度信息的范例,越往左的电压区间所对应的可靠度信息的数值可越小。接着,根据各存储单元所属的电压区间,错误检查与校正电路508可使用相应的可靠度信息(即所述辅助信息)来解码使用读取电压电平VR(4)从此些存储单元读取的数据。According to the read results of the read voltage levels VR (1) , VR (2) and VR (4) , the threshold voltage of each memory cell in the first physical unit can be identified as belonging to the voltage range 1401-1404 One of them is given corresponding reliability information. The auxiliary information may include reliability information obtained at this time. Taking the logarithmic similarity ratio (LLR) as an example of the reliability information, the value of the reliability information corresponding to the voltage interval to the left may be smaller. Then, according to the voltage interval to which each memory cell belongs, the error checking and correction circuit 508 can use the corresponding reliability information (ie, the auxiliary information) to decode the reading from these memory cells using the read voltage level VR (4) . The data.

在一范例实施例中,假设使用读取电压电平VR(1)读取的数据为第三数据、使用读取电压电平VR(2)读取的数据为第一数据,且使用读取电压电平VR(4)读取的数据为第二数据。存储器管理电路502可根据第三数据的校验子数值与第二数据的校验子数值之间的差值以及读取电压电平VR(1)与读取电压电平VR(4)之间的差值来决定电压区间1402所对应的可靠度信息。例如,存储器管理电路502可根据以下方程式(1.1)决定电压区间1402所对应的可靠度信息。In an exemplary embodiment, it is assumed that the data read using the read voltage level VR (1) is the third data, the data read using the read voltage level VR (2) is the first data, and The data read by the read voltage level VR (4) is the second data. The memory management circuit 502 can use the difference between the syndrome value of the third data and the syndrome value of the second data and the read voltage level VR (1) and the read voltage level VR (4) The difference between them determines the reliability information corresponding to the voltage interval 1402 . For example, the memory management circuit 502 can determine the reliability information corresponding to the voltage interval 1402 according to the following equation (1.1).

LLR(1402)=α×(DIF(A)/DIF(B))+β×DIF(A)+γ×DIF(B)+CLLR(1402)=α×(DIF(A)/DIF(B))+β×DIF(A)+γ×DIF(B)+C

其中,DIF(A)对应第三数据的校验子数值与第二数据的校验子数值之间的差值,DIF(B)对应读取电压电平VR(1)与读取电压电平VR(4)之间的差值。α、β、γ及C皆为常数。类似的,存储器管理电路502可根据第二数据的校验子数值与第一数据的校验子数值之间的差值以及读取电压电平VR(4)与读取电压电平VR(2)之间的差值来决定电压区间1403所对应的可靠度信息。例如,在一范例实施例中,电压区间1401~1404所对应的可靠度信息可分别决定为“-1”、“-0.2”、“0.4”及“1”。Wherein, DIF(A) corresponds to the difference between the syndrome value of the third data and the syndrome value of the second data, and DIF(B) corresponds to the read voltage level VR (1) and the read voltage voltage The difference between flat VR (4) . α, β, γ and C are all constants. Similarly, the memory management circuit 502 can use the difference between the syndrome value of the second data and the syndrome value of the first data and the read voltage level VR ( 4) and the read voltage level VR The difference between (2) determines the reliability information corresponding to the voltage interval 1403 . For example, in an exemplary embodiment, the reliability information corresponding to the voltage intervals 1401 - 1404 may be determined as "-1", "-0.2", "0.4" and "1", respectively.

图15是根据本发明的一范例实施例所示出的根据硬比特模式解码中使用的多个读取电压电平来划分多个电压区间的示意图。请参照图15,接续于图14的范例实施例,若对于使用读取电压电平VR(4)读取的数据的解码仍然失败,则读取电压电平VR(5)可接续用于读取第一实体单元。FIG. 15 is a schematic diagram of dividing a plurality of voltage intervals according to a plurality of read voltage levels used in hard-bit mode decoding according to an exemplary embodiment of the present invention. Referring to FIG. 15, following the exemplary embodiment of FIG. 14, if the decoding of the data read using the read voltage level VR (4) still fails, the read voltage level VR (5) can be used continuously for reading the first physical unit.

在一范例实施例中,响应于读取电压电平VR(5)符合第一条件,存储器管理电路502可根据硬比特模式解码中已使用的读取电压电平VR(1)、VR(2)、VR(4)及VR(5)来划分电压区间1501~1505。In an exemplary embodiment, in response to the read voltage level VR (5) meeting the first condition, the memory management circuit 502 may decode the read voltage levels VR (1) , V R(2) , VR (4) and VR (5) are divided into voltage intervals 1501-1505.

根据读取电压电平VR(1)、VR(2)、VR(4)及VR(5)的读取结果,第一实体单元中各存储单元的临界电压可被识别为属于电压区间1501~1505的其中之一并且被赋予相应的可靠度信息。所述辅助信息可包含此时获得的可靠度信息。接着,根据各存储单元所属的电压区间,错误检查与校正电路508可使用相应的可靠度信息(即所述辅助信息)来解码使用读取电压电平VR(5)从此些存储单元读取的数据。According to the read results of the read voltage levels VR (1) , VR (2) , VR (4) and VR (5) , the threshold voltages of the memory cells in the first physical unit can be identified as belonging to One of the voltage intervals 1501 to 1505 is assigned corresponding reliability information. The auxiliary information may include reliability information obtained at this time. Then, according to the voltage interval to which each memory cell belongs, the error checking and correction circuit 508 can use the corresponding reliability information (ie, the auxiliary information) to decode the reading from these memory cells using the read voltage level VR (5) . The data.

在一范例实施例中,存储器管理电路502可以同时考虑第二读取电压电平符合第一条件以及第二数据符合第二条件来决定是否使用辅助信息解码第二数据。在一范例实施例中,存储器管理电路502亦可以只根据第二读取电压电平是否符合第一条件或者只根据第二数据是否符合第二条件来决定是否使用辅助信息解码第二数据,视实务需求而定。In an exemplary embodiment, the memory management circuit 502 may simultaneously consider whether the second read voltage level meets the first condition and the second data meets the second condition to determine whether to use the auxiliary information to decode the second data. In an exemplary embodiment, the memory management circuit 502 may also determine whether to use the auxiliary information to decode the second data only according to whether the second read voltage level meets the first condition or only according to whether the second data meets the second condition. Depends on practical needs.

在前述范例实施例中,是以单一个读取电压电平的数据读取作为范例进行说明。然而,在以下范例实施例中,则是以多个读取电压电平的数据读取作为范例进行说明。In the foregoing exemplary embodiments, the data reading of a single reading voltage level is used as an example for description. However, in the following exemplary embodiments, data reading with multiple read voltage levels is used as an example for description.

