CN111538083A - A Smoothing Method for Rugged Seabed Interface Based on Velocity Gradient - Google Patents
A Smoothing Method for Rugged Seabed Interface Based on Velocity Gradient Download PDFInfo
- Publication number
- CN111538083A CN111538083A CN202010511045.0A CN202010511045A CN111538083A CN 111538083 A CN111538083 A CN 111538083A CN 202010511045 A CN202010511045 A CN 202010511045A CN 111538083 A CN111538083 A CN 111538083A
- Authority
- CN
- China
- Prior art keywords
- velocity
- velocity model
- model
- gradient
- partial differential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/303—Analysis for determining velocity profiles or travel times
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/36—Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/50—Corrections or adjustments related to wave propagation
- G01V2210/51—Migration
- G01V2210/512—Pre-stack
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/62—Physical property of subsurface
- G01V2210/622—Velocity, density or impedance
- G01V2210/6222—Velocity; travel time
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明属于海洋地震勘探技术领域,具体涉及一种海洋地震勘探深水资料数据偏移成像处理方法,特别涉及一种基于速度梯度的崎岖海底界面的光滑处理方法。The invention belongs to the technical field of marine seismic exploration, in particular to a method for data migration and imaging of deep water data in marine seismic exploration, and in particular to a method for smoothing a rough seabed interface based on velocity gradients.
背景技术Background technique
在深水地震资料处理当中,经常遇到的一个的问题就是深水崎岖海底的偏移成像问题。由于海底崎岖,致使地震波在地层中传播横向速度发生剧烈变化,地震波传播的射线路径变得非常复杂,波场能量在崎岖海底发生相应的漫散射,致使反射波同相轴严重畸变,导致时间偏移剖面中海底下伏地层构造形态严重畸变。同时,由于崎岖海底的存在,常规的地震波时距曲线不再是双曲线,这将使得基于双曲线动态时差假设的共反射点(CMP)叠加振幅和旅行时发生畸变,CMP叠加剖面不再是零偏移距剖面,叠后时间偏移不能使反射波很好归位,从而造成构造形态严重失真,给地震资料的解释带来了许多的误区。In deep-water seismic data processing, one of the frequently encountered problems is the migration imaging problem of deep-water rugged seafloor. Due to the rough seabed, the lateral velocity of seismic wave propagation in the formation changes drastically, the ray path of seismic wave propagation becomes very complicated, and the wave field energy is diffusely scattered on the rugged seabed, resulting in serious distortion of the reflected wave event axis, resulting in time offset. The structural shape of the underlying strata in the profile is severely distorted. At the same time, due to the existence of the rugged seabed, the conventional seismic wave time-distance curve is no longer a hyperbola, which will distort the stacking amplitude and travel time of the common reflection point (CMP) based on the hyperbolic dynamic time difference assumption, and the CMP stacking profile is no longer a For the zero-offset profile, the post-stack time migration cannot make the reflected waves homing well, resulting in serious distortion of the structural shape, which brings many misunderstandings to the interpretation of seismic data.