图16是根据本发明的一范例实施例所示出的临界电压分布与硬比特解码模式中使用的读取电压电平的示意图。请参照图16,假设第一实体单元中经程序化的存储单元的临界电压分布包含状态1601~1604。状态1601与1602相邻,且状态1603与1604相邻。在硬比特解码模式中,读取电压电平VR(1)与VR(1)’、读取电压电平VR(2)与VR(2)’或读取电压电平VR(3)与VR(3)’可被同时施予至第一实体单元以读取相应的数据。例如,读取电压电平VR(1)与VR(1)’、读取电压电平VR(2)与VR(2)’或读取电压电平VR(3)与VR(3)’可对应图7中任两个可被同时施加的读取电压电平(例如读取电压电平V1与V2)。FIG. 16 is a schematic diagram illustrating threshold voltage distributions and read voltage levels used in a hard-bit decoding mode according to an exemplary embodiment of the present invention. Referring to FIG. 16, it is assumed that the threshold voltage distribution of the programmed memory cells in the first physical unit includes states 1601-1604. State 1601 is adjacent to 1602, and state 1603 is adjacent to 1604. In hard-bit decoding mode, read voltage levels VR (1) and VR (1) ', read voltage levels VR (2) and VR (2) ', or read voltage levels VR (3) and VR (3) ' can be simultaneously applied to the first physical unit to read the corresponding data. For example, read voltage levels VR (1) and VR (1) ', read voltage levels VR (2) and VR (2) ', or read voltage levels VR (3) and V R(3) ' may correspond to any two read voltage levels in FIG. 7 that can be applied simultaneously (eg, read voltage levels V1 and V2).

在一范例实施例中,存储器管理电路502可发送一读取指令序列,其指示使用读取电压电平VR(1)与VR(1)’读取第一实体单元以获得反映读取电压电平VR(1)与VR(1)’的读取结果的数据。错误检查与校正电路508可解码此数据。假设此数据的解码失败,存储器管理电路502可发送一读取指令序列,其指示使用读取电压电平VR(2)与VR(2)’读取第一实体单元以获得反映读取电压电平VR(2)与VR(2)’的读取结果的数据。错误检查与校正电路508可解码此数据。假设此数据的解码失败,存储器管理电路502可发送一读取指令序列,其指示使用读取电压电平VR(3)与VR(3)’读取第一实体单元以获得反映读取电压电平VR(3)与VR(3)’的读取结果的数据。In an example embodiment, the memory management circuit 502 may send a read command sequence that instructs the first physical unit to be read using the read voltage levels VR (1) and VR (1) ' to obtain a reflective read Data of read results of voltage levels VR (1) and VR (1) '. Error checking and correction circuitry 508 can decode this data. Assuming the decoding of this data fails, the memory management circuit 502 may send a read command sequence that instructs the first physical unit to be read using the read voltage levels VR (2) and VR (2) ' to obtain a reflective read Data of read results of voltage levels VR (2) and VR (2) '. Error checking and correction circuitry 508 can decode this data. Assuming that the decoding of this data fails, the memory management circuit 502 may send a read command sequence that instructs the first physical unit to be read using read voltage levels VR (3) and VR (3) ' to obtain a reflective read Data of read results of voltage levels VR (3) and VR (3) '.

图17是根据本发明的一范例实施例所示出的特定电压范围与多个读取电压电平的示意图。请参照图16与图17,在一范例实施例中,存储器管理电路502可根据读取电压电平VR(1)与VR(2)决定特定电压范围1710并根据读取电压电平VR(1)’与VR(2)’决定特定电压范围1720。FIG. 17 is a schematic diagram illustrating a specific voltage range and a plurality of read voltage levels according to an exemplary embodiment of the present invention. 16 and FIG. 17 , in an exemplary embodiment, the memory management circuit 502 can determine the specific voltage range 1710 according to the read voltage levels VR (1) and VR (2) and according to the read voltage level V R(1) ' and VR (2) ' determine the specific voltage range 1720.

如图17所示,读取电压电平VR(3)与VR(3)’未位于特定电压范围1710与1720中,故存储器管理电路502可判定读取电压电平VR(3)与VR(3)’不符合第一条件。响应于读取电压电平VR(3)与VR(3)’不符合第一条件,在解码反映读取电压电平VR(3)与VR(3)’的读取结果的数据时,错误检查与校正电路508将不使用辅助信息。As shown in FIG. 17, the read voltage levels VR (3) and VR (3) ' are not within the specific voltage ranges 1710 and 1720, so the memory management circuit 502 can determine the read voltage level VR (3) and VR (3) ' does not meet the first condition. In response to the read voltage levels VR (3) and VR (3) ' not meeting the first condition, in decoding the read results reflecting the read voltage levels VR (3) and VR (3) ' data, the error checking and correction circuit 508 will not use auxiliary information.

另一方面,存储器管理电路502可根据读取电压电平VR(3)与VR(3)’与特定电压范围1710与1720之间的相对关系,决定是否更新特定电压范围1710与1720的边界。在一范例实施例中,存储器管理电路502可根据读取电压电平VR(3)与VR(3)’是否分别在特定电压范围1710与1720内,决定是否更新特定电压范围1710与1720的边界。相关操作可参照图13的范例实施例,在此不重复赘述。On the other hand, the memory management circuit 502 can determine whether to update the specific voltage ranges 1710 and 1720 according to the relative relationship between the read voltage levels VR (3) and VR (3) ′ and the specific voltage ranges 1710 and 1720 boundary. In an exemplary embodiment, the memory management circuit 502 may determine whether to update the specific voltage ranges 1710 and 1720 according to whether the read voltage levels VR (3) and VR (3)' are within the specific voltage ranges 1710 and 1720, respectively. border. For related operations, reference may be made to the exemplary embodiment in FIG. 13 , and details are not repeated here.

在一范例实施例中,存储器管理电路502可获得读取电压电平VR(1)与VR(2)之间的差值D(1)与读取电压电平VR(1)’与VR(2)’之间的差值D(1)’。存储器管理电路502可获得读取电压电平VR(1)与VR(3)之间的差值D(2)与读取电压电平VR(1)’与VR(3)’之间的差值D(2)’。存储器管理电路502可判断差值D(2)与D(2)’的总和是否大于差值D(1)与D(1)’的总和。若差值D(2)与D(2)’的总和大于差值D(1)与D(1)’的总和,存储器管理电路502可根据读取电压电平VR(3)更新特定电压范围1710的边界1712并根据读取电压电平VR(3)’更新特定电压范围1720的边界1722。In an exemplary embodiment, the memory management circuit 502 can obtain the difference D(1) between the read voltage levels VR (1) and VR (2) and the read voltage level VR (1) ' Difference D(1)' from VR (2) '. The memory management circuit 502 can obtain the difference D(2) between the read voltage levels VR(1 ) and VR (3 ) and the read voltage levels VR (1) ' and VR (3) ' The difference between D(2)'. The memory management circuit 502 can determine whether the sum of the differences D(2) and D(2)' is greater than the sum of the differences D(1) and D(1)'. If the sum of the differences D(2) and D(2)' is greater than the sum of the differences D(1) and D(1)', the memory management circuit 502 can update the specific voltage according to the read voltage level VR (3) The boundary 1712 of the range 1710 and the boundary 1722 of the particular voltage range 1720 are updated according to the read voltage level VR (3) '.

存储器管理电路502可获得读取电压电平VR(2)与VR(3)之间的差值D(3)与读取电压电平VR(2)’与VR(3)’之间的差值D(3)’。存储器管理电路502可判断差值D(3)与D(3)’的总和是否大于差值D(1)与D(1)’的总和。若差值D(3)与D(3)’的总和大于差值D(1)与D(1)’的总和,存储器管理电路502可根据读取电压电平VR(3)更新特定电压范围1710的边界1711并根据读取电压电平VR(3)’更新特定电压范围1720的边界1721。The memory management circuit 502 can obtain the difference D(3 ) between the read voltage levels VR (2) and VR(3) and the read voltage levels VR (2) ' and VR (3) ' The difference between D(3)'. The memory management circuit 502 can determine whether the sum of the differences D(3) and D(3)' is greater than the sum of the differences D(1) and D(1)'. If the sum of the differences D(3) and D(3)' is greater than the sum of the differences D(1) and D(1)', the memory management circuit 502 can update the specific voltage according to the read voltage level VR (3) The boundary 1711 of the range 1710 and the boundary 1721 of the particular voltage range 1720 are updated according to the read voltage level VR (3) '.

如图17所示,差值D(2)与D(2)’的总和未大于差值D(1)与D(1)’的总和且差值D(3)与D(3)’的总和大于差值D(1)与D(1)’的总和,故存储器管理电路502可根据读取电压电平VR(3)更新特定电压范围1710的边界1711并根据读取电压电平VR(3)’更新特定电压范围1720的边界1721。例如,存储器管理电路502可将特定电压范围1710的左边界从对应于读取电压电平VR(1)的边界1711更新至对应于边界读取电压电平VR(3)的边界1713,以扩大特定电压范围1710的涵盖范围。同时,存储器管理电路502可将特定电压范围1720的左边界从对应于读取电压电平VR(1)’的边界1721更新至对应于边界读取电压电平VR(3)’的边界1723,以扩大特定电压范围1710的涵盖范围。As shown in Figure 17, the sum of the differences D(2) and D(2)' is not greater than the sum of the differences D(1) and D(1)' and the sum of the differences D(3) and D(3)' The sum is greater than the sum of the differences D(1) and D(1)', so the memory management circuit 502 can update the boundary 1711 of the specific voltage range 1710 according to the read voltage level VR(3) and according to the read voltage level V R(3) R(3) ' updates the boundary 1721 of the specific voltage range 1720. For example, the memory management circuit 502 may update the left boundary of the particular voltage range 1710 from the boundary 1711 corresponding to the read voltage level VR( 1 ) to the boundary 1713 corresponding to the boundary read voltage level VR (3) , to expand the coverage of the specific voltage range 1710. At the same time, the memory management circuit 502 may update the left boundary of the particular voltage range 1720 from the boundary 1721 corresponding to the read voltage level VR (1) ' to the boundary corresponding to the boundary read voltage level VR (3) ' 1723 to expand the coverage of a specific voltage range 1710.

图18是根据本发明的一范例实施例所示出的临界电压分布与硬比特解码模式中使用的读取电压电平的示意图。图19是根据本发明的一范例实施例所示出的特定电压范围与多个读取电压电平的示意图。请参照图18与图19,相较于图16与图17的范例实施例,图18与图19的范例实施例是以读取电压电平VR(4)与读取电压电平VR(4)’来分别取代读取电压电平VR(3)与读取电压电平VR(3)’。例如,读取电压电平VR(4)与VR(4)’可对应图7中任两个可被同时施加的读取电压电平(例如读取电压电平V1与V2)。FIG. 18 is a schematic diagram illustrating threshold voltage distributions and read voltage levels used in a hard-bit decoding mode according to an exemplary embodiment of the present invention. FIG. 19 is a schematic diagram illustrating a specific voltage range and a plurality of read voltage levels according to an exemplary embodiment of the present invention. Please refer to FIGS. 18 and 19. Compared with the exemplary embodiments of FIGS. 16 and 17, the exemplary embodiments of FIGS. 18 and 19 are based on the read voltage level VR (4) and the read voltage level VR . (4) ' to replace the read voltage level VR (3) and the read voltage level VR (3) ', respectively. For example, the read voltage levels VR (4) and VR (4) ' may correspond to any two read voltage levels (eg, read voltage levels V1 and V2) in FIG. 7 that can be applied simultaneously.

如图19所示,读取电压电平VR(4)与VR(4)’位于特定电压范围1910与1920中,故存储器管理电路502可判定读取电压电平VR(4)与VR(4)’符合第一条件。响应于读取电压电平VR(4)与VR(4)’符合第一条件,错误检查与校正电路508可使用辅助信息来解码反映读取电压电平VR(3)与VR(3)’的读取结果的数据。关于如何使用辅助信息来执行硬比特模式解码中的解码操作已详述于上,在此不重复赘述。As shown in FIG. 19, the read voltage levels VR (4) and VR (4) ' are located in the specific voltage ranges 1910 and 1920, so the memory management circuit 502 can determine the read voltage levels VR (4) and VR(4)' VR (4) ' meets the first condition. In response to the read voltage levels VR (4) and VR (4) ' meeting the first condition, the error check and correction circuit 508 may use the auxiliary information to decode the read voltage levels VR ( 3) and VR (3) 'The data of the read result. How to use the auxiliary information to perform the decoding operation in the hard-bit mode decoding has been described in detail above, and will not be repeated here.