针对上述崎岖海底存在对地震波传播带来的问题,1979年Berryhil首次提出波动方程基准面延拓的概念用于解决崎岖海底成像问题。该算法将波场从海平面向下延拓到一个新的可以横向变化的、有明确地质意义的基准面,用海底地层的速度替换海水速度,再将波场向上延拓到海速度模型平面上。该方法在叠后地震资料的数值模型检验中消除了部分崎岖海底对地震资料的畸变影响,但对于实际崎岖海底地震资料的处理,至今没有足够的成果表示上述基准面延拓方法的有效性。之后很多学者认为常规时间偏移和叠后深度偏移均不能解决崎岖海底地区地震成像问题,叠前深度偏移是解决崎岖海底成像问题的有效方法,而叠前深度偏移在很大的程度上依赖给定的速度模型。2010年,杨凯等人的研究表明,崎岖海底地层的存在对下伏地层的反射覆盖次数、反射能量以及入射角范围有很大的影响,导致波的动力学特征发生明显变化,指出在复杂崎岖海底地区地震勘探必须选择合适的排列长度和覆盖次数才能能到较好的偏移剖面。2011年,汪勇等人研究表明通过采用地震波照明分析技术和数值模拟可以为获得较好的成像结果提供采集方案以及成像所需的偏移孔径。In view of the above-mentioned problems of seismic wave propagation caused by the rugged seabed, Berryhil first proposed the concept of wave equation datum extension in 1979 to solve the problem of rugged seabed imaging. The algorithm extends the wave field from the sea level downward to a new horizontally variable base level with clear geological significance, replaces the sea water velocity with the velocity of the seabed formation, and then extends the wave field upward to the sea velocity model plane. . This method eliminates the distortion effect of some rugged seabeds on seismic data in the numerical model verification of post-stack seismic data, but for the processing of actual rugged seabed seismic data, so far there is not enough results to show the effectiveness of the above-mentioned base-level extension method. Later, many scholars believed that neither conventional time migration nor post-stack depth migration could solve the seismic imaging problem in rugged seabed areas. depends on the given velocity model. In 2010, research by Yang Kai et al. showed that the existence of rugged seabed strata has a great influence on the number of reflection coverage, reflected energy and incident angle range of the underlying strata, resulting in significant changes in the dynamic characteristics of waves, pointing out that in complex Seismic exploration in rugged seabed areas must select appropriate arrangement length and coverage times to obtain better migration profiles. In 2011, Wang Yong et al. showed that by using seismic wave illumination analysis technology and numerical simulation, an acquisition scheme and an offset aperture required for imaging can be provided for obtaining better imaging results.
综上,上述方法均不能解决深海崎岖海底的存在造成地震波传播过程当中横向速度的剧烈变化,导致地震波在传播时射线路径严重偏折,致使时间偏移剖面中下伏地层构造形态严重畸变,成像效果差或者不成像的问题,无法获取较好的偏移成像剖面。To sum up, none of the above methods can solve the drastic change in lateral velocity during seismic wave propagation caused by the existence of the deep-sea rugged seabed, resulting in serious deflection of the ray path during the propagation of seismic waves, resulting in serious distortion of the underlying strata in the time-migrated profile, and imaging. Due to the problem of poor effect or no imaging, it is impossible to obtain a better offset imaging section.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于速度梯度的崎岖海底界面的光滑处理方法,以克服深海崎岖海底对波场能量传播的影响以及造成偏移成像质量不高、崎岖海底底部地层不成像或者成像模糊的缺点。本发明通过将基于偏微分方程的界面光滑处理结合高斯波束叠前偏移技术,通过对崎岖海底的界面依据速度梯度进行特定的光滑处理,从而增强射线能量的穿透性,实现崎岖海底下伏地层成像。The purpose of the present invention is to provide a method for smoothing the rough seabed interface based on velocity gradient, so as to overcome the influence of the deep sea rough seabed on the wave field energy propagation and cause the migration imaging quality to be low, the stratum at the bottom of the rugged seabed to be unimaged, or the imaging to be blurred. Shortcomings. The invention combines the interface smoothing processing based on partial differential equations with the Gaussian beam pre-stack migration technology, and performs specific smoothing processing on the interface of the rugged seabed according to the velocity gradient, thereby enhancing the penetration of ray energy and realizing the rugged seabed subsurface. Layer imaging.
本发明的目的是通过以下技术方案实现的:The purpose of this invention is to realize through the following technical solutions:
一种基于速度梯度的崎岖海底界面的光滑处理方法,包括以下步骤:A method for smoothing rough seabed interface based on velocity gradient, comprising the following steps:
A、给定偏移成像所需的速度模型v(x,z),依据此速度模型构建偏微分方程,引入时间因子t,则对速度模型的光滑处理可以表示为:F表示给定的特定算法,通常依赖于速度及其空间上一、二阶导数。原始模型速度v0为初始条件,偏微分方程的解v(x,z,t)即给出了迭代t次时的速度模型值。A. Given the velocity model v(x,z) required for migration imaging, build a partial differential equation based on this velocity model, and introduce a time factor t, then the smoothing of the velocity model can be expressed as: F represents a given specific algorithm, usually depending on the speed and its first and second derivatives in space. The original model velocity v 0 is the initial condition, and the solution v(x, z, t) of the partial differential equation gives the velocity model value at t iterations.
B、根据速度模型的能量函数E(v),由于在速度模型横向和纵向变化比较剧烈的区域(崎岖海底起伏界面),速度梯度的模(导数的平方和)就越大,因此,要达到速度模型界面光滑的目的就要最小化能量函数E(v),以此构建基于速度梯度的偏微分方程。B. According to the energy function E(v) of the velocity model, since in the region where the lateral and longitudinal changes of the velocity model are relatively severe (the rough seabed undulating interface), the modulus of the velocity gradient (the sum of the squares of the derivatives) is larger. Therefore, to achieve The purpose of the smooth interface of the velocity model is to minimize the energy function E(v), so as to construct the partial differential equation based on the velocity gradient.
C、采用变分方法和最速下降法求解能量函数E(v)的极小化问题,得到基于原始速度模型梯度表示的扩散系数的偏微分方程。C. Use the variational method and the steepest descent method to solve the minimization problem of the energy function E(v), and obtain the partial differential equation of the diffusion coefficient based on the gradient of the original velocity model.
D、依据原始速度模型,确定扩散系数的具体表达式,使其在速度模型梯度值较大的地方(海底崎岖界面)具有较慢的扩散速度,在速度模型梯度值较小的地方(非海底崎岖界面)具有较快的扩散速度,其目的在于对速度模型光滑的同时不破坏原始速度模型的空间结构。D. According to the original velocity model, determine the specific expression of the diffusion coefficient, so that it has a slower diffusion velocity in the place where the gradient value of the velocity model is large (the rough seabed interface), and in the place where the gradient value of the velocity model is small (non-seabed) The rough interface) has a faster diffusion rate, and its purpose is to smooth the velocity model without destroying the spatial structure of the original velocity model.
E、将步骤C得到的公式进行离散化以及选择步骤D所给定的边界扩散函数及迭代次数,就可以对原始给定的崎岖海底速度模型界面进行光滑处理,然后应用光滑处理后的速度模型再进行偏移成像就可以获得较好的成像效果。E. By discretizing the formula obtained in step C and selecting the boundary diffusion function and the number of iterations given in step D, the originally given rough seabed velocity model interface can be smoothed, and then the smoothed velocity model can be applied A better imaging effect can be obtained by performing offset imaging.
进一步地,步骤C,所述偏微分方程为:其中,·是散度算子,是梯度算子,是速度模型的梯度值,为扩散系数表达式,满足g(0)=1, Further, in step C, the partial differential equation is: in, is the divergence operator, is the gradient operator, is the gradient value of the velocity model, is the expression of diffusion coefficient, satisfying g(0)=1,
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本发明与常规偏移成像中对速度模型处理相比,常规模型光滑处理中不同层次的光滑处理都会对原始速度模型的体系、空间结构带来不同程度的改变,进而对能量传播当中射线路径、时间场的分布以及振幅带来不同程度的偏差,最终影响到偏移成像的结果;本发明采用基于速度梯度构建的偏微分方程对模型崎岖海底界面进行光滑,由于偏微分方程具有局部特征保持性能,因此通过偏微分方程的迭代处理可以在保持原始速度模型空间结构的同时对梯度较大的崎岖海底界面进行光滑处理,从而增强波场传播能量的穿透性;本发明处理方法可以在尽量保持原始速度模型空间结构不变的情况下实现波场的精确计算和提高偏移成像质量。Compared with the velocity model processing in the conventional migration imaging, the smoothing processing of different levels in the conventional model smoothing processing will bring different degrees of changes to the system and spatial structure of the original velocity model, and furthermore, the ray path, the ray path, the spatial structure of the original velocity model will be changed in different degrees. The distribution and amplitude of the time field bring different degrees of deviation, which ultimately affect the results of migration imaging; the present invention uses the partial differential equation constructed based on the velocity gradient to smooth the rough seabed interface of the model, because the partial differential equation has local feature retention performance Therefore, through the iterative processing of partial differential equations, the rough seabed interface with large gradient can be smoothed while maintaining the spatial structure of the original velocity model, thereby enhancing the penetration of wave field propagation energy; the processing method of the present invention can keep the Accurate calculation of wave field and improvement of migration imaging quality can be achieved without changing the spatial structure of the original velocity model.