另一方面,存储器管理电路502可根据读取电压电平VR(4)与VR(4)’与特定电压范围1910与1920之间的相对关系,决定是否更新特定电压范围1910与1920的边界。在一范例实施例中,存储器管理电路502可根据读取电压电平VR(4)与VR(4)’是否分别在特定电压范围1910与1920内,决定是否更新特定电压范围1910与1920的边界。相关操作可参照图13的范例实施例,在此不重复赘述。On the other hand, the memory management circuit 502 can determine whether to update the specific voltage ranges 1910 and 1920 according to the relative relationship between the read voltage levels VR (4) and VR (4) ′ and the specific voltage ranges 1910 and 1920 boundary. In an exemplary embodiment, the memory management circuit 502 may determine whether to update the specific voltage ranges 1910 and 1920 according to whether the read voltage levels VR (4) and VR (4) ' are within the specific voltage ranges 1910 and 1920, respectively. border. For related operations, reference may be made to the exemplary embodiment in FIG. 13 , and details are not repeated here.

在一范例实施例中,存储器管理电路502可获得读取电压电平VR(1)与VR(4)之间的差值D(4)与读取电压电平VR(1)’与VR(4)’之间的差值D(4)’。存储器管理电路502可判断差值D(4)与D(4)’的总和是否大于差值D(1)与D(1)’的总和。若差值D(4)与D(4)’的总和大于差值D(1)与D(1)’的总和,存储器管理电路502可根据读取电压电平VR(4)更新特定电压范围1910的边界1912并根据读取电压电平VR(4)’更新特定电压范围1920的边界1922。In an example embodiment, the memory management circuit 502 can obtain the difference D(4 ) between the read voltage levels VR (1) and VR(4) and the read voltage level VR (1) ' Difference D(4)' from VR ( 4)'. The memory management circuit 502 can determine whether the sum of the differences D(4) and D(4)' is greater than the sum of the differences D(1) and D(1)'. If the sum of the differences D(4) and D(4)' is greater than the sum of the differences D(1) and D(1)', the memory management circuit 502 can update the specific voltage according to the read voltage level VR (4) The boundary 1912 of the range 1910 and the boundary 1922 of the particular voltage range 1920 are updated according to the read voltage level VR (4) '.

存储器管理电路502可获得读取电压电平VR(2)与VR(4)之间的差值D(5)与读取电压电平VR(2)’与VR(4)’之间的差值D(5)’。存储器管理电路502可判断差值D(5)与D(5)’的总和是否大于差值D(1)与D(1)’的总和。若差值D(5)与D(5)’的总和大于差值D(1)与D(1)’的总和,存储器管理电路502可根据读取电压电平VR(4)更新特定电压范围1910的边界1911并根据读取电压电平VR(4)’更新特定电压范围1920的边界1921。The memory management circuit 502 can obtain the difference D(5) between the read voltage levels VR(2 ) and VR (4 ) and the read voltage levels VR (2) ' and VR (4) ' The difference between D(5)'. The memory management circuit 502 can determine whether the sum of the differences D(5) and D(5)' is greater than the sum of the differences D(1) and D(1)'. If the sum of the differences D(5) and D(5)' is greater than the sum of the differences D(1) and D(1)', the memory management circuit 502 can update the specific voltage according to the read voltage level VR (4) The boundary 1911 of the range 1910 and the boundary 1921 of the particular voltage range 1920 are updated according to the read voltage level VR (4) '.

如图19所示,差值D(4)与D(4)’的总和未大于差值D(1)与D(1)’的总和且差值D(5)与D(5)’的总和也未大于差值D(1)与D(1)’的总和,故存储器管理电路502可不更新特定电压范围1910与1920,以避免缩小特定电压范围1910与1920的涵盖范围。As shown in Figure 19, the sum of the differences D(4) and D(4)' is not greater than the sum of the differences D(1) and D(1)' and the sum of the differences D(5) and D(5)' The sum is not greater than the sum of the differences D( 1 ) and D( 1 )′, so the memory management circuit 502 may not update the specific voltage ranges 1910 and 1920 to avoid narrowing the coverage of the specific voltage ranges 1910 and 1920 .

图20是根据本发明的一范例实施例所示出的存储器控制方法的流程图。请参照图20,在步骤S2001,发送第一读取指令序列,其指示使用第一读取电压电平读取第一实体单元以获得第一数据。在步骤S2002,解码第一数据。在步骤S2003,判断第一数据的解码是否成功。若第一数据的解码成功,在步骤S2004,输出解码成功的第一数据。若第一数据的解码失败,在步骤S2005,发送第二读取指令序列,其指示使用第二读取电压电平读取第一实体单元以获得第二数据。第二读取电压电平不同于第一读取电压电平。FIG. 20 is a flowchart of a memory control method according to an exemplary embodiment of the present invention. Referring to FIG. 20, in step S2001, a first read command sequence is sent, which instructs to read the first physical unit using the first read voltage level to obtain the first data. In step S2002, the first data is decoded. In step S2003, it is determined whether the decoding of the first data is successful. If the decoding of the first data is successful, in step S2004, output the successfully decoded first data. If the decoding of the first data fails, in step S2005, a second read command sequence is sent, which instructs to use the second read voltage level to read the first physical unit to obtain the second data. The second read voltage level is different from the first read voltage level.

在步骤S2006,判断第二读取电压电平是否符合第一条件或所述第二数据是否符合第二条件。若第二读取电压电平符合第一条件或第二数据符合第二条件,在步骤S2007,使用辅助信息解码第二数据。所述辅助信息用以提高第二数据的解码成功率。若第二读取电压电平不符合第一条件且第二数据不符合所述第二条件,在步骤S2008,不使用所述辅助信息而解码第二数据。In step S2006, it is determined whether the second read voltage level meets the first condition or whether the second data meets the second condition. If the second read voltage level meets the first condition or the second data meets the second condition, in step S2007, the auxiliary information is used to decode the second data. The auxiliary information is used to improve the decoding success rate of the second data. If the second read voltage level does not meet the first condition and the second data does not meet the second condition, in step S2008, the second data is decoded without using the auxiliary information.