附图说明Description of drawings
图1偏微分方程离散格式示意图;Figure 1 is a schematic diagram of the discrete format of partial differential equations;
图2原始崎岖海底速度模型;Fig. 2 The original rough seabed velocity model;
图3不经过光滑处理所得的偏移剖面;Fig. 3 Offset profile obtained without smoothing;
图4光滑处理后所到的偏移剖面。Figure 4. Offset profile after smoothing.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步说明:Below in conjunction with embodiment, the present invention is further described:
本发明基于速度梯度的崎岖海底界面的光滑处理方法,包括以下步骤:The smooth processing method of the rough seabed interface based on the velocity gradient of the present invention comprises the following steps:
A、给定偏移成像所需的速度模型v(x,z),依据此速度模型构建偏微分方程,引入时间因子t,把对速度模型界面的光滑处理表示为:偏微分方程的解v(x,z,t)即为结果迭代t次时所获得的速度模型值。A. Given the velocity model v(x,z) required for migration imaging, build a partial differential equation based on this velocity model, introduce a time factor t, and express the smoothing of the velocity model interface as: The solution v(x,z,t) of the partial differential equation is the velocity model value obtained when the result is iterated t times.
B、根据给定速度模型的能量函数E(v),由于在速度模型横向和纵向变化比较剧烈的区域(崎岖海底起伏界面),速度梯度的模(导数的平方和)就越大,因此,要达到速度模型光滑的目的就要最小化能量函数E(v),以此构建基于速度梯度的偏微分方程。B. According to the energy function E(v) of the given velocity model, since in the region where the lateral and longitudinal changes of the velocity model are more severe (the rough seabed undulation interface), the modulus of the velocity gradient (the sum of the squares of the derivatives) is larger, therefore, To achieve the smoothness of the velocity model, the energy function E(v) must be minimized to construct a partial differential equation based on the velocity gradient.
C、采用变分方法和最速下降法求解能量函数E(v)的极小化问题,得到基于原始速度模型梯度表示的扩散系数的偏微分方程:·是散度算子,是梯度算子,是速度模型的梯度值,为扩散系数表达式,满足g(0)=1, C. Use the variational method and the steepest descent method to solve the minimization problem of the energy function E(v), and obtain the partial differential equation of the diffusion coefficient represented by the gradient of the original velocity model: is the divergence operator, is the gradient operator, is the gradient value of the velocity model, is the expression of diffusion coefficient, satisfying g(0)=1,
D、依据原始速度模型,确定扩散系数的具体表达式,使它在速度模型梯度值较大的地方(海底崎岖界面)具有较慢的扩散速度,在速度模型梯度值较小的地方(非海底崎岖界面)具有较快的扩散速度,取g(s)满足形式:g(s)=exp(-(s/k)2),g(s)又称为边界停止平滑函数,它可以用来保持图像的边缘。D. According to the original velocity model, determine the specific expression of the diffusion coefficient, so that it has a slower diffusion velocity in the place where the gradient value of the velocity model is large (the rough seabed interface), and in the place where the gradient value of the velocity model is small (non-seabed Rugged interface) has a faster diffusion speed, take g(s) to satisfy the form: g(s)=exp(-(s/k) 2 ), g(s) is also known as the boundary stop smoothing function, which can be used to Keep the edges of the image.
E、将步骤C得到的公式进行离散化,离散示意图如图1所示。选择步骤D所给定的分布函数和及迭代次数,就可以对原始给定的崎岖海底速度模型界面进行光滑处理,然后应用光滑处理后的速度模型再进行偏移成像就可以获得较好的成像效果。根据图1的离散格式示意图,离散格式如下:E. The formula obtained in step C is discretized, and the schematic diagram of the discretization is shown in Figure 1. Choose the distribution function given in step D and the number of iterations, the original rough seabed velocity model interface can be smoothed, and then the smoothed velocity model can be used to perform migration imaging to obtain better imaging results. According to the schematic diagram of the discrete format in Figure 1, the discrete format is as follows:
其中N,S,E,W分别为各个方向北、南、东、西四个方向,τ为时间步长,这里的表示的式差分符号,其中:Among them, N, S, E, and W are the four directions of north, south, east, and west, respectively, and τ is the time step, where the expressed in differential notation, where:
为了更好的说明上述具体实施方式的效果,下面给出一个具体实例。In order to better illustrate the effect of the above specific implementation manner, a specific example is given below.
实施例Example
给定崎岖海底速度模型,图2所示:模型大小为2400×2000,网格大小2.0m×2.0m,数值模拟记录共11炮,每炮共480道接收,道间距为10m,采样间隔2ms。下面来分析一下应用高斯波束叠前偏移成像对原始速度模型崎岖海底界面光滑处理前后所获得的偏移成像剖面。Given a rough seabed velocity model, as shown in Figure 2: the model size is 2400×2000, the grid size is 2.0m×2.0m, the numerical simulation records a total of 11 shots, each shot has a total of 480 receptions, the track spacing is 10m, and the sampling interval is 2ms . Next, we analyze the migration imaging profiles obtained before and after smoothing the rough seabed interface of the original velocity model by applying Gaussian beam pre-stack migration imaging.
通过图3原始速度模型偏移成像获得的结果和图4经过起伏界面光滑处理后偏移成像所获得的结果对比可以看出,崎岖海底界面结果偏微分方程光滑处理后在进行偏移成像,能在很大的程度上改善偏移剖面的质量,图4中光滑处理后的速度模型所获得的偏移剖面质量更加清晰,图4中原图3崎岖海底下伏地层不成像区域也获得了较好的成像效果。综上所述,本发明方法能够实现崎岖海底底部地层更好的成像效果。By comparing the results obtained by the original velocity model migration imaging in Fig. 3 with the results obtained by the migration imaging after smoothing the undulating interface in Fig. 4, it can be seen that the rough seafloor interface results are smoothed by partial differential equations. The quality of the migration profile is improved to a great extent. The quality of the migration profile obtained by the smoothed velocity model in Fig. 4 is clearer, and the unimaging area of the rough subsurface stratum in Fig. 4 is also better. imaging effect. To sum up, the method of the present invention can achieve better imaging effect of the strata at the bottom of the rugged seabed.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010511045.0A CN111538083A (en) | 2020-06-08 | 2020-06-08 | A Smoothing Method for Rugged Seabed Interface Based on Velocity Gradient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010511045.0A CN111538083A (en) | 2020-06-08 | 2020-06-08 | A Smoothing Method for Rugged Seabed Interface Based on Velocity Gradient |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111538083A true CN111538083A (en) | 2020-08-14 |
Family
ID=71968903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010511045.0A Pending CN111538083A (en) | 2020-06-08 | 2020-06-08 | A Smoothing Method for Rugged Seabed Interface Based on Velocity Gradient |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111538083A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112505774A (en) * | 2020-12-15 | 2021-03-16 | 吉林大学 | Combined boundary method in seismic acoustic wave number value simulation |
CN115146785A (en) * | 2022-05-19 | 2022-10-04 | 腾讯科技(深圳)有限公司 | Object screening method, apparatus, electronic device, storage medium and program product |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5999487A (en) * | 1996-07-25 | 1999-12-07 | Elf Exploration Production | Seismic reflection data acquisition and processing method and device for prospecting in tectonically complex environments |
CN103207410A (en) * | 2013-04-17 | 2013-07-17 | 中国海洋石油总公司 | Rugged seabed aimed hybrid grid model building method |
US20140362663A1 (en) * | 2012-01-13 | 2014-12-11 | Westerngeco L.L.C. | Simultaneous source marine seismic acquisition |
CN106199704A (en) * | 2016-09-13 | 2016-12-07 | 中国海洋石油总公司 | A kind of Three-dimendimal fusion submarine cable seismic data velocity modeling method |
CN106896403A (en) * | 2017-05-05 | 2017-06-27 | 中国石油集团东方地球物理勘探有限责任公司 | Elastic Gaussian beam offset imaging method and system |
CN109975873A (en) * | 2019-04-23 | 2019-07-05 | 中国石油大学(华东) | A kind of method and system of reverse-time migration imaging removal low frequency noise |
CN110909301A (en) * | 2019-11-19 | 2020-03-24 | 吉林大学 | Interpolation method constructed based on gradient direction |
-
2020
- 2020-06-08 CN CN202010511045.0A patent/CN111538083A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5999487A (en) * | 1996-07-25 | 1999-12-07 | Elf Exploration Production | Seismic reflection data acquisition and processing method and device for prospecting in tectonically complex environments |