图21是根据本发明的一范例实施例所示出的存储器控制方法的流程图。请参照图21,在步骤S2101,启动硬比特模式解码(亦称为硬解码模式)。在步骤S2102,发送读取指令序列,其指示读取第一实体单元以获得数据。此数据可反映所使用的读取电压对于第一实体单元的读取结果。在步骤S2103,判断一个预设条件是否符合或被满足。例如,此预设条件可包括所使用的读取电压是否符合第一条件和/或所读取的数据是否符合第二条件。若所使用的读取电压符合第一条件和/或所读取的数据符合第二条件,可判定此预设条件被符合或满足。若所使用的读取电压不符合第一条件且所读取的数据不符合第二条件,可判定此预设条件不符合或不满足。FIG. 21 is a flowchart of a memory control method according to an exemplary embodiment of the present invention. Referring to FIG. 21, in step S2101, hard bit mode decoding (also referred to as hard decoding mode) is started. In step S2102, a read instruction sequence is sent, which instructs to read the first physical unit to obtain data. This data can reflect the read result of the used read voltage for the first physical unit. In step S2103, it is judged whether a preset condition is met or satisfied. For example, the preset condition may include whether the used read voltage meets the first condition and/or whether the read data meets the second condition. If the used read voltage meets the first condition and/or the read data meets the second condition, it can be determined that the preset condition is met or satisfied. If the used read voltage does not meet the first condition and the read data does not meet the second condition, it can be determined that the preset condition is not met or not met.

若此预设条件符合或被满足,在步骤S2104,使用辅助信息解码所读取的数据。所述辅助信息用以提高数据的解码成功率。若此预设条件未符合或未被满足,在步骤S2105,不使用所述辅助信息而解码所读取的数据。在步骤S2106,判断是否解码成功。若解码成功,在步骤S2107,输出解码成功的数据。若解码不成功,在步骤S2108,判断执行解码的次数是否超过一重试临界值。若执行解码的次数未超过此重试临界值,在步骤S2109,调整下一次使用的读取电压电平并回到步骤S2102,使用调整过的读取电压电平再次读取第一实体单元。若执行解码的次数超过此重试临界值,在步骤S2110,离开硬解码模式并启动软比特模式解码(亦称为软比特模式)。If the preset condition is met or satisfied, in step S2104, the read data is decoded using the auxiliary information. The auxiliary information is used to improve the decoding success rate of the data. If the preset condition is not met or not met, in step S2105, the read data is decoded without using the auxiliary information. In step S2106, it is determined whether the decoding is successful. If the decoding is successful, in step S2107, output the successfully decoded data. If the decoding is unsuccessful, in step S2108, it is determined whether the number of times the decoding is performed exceeds a retry threshold. If the number of decoding executions does not exceed the retry threshold, in step S2109, adjust the read voltage level used next time and return to step S2102 to read the first physical unit again using the adjusted read voltage level. If the number of times to perform decoding exceeds the retry threshold, in step S2110, the hard decoding mode is exited and soft-bit mode decoding (also referred to as soft-bit mode) is started.

然而,图20与图21中各步骤已详细说明如上,在此便不再赘述。值得注意的是,图20与图21中各步骤可以实作为多个程序码或是电路,本发明不加以限制。此外,图20与图21的方法可以搭配以上范例实施例使用,也可以单独使用,本发明不加以限制。However, each step in FIG. 20 and FIG. 21 has been described in detail as above, and will not be repeated here. It should be noted that each step in FIG. 20 and FIG. 21 can be implemented as multiple program codes or circuits, which is not limited by the present invention. In addition, the methods of FIG. 20 and FIG. 21 can be used in conjunction with the above exemplary embodiments, and can also be used alone, which is not limited in the present invention.

综上所述,在硬比特模式解码中,在至少一次读取第一实体单元且经历至少一次解码失败后,可提高数据的解码成功率的辅助信息只在满足特定条件时被使用,而非在每一次的重读与解码中无条件使用。藉此,可在尝试提高数据在硬比特模式解码中的解码成功率的前提下,避免因过度使用或调整辅助信息而反而降低解码成功率。To sum up, in hard-bit mode decoding, after reading the first entity unit at least once and experiencing at least one decoding failure, the auxiliary information that can improve the decoding success rate of the data is only used when certain conditions are met, not Unconditionally used in every reread and decode. In this way, under the premise of trying to improve the decoding success rate of data in hard-bit mode decoding, it is possible to avoid reducing the decoding success rate due to excessive use or adjustment of auxiliary information.

虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中技术人员,在不脱离本发明的精神和范围内,当可作些许的更改与润饰,故本发明的保护范围当视权利要求所界定的为准。Although the present invention has been disclosed above with examples, it is not intended to limit the present invention. Any person skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be subject to what is defined in the claims.

Claims (21)