US20140362663A1 (en) * | 2012-01-13 | 2014-12-11 | Westerngeco L.L.C. | Simultaneous source marine seismic acquisition |
CN103207410A (en) * | 2013-04-17 | 2013-07-17 | 中国海洋石油总公司 | Rugged seabed aimed hybrid grid model building method |
CN106199704A (en) * | 2016-09-13 | 2016-12-07 | 中国海洋石油总公司 | A kind of Three-dimendimal fusion submarine cable seismic data velocity modeling method |
CN106896403A (en) * | 2017-05-05 | 2017-06-27 | 中国石油集团东方地球物理勘探有限责任公司 | Elastic Gaussian beam offset imaging method and system |
CN109975873A (en) * | 2019-04-23 | 2019-07-05 | 中国石油大学(华东) | A kind of method and system of reverse-time migration imaging removal low frequency noise |
CN110909301A (en) * | 2019-11-19 | 2020-03-24 | 吉林大学 | Interpolation method constructed based on gradient direction |
Non-Patent Citations (2)
Title |
---|
韩复兴 等: "基于偏微分方程的模型光滑处理在偏移成像中的应用", 《地球物理学报》 * |
韩复兴 等: "速度模型的光滑处理分析", 《吉林大学学报(地球科学版)》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112505774A (en) * | 2020-12-15 | 2021-03-16 | 吉林大学 | Combined boundary method in seismic acoustic wave number value simulation |
CN115146785A (en) * | 2022-05-19 | 2022-10-04 | 腾讯科技(深圳)有限公司 | Object screening method, apparatus, electronic device, storage medium and program product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107505651B (en) | Seismic first break and back wave combine slope chromatography imaging method | |
CN106094032B (en) | A kind of method for building formation velocity model | |
CN102841376A (en) | Retrieval method for chromatography speed based on undulating surface | |
US10234582B2 (en) | Joint inversion of seismic data | |
US9869783B2 (en) | Structure tensor constrained tomographic velocity analysis | |
US11733413B2 (en) | Method and system for super resolution least-squares reverse time migration | |
CN106556861B (en) | A kind of azimuthal AVO inversion method based on Omnibearing earthquake auto data | |
US11668848B2 (en) | Method and system for seismic imaging using S-wave velocity models and machine learning | |
CN113064203B (en) | Conjugate gradient normalization LSRTM method, system, storage medium and application | |
CN103513277B (en) | Seismic stratum fracture crack density inversion method and system | |
CN107132578B (en) | An Algorithm for Correction of Velocity Model for Microseismic Ground Monitoring | |
CN111123359B (en) | Surrounding well seismic imaging detection method and device based on logging while drilling and stratigraphic framework constraints | |
US10739481B2 (en) | 2D multiline seismic reflection tomography with seismic-tie constraint | |
WO2016008105A1 (en) | Post-stack wave impedance inversion method based on cauchy distribution | |
CN107656308B (en) | A kind of common scattering point pre-stack time migration imaging method based on time depth scanning | |
CN111665556A (en) | Method for constructing stratum acoustic wave propagation velocity model | |
CN111538083A (en) | A Smoothing Method for Rugged Seabed Interface Based on Velocity Gradient | |
CN110376645A (en) | A kind of determination method, device and equipment of Thin Sandbody top interface location | |
Guo et al. | Becoming effective velocity-model builders and depth imagers, Part 2—The basics of velocity-model building, examples and discussions | |
CN115032694B (en) | A VSP first arrival travel time tomography method and system | |
CN113589375A (en) | VSP layer velocity inversion method based on inclined layer constraint travel time calculation | |
CN109975869A (en) | A kind of reflection wave inversion method along direction of strata Smoothing Constraint | |
CN112630825B (en) | Common offset domain Beam prestack time migration imaging method, system, medium and application | |
CN108375794A (en) | Based on the VSP fracture hole Diffraction Imaging technical methods symmetrically observed | |
CN114966839B (en) | A velocity modeling method and system for all-directional gathers in OVT domain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200814 |