1.一种存储器控制方法,其特征在于,用于可复写式非易失性存储器模块,其中所述可复写式非易失性存储器模块包括多个实体单元,所述存储器控制方法包括:1. A memory control method, characterized in that it is used in a rewritable non-volatile memory module, wherein the rewritable non-volatile memory module comprises a plurality of physical units, and the memory control method comprises: 发送第一读取指令序列,其指示使用第一读取电压电平读取所述多个实体单元中的第一实体单元以获得第一数据;sending a first read command sequence, which instructs to read a first physical unit of the plurality of physical units using a first read voltage level to obtain first data; 解码所述第一数据;decoding the first data; 若所述第一数据的解码失败,发送第二读取指令序列,其指示使用第二读取电压电平读取所述第一实体单元以获得第二数据,其中所述第二读取电压电平不同于所述第一读取电压电平;If the decoding of the first data fails, a second read command sequence is sent, which instructs the first physical unit to be read using a second read voltage level to obtain second data, wherein the second read voltage a level different from the first read voltage level; 若所述第二读取电压电平符合第一条件或所述第二数据符合第二条件,使用辅助信息解码所述第二数据,其中所述辅助信息用以提高所述第二数据的解码成功率;以及If the second read voltage level meets the first condition or the second data meets the second condition, the second data is decoded using auxiliary information, wherein the auxiliary information is used to improve decoding of the second data success rate; and 若所述第二读取电压电平不符合所述第一条件且所述第二数据不符合所述第二条件,不使用所述辅助信息而解码所述第二数据。If the second read voltage level does not meet the first condition and the second data does not meet the second condition, the second data is decoded without using the auxiliary information. 2.根据权利要求1所述的存储器控制方法,还包括:2. The memory control method according to claim 1, further comprising: 根据所述第二读取电压电平是否位于特定电压范围内,决定所述第二读取电压电平是否符合所述第一条件。Whether the second read voltage level meets the first condition is determined according to whether the second read voltage level is within a specific voltage range. 3.根据权利要求1所述的存储器控制方法,还包括:3. The memory control method according to claim 1, further comprising: 获得所述第二数据的校验子数值,其中所述校验子数值与所述第二数据的比特错误率有关;以及obtaining a syndrome value for the second data, wherein the syndrome value is related to a bit error rate of the second data; and 根据所述校验子数值是否小于预设值,决定所述第二数据是否符合所述第二条件。Whether the second data meets the second condition is determined according to whether the syndrome value is less than a preset value. 4.根据权利要求1所述的存储器控制方法,还包括:4. The memory control method of claim 1, further comprising: 在发送所述第一读取指令序列之前,发送第三读取指令序列,其指示使用第三读取电压电平读取所述第一实体单元以获得第三数据;before sending the first read command sequence, sending a third read command sequence, which instructs to read the first physical unit using a third read voltage level to obtain third data; 解码所述第三数据;以及decoding the third data; and 根据所述第一读取电压电平与所述第三读取电压电平决定特定电压范围,其中所述第一读取电压电平与所述第三读取电压电平的其中之一用以界定所述特定电压范围的上边界,且所述第一读取电压电平与所述第三读取电压电平的其中之另一用以界定所述特定电压范围的下边界。A specific voltage range is determined according to the first read voltage level and the third read voltage level, wherein one of the first read voltage level and the third read voltage level is used for to define the upper boundary of the specific voltage range, and the other one of the first read voltage level and the third read voltage level is used to define the lower boundary of the specific voltage range. 5.根据权利要求4所述的存储器控制方法,还包括:5. The memory control method of claim 4, further comprising: 根据所述第二读取电压电平更新所述特定电压范围的边界。The boundaries of the specific voltage range are updated according to the second read voltage level. 6.根据权利要求5所述的存储器控制方法,其中根据所述第二读取电压电平更新所述特定电压范围的所述边界值的步骤包括:6. The memory control method of claim 5, wherein the step of updating the boundary value of the specific voltage range according to the second read voltage level comprises: 根据所述第二读取电压电平与所述特定电压范围的相对关系决定是否更新所述特定电压范围的所述边界。Whether to update the boundary of the specific voltage range is determined according to the relative relationship between the second read voltage level and the specific voltage range. 7.根据权利要求1所述的存储器控制方法,还包括:7. The memory control method of claim 1, further comprising: 若所述第二读取电压电平符合所述第一条件或所述第二数据符合所述第二条件,根据所述第一读取电压电平与所述第二读取电压电平划分多个电压区间;以及If the second read voltage level meets the first condition or the second data meets the second condition, the division is performed according to the first read voltage level and the second read voltage level multiple voltage ranges; and 根据所划分的所述多个电压区间决定所述辅助信息。The auxiliary information is determined according to the divided voltage intervals. 8.一种存储器存储装置,其特征在于,包括:8. A memory storage device, comprising: 连接接口单元,用以连接至主机系统;a connection interface unit for connecting to a host system; 可复写式非易失性存储器模块,其中所述可复写式非易失性存储器模块包括多个实体单元;以及a rewritable non-volatile memory module, wherein the rewritable non-volatile memory module includes a plurality of physical units; and 存储器控制电路单元,连接至所述连接接口单元与所述可复写式非易失性存储器模块,a memory control circuit unit connected to the connection interface unit and the rewritable nonvolatile memory module, 其中所述存储器控制电路单元用以发送第一读取指令序列,其指示使用第一读取电压电平读取所述多个实体单元中的第一实体单元以获得第一数据,wherein the memory control circuit unit is configured to send a first read command sequence, which instructs to use a first read voltage level to read a first physical unit of the plurality of physical units to obtain the first data, 所述存储器控制电路单元还用以解码所述第一数据,The memory control circuit unit is further used for decoding the first data, 若所述第一数据的解码失败,所述存储器控制电路单元还用以发送第二读取指令序列,其指示使用第二读取电压电平读取所述第一实体单元以获得第二数据,其中所述第二读取电压电平不同于所述第一读取电压电平,If the decoding of the first data fails, the memory control circuit unit is further configured to send a second read command sequence, which instructs to use the second read voltage level to read the first physical unit to obtain the second data , wherein the second read voltage level is different from the first read voltage level, 若所述第二读取电压电平符合第一条件或所述第二数据符合第二条件,所述存储器控制电路单元还用以使用辅助信息解码所述第二数据,其中所述辅助信息用以提高所述第二数据的解码成功率,并且If the second read voltage level meets the first condition or the second data meets the second condition, the memory control circuit unit is further configured to decode the second data using auxiliary information, wherein the auxiliary information is to improve the decoding success rate of the second data, and 若所述第二读取电压电平不符合所述第一条件且所述第二数据不符合所述第二条件,所述存储器控制电路单元还用以不使用所述辅助信息而解码所述第二数据。If the second read voltage level does not meet the first condition and the second data does not meet the second condition, the memory control circuit unit is further configured to decode the auxiliary information without using the auxiliary information Second data. 9.根据权利要求8所述的存储器存储装置,其中所述存储器控制电路单元还用以根据所述第二读取电压电平是否位于特定电压范围内,决定所述第二读取电压电平是否符合所述第一条件。9. The memory storage device of claim 8, wherein the memory control circuit unit is further configured to determine the second read voltage level according to whether the second read voltage level is within a specific voltage range whether the first condition is met. 10.根据权利要求8所述的存储器存储装置,其中所述存储器控制电路单元还用以获得所述第二数据的校验子数值,所述校验子数值与所述第二数据的比特错误率有关,并且10. The memory storage device according to claim 8, wherein the memory control circuit unit is further configured to obtain a syndrome value of the second data, the syndrome value and the bit error of the second data rate related, and 所述存储器控制电路单元还用以根据所述校验子数值是否小于预设值,决定所述第二数据是否符合所述第二条件。The memory control circuit unit is further configured to determine whether the second data meets the second condition according to whether the syndrome value is less than a preset value. 11.根据权利要求8所述的存储器存储装置,其中在发送所述第一读取指令序列之前,所述存储器控制电路单元还用以发送第三读取指令序列,其指示使用第三读取电压电平读取所述第一实体单元以获得第三数据,11. The memory storage device of claim 8, wherein prior to sending the first sequence of read instructions, the memory control circuit unit is further configured to send a third sequence of read instructions indicating use of a third read instruction the voltage level reads the first physical unit to obtain third data, 所述存储器控制电路单元还用以解码所述第三数据,并且the memory control circuit unit is further used to decode the third data, and 所述存储器控制电路单元还用以根据所述第一读取电压电平与所述第三读取电压电平决定特定电压范围,其中所述第一读取电压电平与所述第三读取电压电平的其中之一用以界定所述特定电压范围的上边界,且所述第一读取电压电平与所述第三读取电压电平的其中之另一用以界定所述特定电压范围的下边界。The memory control circuit unit is further configured to determine a specific voltage range according to the first read voltage level and the third read voltage level, wherein the first read voltage level and the third read voltage level One of the voltage levels is taken to define the upper boundary of the specific voltage range, and the other of the first read voltage level and the third read voltage level is used to define the Lower boundary of a specific voltage range. 12.根据权利要求11所述的存储器存储装置,其中所述存储器控制电路单元还用以根据所述第二读取电压电平更新所述特定电压范围的边界。12. The memory storage device of claim 11, wherein the memory control circuit unit is further operative to update the boundary of the specific voltage range according to the second read voltage level. 13.根据权利要求12所述的存储器存储装置,其中所述存储器控制电路单元根据所述第二读取电压电平更新所述特定电压范围的所述边界值的操作包括:13. The memory storage device of claim 12, wherein the operation of the memory control circuit unit to update the boundary value of the specific voltage range according to the second read voltage level comprises: 根据所述第二读取电压电平与所述特定电压范围的相对关系决定是否更新所述特定电压范围的所述边界。Whether to update the boundary of the specific voltage range is determined according to the relative relationship between the second read voltage level and the specific voltage range. 14.根据权利要求8所述的存储器存储装置,其中若所述第二读取电压电平符合所述第一条件或所述第二数据符合所述第二条件,所述存储器控制电路单元还用以根据所述第一读取电压电平与所述第二读取电压电平划分多个电压区间,并且14. The memory storage device of claim 8, wherein if the second read voltage level meets the first condition or the second data meets the second condition, the memory control circuit unit further for dividing a plurality of voltage intervals according to the first read voltage level and the second read voltage level, and 所述存储器控制电路单元还用以根据所划分的所述多个电压区间决定所述辅助信息。The memory control circuit unit is further configured to determine the auxiliary information according to the divided voltage intervals. 15.一种存储器控制电路单元,其特征在于,用以控制存储器存储装置,其中所述存储器存储装置包括可复写式非易失性存储器模块,所述可复写式非易失性存储器模块包括多个实体单元,且所述存储器控制电路单元包括:15. A memory control circuit unit, characterized in that it is used to control a memory storage device, wherein the memory storage device comprises a rewritable non-volatile memory module, and the rewritable non-volatile memory module comprises a plurality of physical units, and the memory control circuit unit includes: 主机接口,用以连接至主机系统;a host interface for connecting to a host system; 存储器接口,用以连接至所述可复写式非易失性存储器模块;a memory interface for connecting to the rewritable non-volatile memory module; 解码电路;以及a decoding circuit; and 存储器管理电路,连接至所述主机接口、所述存储器接口及所述解码电路,a memory management circuit connected to the host interface, the memory interface and the decoding circuit, 其中所述存储器管理电路用以发送第一读取指令序列,其指示使用第一读取电压电平读取所述多个实体单元中的第一实体单元以获得第一数据,wherein the memory management circuit is configured to send a first read command sequence, which instructs to use a first read voltage level to read a first physical unit of the plurality of physical units to obtain the first data, 所述解码电路用以解码所述第一数据,the decoding circuit is used for decoding the first data, 若所述第一数据的解码失败,所述存储器管理电路还用以发送第二读取指令序列,其指示使用第二读取电压电平读取所述第一实体单元以获得第二数据,其中所述第二读取电压电平不同于所述第一读取电压电平,If the decoding of the first data fails, the memory management circuit is further configured to send a second read command sequence, which instructs to use the second read voltage level to read the first physical unit to obtain the second data, wherein the second read voltage level is different from the first read voltage level, 若所述第二读取电压电平符合第一条件或所述第二数据符合第二条件,所述解码电路还用以使用辅助信息解码所述第二数据,其中所述辅助信息用以提高所述第二数据的解码成功率,并且If the second read voltage level meets the first condition or the second data meets the second condition, the decoding circuit is further configured to decode the second data using auxiliary information, wherein the auxiliary information is used to improve the decoding success rate of the second data, and 若所述第二读取电压电平不符合所述第一条件且所述第二数据不符合所述第二条件,所述解码电路还用以不使用所述辅助信息而解码所述第二数据。If the second read voltage level does not meet the first condition and the second data does not meet the second condition, the decoding circuit is further configured to decode the second data without using the auxiliary information data. 16.根据权利要求15所述的存储器控制电路单元,其中所述存储器管理电路还用以根据所述第二读取电压电平是否位于特定电压范围内,决定所述第二读取电压电平是否符合所述第一条件。16. The memory control circuit unit of claim 15, wherein the memory management circuit is further configured to determine the second read voltage level according to whether the second read voltage level is within a specific voltage range whether the first condition is met. 17.根据权利要求15所述的存储器控制电路单元,其中所述存储器管理电路还用以获得所述第二数据的校验子数值,所述校验子数值与所述第二数据的比特错误率有关,并且17. The memory control circuit unit of claim 15, wherein the memory management circuit is further configured to obtain a syndrome value of the second data, the syndrome value and the bit error of the second data rate related, and 所述存储器管理电路还用以根据所述校验子数值是否小于预设值,决定所述第二数据是否符合所述第二条件。The memory management circuit is further configured to determine whether the second data meets the second condition according to whether the syndrome value is less than a preset value. 18.根据权利要求15所述的存储器控制电路单元,其中在发送所述第一读取指令序列之前,所述存储器管理电路还用以发送第三读取指令序列,其指示使用第三读取电压电平读取所述第一实体单元以获得第三数据,18. The memory control circuit unit of claim 15, wherein prior to sending the first read command sequence, the memory management circuit is further configured to send a third read command sequence indicating that a third read command is to be used The voltage level reads the first physical unit to obtain the third data, 所述解码电路还用以解码所述第三数据,并且the decoding circuit is also used to decode the third data, and 所述存储器管理电路还用以根据所述第一读取电压电平与所述第三读取电压电平决定特定电压范围,其中所述第一读取电压电平与所述第三读取电压电平的其中之一用以界定所述特定电压范围的上边界,且所述第一读取电压电平与所述第三读取电压电平的其中之另一用以界定所述特定电压范围的下边界。The memory management circuit is further configured to determine a specific voltage range according to the first read voltage level and the third read voltage level, wherein the first read voltage level and the third read voltage level One of the voltage levels is used to define the upper boundary of the specific voltage range, and the other of the first read voltage level and the third read voltage level is used to define the specific voltage range Lower boundary of the voltage range. 19.根据权利要求18所述的存储器控制电路单元,其中所述存储器管理电路还用以根据所述第二读取电压电平更新所述特定电压范围的边界。19. The memory control circuit unit of claim 18, wherein the memory management circuit is further operative to update the boundary of the specific voltage range according to the second read voltage level. 20.根据权利要求19所述的存储器控制电路单元,其中所述存储器管理电路根据所述第二读取电压电平更新所述特定电压范围的所述边界值的操作包括:20. The memory control circuit unit of claim 19, wherein the operation of the memory management circuit to update the boundary value of the specific voltage range according to the second read voltage level comprises: 根据所述第二读取电压电平与所述特定电压范围的相对关系决定是否更新所述特定电压范围的所述边界。Whether to update the boundary of the specific voltage range is determined according to the relative relationship between the second read voltage level and the specific voltage range. 21.根据权利要求15所述的存储器控制电路单元,其中若所述第二读取电压电平符合所述第一条件或所述第二数据符合所述第二条件,所述存储器管理电路还用以根据所述第一读取电压电平与所述第二读取电压电平划分多个电压区间,并且21. The memory control circuit unit of claim 15, wherein if the second read voltage level meets the first condition or the second data meets the second condition, the memory management circuit further for dividing a plurality of voltage intervals according to the first read voltage level and the second read voltage level, and 所述存储器管理电路还用以根据所划分的所述多个电压区间决定所述辅助信息。The memory management circuit is further configured to determine the auxiliary information according to the divided voltage intervals.
CN202010322828.4A 2020-04-22 2020-04-22 Memory control method, memory storage device, and memory control circuit unit Active CN111538687B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010322828.4A CN111538687B (en) 2020-04-22 2020-04-22 Memory control method, memory storage device, and memory control circuit unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010322828.4A CN111538687B (en) 2020-04-22 2020-04-22 Memory control method, memory storage device, and memory control circuit unit

Publications (2)

Publication Number Publication Date
CN111538687A true CN111538687A (en) 2020-08-14
CN111538687B CN111538687B (en) 2022-01-04

Family

ID=71976960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010322828.4A Active CN111538687B (en) 2020-04-22 2020-04-22 Memory control method, memory storage device, and memory control circuit unit

Country Status (1)

Country Link
CN (1) CN111538687B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113419683A (en) * 2021-07-01 2021-09-21 群联电子股份有限公司 Memory access method, memory storage device and memory control circuit unit
CN114661233A (en) * 2022-03-18 2022-06-24 合肥兆芯电子有限公司 Table sorting method, memory storage device and memory control circuit unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479550A (en) * 2010-11-25 2012-05-30 三星电子株式会社 Method compensation operating voltage, flash memory device, and data storage device
CN106297883A (en) * 2015-06-05 2017-01-04 群联电子股份有限公司 Decoding method, memory storage device and memory control circuit unit
US9928126B1 (en) * 2017-06-01 2018-03-27 Apple Inc. Recovery from cross-temperature read failures by programming neighbor word lines
US20190088336A1 (en) * 2017-09-19 2019-03-21 Phison Electronics Corp. Decoding method, memory controlling circuit unit and memory storage device
US20190304546A1 (en) * 2018-03-30 2019-10-03 Shenzhen Epostar Electronics Limited Co. Decoding method and storage controller
US20190391865A1 (en) * 2018-06-20 2019-12-26 Micron Technology, Inc. Memory sub-system with dynamic calibration using component-based function(s)
CN110797069A (en) * 2018-08-01 2020-02-14 群联电子股份有限公司 Voltage adjusting method, memory control circuit unit and memory storage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479550A (en) * 2010-11-25 2012-05-30 三星电子株式会社 Method compensation operating voltage, flash memory device, and data storage device
CN106297883A (en) * 2015-06-05 2017-01-04 群联电子股份有限公司 Decoding method, memory storage device and memory control circuit unit
US9928126B1 (en) * 2017-06-01 2018-03-27 Apple Inc. Recovery from cross-temperature read failures by programming neighbor word lines
US20190088336A1 (en) * 2017-09-19 2019-03-21 Phison Electronics Corp. Decoding method, memory controlling circuit unit and memory storage device
US20190304546A1 (en) * 2018-03-30 2019-10-03 Shenzhen Epostar Electronics Limited Co. Decoding method and storage controller
US20190391865A1 (en) * 2018-06-20 2019-12-26 Micron Technology, Inc. Memory sub-system with dynamic calibration using component-based function(s)
CN110797069A (en) * 2018-08-01 2020-02-14 群联电子股份有限公司 Voltage adjusting method, memory control circuit unit and memory storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113419683A (en) * 2021-07-01 2021-09-21 群联电子股份有限公司 Memory access method, memory storage device and memory control circuit unit
CN113419683B (en) * 2021-07-01 2023-07-04 群联电子股份有限公司 Memory access method, memory storage device and memory control circuit unit
CN114661233A (en) * 2022-03-18 2022-06-24 合肥兆芯电子有限公司 Table sorting method, memory storage device and memory control circuit unit

Also Published As

Publication number Publication date
CN111538687B (en) 2022-01-04

Similar Documents

Publication Publication Date Title
TWI588834B (en) Decoding method, memory storage device and memory control circuit unit
TWI592869B (en) Decoding method, memory storage device and memory control circuit unit
US10977116B2 (en) Data access method, memory control circuit unit and memory storage device
TWI751620B (en) Memory control method, memory storage device and memory control circuit unit
US10447314B2 (en) Decoding method, memory storage device and memory control circuit unit
CN107146638B (en) Decoding method, memory storage device and memory control circuit unit
US12197737B2 (en) Decoding method, memory storage device and memory control circuit unit
CN113140253A (en) Memory management method, memory storage device and memory control circuit unit
TWI691962B (en) Decoding method, memory controlling circuit unit and memory storage device
TWI681396B (en) Decoding method, memory controlling circuit unit and memory storage device
CN111538687B (en) Memory control method, memory storage device, and memory control circuit unit
TWI808483B (en) Decoding method, memory storage device and memory control circuit unit
TWI722867B (en) Memory control method, memory storage device and memory control circuit unit
CN111326186B (en) Memory control method, memory storage device and memory control circuit unit
CN111508546B (en) Decoding method, memory control circuit unit and memory storage device
CN111258791B (en) Memory control method, memory storage device and memory control circuit unit
US12148486B2 (en) Read voltage adjustment method, memory storage device and memory control circuit unit
US12366987B2 (en) Memory management method, memory storage device and memory control circuit unit
CN112347010B (en) Memory control method, memory storage device and memory control circuit unit
CN111863099B (en) Memory control method, memory storage device and memory control circuit unit
TWI681393B (en) Decoding method, memory controlling circuit unit and memory storage device
CN109509499B (en) Decoding method, memory storage device and memory control circuit unit
US20250068509A1 (en) Decoding method, memory storage device and memory control circuit unit
US20240354024A1 (en) Memory management method, memory storage device and memory control circuit unit
TWI705449B (en) Voltage identifying method, memory controlling circuit unit and memory storage device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant