CN111537564B - Metal micro-crack depth detection system and method based on transmission laser thermal imaging - Google Patents
Metal micro-crack depth detection system and method based on transmission laser thermal imaging Download PDFInfo
- Publication number
- CN111537564B CN111537564B CN202010549632.9A CN202010549632A CN111537564B CN 111537564 B CN111537564 B CN 111537564B CN 202010549632 A CN202010549632 A CN 202010549632A CN 111537564 B CN111537564 B CN 111537564B
- Authority
- CN
- China
- Prior art keywords
- point
- thermal
- infrared image
- laser
- thermal infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/72—Investigating presence of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/18—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring depth
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及金属表面微裂纹深度检测技术,具体是一种基于透射式激光热成像的金属微裂纹深度检测系统及方法。The invention relates to a metal surface micro-crack depth detection technology, in particular to a metal micro-crack depth detection system and method based on transmission laser thermal imaging.
背景技术Background technique
金属因其具有强度高、耐热性好、抗腐蚀能力强等优势,而被广泛应用于航空发动机、汽车、船舶等的制造中。金属工件在使用过程中,容易因疲劳老化或恶劣环境而出现表面微裂纹,由此影响金属工件的力学性能、振动噪声、使用寿命。因此,为了保证金属工件的力学性能、振动噪声、使用寿命,需要对金属工件进行表面微裂纹深度检测。然而,传统的金属表面微裂纹深度检测技术由于自身原理所限,普遍存在检测精度低、检测速度慢、检测结果直观性差的问题。基于此,有必要发明一种基于透射式激光热成像的金属微裂纹深度检测系统及方法,以解决传统的金属表面微裂纹深度检测技术检测精度低、检测速度慢、检测结果直观性差的问题。Metals are widely used in the manufacture of aero-engines, automobiles, and ships because of their advantages such as high strength, good heat resistance, and strong corrosion resistance. During the use of metal workpieces, surface micro-cracks are prone to appear due to fatigue aging or harsh environments, which will affect the mechanical properties, vibration and noise, and service life of metal workpieces. Therefore, in order to ensure the mechanical properties, vibration and noise, and service life of metal workpieces, it is necessary to detect the depth of micro-cracks on the surface of metal workpieces. However, due to the limitation of its own principle, the traditional metal surface micro-crack depth detection technology generally has the problems of low detection accuracy, slow detection speed, and poor intuition of detection results. Based on this, it is necessary to invent a metal micro-crack depth detection system and method based on transmission laser thermal imaging to solve the problems of low detection accuracy, slow detection speed, and poor visibility of detection results in traditional metal surface micro-crack depth detection technology.
发明内容Contents of the invention
本发明为了解决传统的金属表面微裂纹深度检测技术检测精度低、检测速度慢、检测结果直观性差的问题,提供了一种基于透射式激光热成像的金属微裂纹深度检测系统及方法。In order to solve the problems of low detection accuracy, slow detection speed, and poor intuitiveness of detection results of the traditional metal surface micro-crack depth detection technology, the present invention provides a metal micro-crack depth detection system and method based on transmission laser thermal imaging.
本发明是采用如下技术方案实现的:The present invention is realized by adopting the following technical solutions:
基于透射式激光热成像的金属微裂纹深度检测系统,包括被测金属工件、聚焦透镜、半导体激光器、放大器、数字电位器、单片机、上位机、红外热像仪;Metal microcrack depth detection system based on transmission laser thermal imaging, including metal workpiece to be tested, focusing lens, semiconductor laser, amplifier, digital potentiometer, single-chip microcomputer, host computer, infrared thermal imager;
其中,半导体激光器的出射端正对聚焦透镜的入射端;聚焦透镜的出射端正对被测金属工件的正面;放大器的信号输出端与半导体激光器的信号输入端连接;数字电位器的信号输出端与放大器的信号输入端连接;单片机的信号输出端与数字电位器的信号输入端连接;上位机的信号输出端与单片机的信号输入端连接;红外热像仪的探测端正对被测金属工件的背面。Among them, the outgoing end of the semiconductor laser is facing the incident end of the focusing lens; the outgoing end of the focusing lens is facing the front of the metal workpiece to be tested; the signal output end of the amplifier is connected to the signal input end of the semiconductor laser; the signal output end of the digital potentiometer is connected to the amplifier The signal input terminal of the single-chip microcomputer is connected to the signal input terminal of the digital potentiometer; the signal output terminal of the host computer is connected to the signal input terminal of the single-chip microcomputer; the detection terminal of the infrared thermal imager is facing the back of the metal workpiece to be tested.
还包括稳压电源、供电电源;稳压电源的输出端与数字电位器的电压端连接;供电电源的输出端分别与单片机的供电端、数字电位器的供电端、放大器的供电端连接。It also includes a stabilized power supply and a power supply; the output end of the stabilized power supply is connected to the voltage end of the digital potentiometer; the output end of the power supply is respectively connected to the power supply end of the single chip microcomputer, the power supply end of the digital potentiometer, and the power supply end of the amplifier.
所述数字电位器为X9C103数字电位器;X9C103数字电位器的第五引脚与放大器的信号输入端连接;单片机的信号输出端分别与X9C103数字电位器的第一引脚、第二引脚、第七引脚连接;稳压电源的输出端分别与X9C103数字电位器的第三引脚、第六引脚连接;供电电源的输出端分别与X9C103数字电位器的第四引脚、第八引脚连接。The digital potentiometer is an X9C103 digital potentiometer; the fifth pin of the X9C103 digital potentiometer is connected to the signal input end of the amplifier; the signal output end of the single-chip microcomputer is respectively connected to the first pin, the second pin, The seventh pin is connected; the output end of the regulated power supply is respectively connected to the third pin and the sixth pin of the X9C103 digital potentiometer; the output end of the power supply is respectively connected to the fourth pin and the eighth pin of the X9C103 digital potentiometer pin connection.
基于透射式激光热成像的金属微裂纹深度检测方法(该方法是基于本发明所述的基于透射式激光热成像的金属微裂纹深度检测系统实现的),该方法是采用如下步骤实现的:Metal microcrack depth detection method based on transmission laser thermal imaging (this method is realized based on the metal microcrack depth detection system based on transmission laser thermal imaging of the present invention), the method is realized by the following steps:
步骤一:针对被测金属工件正面出现的某一微裂纹,在被测金属工件的正面选定激光加热点,在被测金属工件的背面选定两个温度采集点;激光加热点和两个温度采集点满足如下条件:Step 1: For a microcrack that appears on the front of the metal workpiece to be tested, select a laser heating point on the front of the metal workpiece to be tested, and select two temperature collection points on the back of the metal workpiece to be tested; the laser heating point and the two The temperature collection point meets the following conditions:
激光加热点位于微裂纹的正下方2mm处,第一个温度采集点既位于激光加热点背面对应处的正上方又位于微裂纹背面对应处的正上方,第二个温度采集点位于激光加热点背面对应处的正下方,两个温度采集点到激光加热点的竖直距离相等;The laser heating point is located 2mm directly below the micro-crack, the first temperature collection point is located directly above the corresponding position on the back of the laser heating point and directly above the corresponding position on the back of the micro-crack, and the second temperature collection point is located at the laser heating point Directly below the corresponding position on the back, the vertical distance from the two temperature collection points to the laser heating point is equal;
步骤二:设定半导体激光器和红外热像仪的工作参数;然后,启动半导体激光器和红外热像仪,半导体激光器发出脉冲激光束,脉冲激光束经聚焦透镜进行聚焦后垂直照射在激光加热点,由此对激光加热点进行加热;在加热过程中,红外热像仪实时探测被测金属工件背面的温度场变化,并根据探测结果实时生成热红外图像;Step 2: Set the working parameters of the semiconductor laser and the thermal imaging camera; then, start the semiconductor laser and the thermal imaging camera, the semiconductor laser emits a pulsed laser beam, the pulsed laser beam is focused by the focusing lens and irradiated vertically on the laser heating point, In this way, the laser heating point is heated; during the heating process, the infrared thermal imaging camera detects the temperature field change on the back of the measured metal workpiece in real time, and generates a thermal infrared image in real time according to the detection results;
步骤三:在热红外图像中选定温度值最高的坐标点,并将该坐标点定义为激光加热点在热红外图像中的对应点;Step 3: Select the coordinate point with the highest temperature value in the thermal infrared image, and define the coordinate point as the corresponding point of the laser heating point in the thermal infrared image;
步骤四:计算两个温度采集点到激光加热点的竖直距离在热红外图像中的对应像素点个数n;具体计算公式如下:Step 4: Calculate the number n of pixels corresponding to the vertical distance from the two temperature collection points to the laser heating point in the thermal infrared image; the specific calculation formula is as follows:
式中:d表示两个温度采集点到激光加热点的竖直距离;d1表示红外热像仪的竖直拍摄范围;f表示红外热像仪的焦距;u表示红外热像仪和被测金属工件之间的物距;V表示红外热像仪的竖直分辨率;d、d1、f、u、V均为已知量;In the formula: d represents the vertical distance from the two temperature collection points to the laser heating point; d 1 represents the vertical shooting range of the infrared thermal imager; f represents the focal length of the infrared thermal imager; u represents the infrared thermal imager and the measured Object distance between metal workpieces; V represents the vertical resolution of the infrared thermal imager; d, d 1 , f, u, V are all known quantities;
然后,根据计算结果在热红外图像中选定两个坐标点;两个坐标点满足如下条件:Then, according to the calculation results, two coordinate points are selected in the thermal infrared image; the two coordinate points meet the following conditions:
第一个坐标点位于激光加热点在热红外图像中的对应点的正上方,且该坐标点与激光加热点在热红外图像中的对应点之间相隔n个像素点;The first coordinate point is located directly above the corresponding point of the laser heating point in the thermal infrared image, and there are n pixels between the coordinate point and the corresponding point of the laser heating point in the thermal infrared image;
第二个坐标点位于激光加热点在热红外图像中的对应点的正下方,且该坐标点与激光加热点在热红外图像中的对应点之间相隔n个像素点;The second coordinate point is located directly below the corresponding point of the laser heating point in the thermal infrared image, and there are n pixels between the coordinate point and the corresponding point of the laser heating point in the thermal infrared image;
然后,将第一个坐标点定义为第一个温度采集点在热红外图像中的对应点,将第二个坐标点定义为第二个温度采集点在热红外图像中的对应点;Then, the first coordinate point is defined as the corresponding point of the first temperature collection point in the thermal infrared image, and the second coordinate point is defined as the corresponding point of the second temperature collection point in the thermal infrared image;
步骤五:持续记录两个温度采集点在热红外图像中的对应点的温度值,并根据记录结果绘制温度值变化曲线;Step 5: Continuously record the temperature values of the corresponding points of the two temperature collection points in the thermal infrared image, and draw the temperature value change curve according to the recording results;
步骤六:通过观察温度值变化曲线,得出当第一个温度采集点在热红外图像中的对应点的温度值为50℃时,第二个温度采集点在热红外图像中的对应点的温度值T(x,y,z,t);Step 6: By observing the temperature value change curve, it is obtained that when the temperature value of the corresponding point of the first temperature collection point in the thermal infrared image is 50°C, the temperature of the corresponding point of the second temperature collection point in the thermal infrared image temperature value T(x,y,z,t);
步骤七:根据第二个温度采集点在热红外图像中的对应点的温度值T(x,y,z,t),计算微裂纹的深度depth;具体计算公式如下:Step 7: According to the temperature value T(x, y, z, t) of the corresponding point of the second temperature collection point in the thermal infrared image, calculate the depth of the micro-crack; the specific calculation formula is as follows:
式中:x表示第二个温度采集点在热红外图像中的对应点的横轴坐标值;y表示第二个温度采集点在热红外图像中的对应点的纵轴坐标值;z表示第二个温度采集点在热红外图像中的对应点的竖轴坐标值;t表示第一个温度采集点在热红外图像中的对应点的温度值为50℃时对应的时刻;g(x,y,z)表示热源函数;ρ表示被测金属工件的密度;cp表示被测金属工件的恒压热容;k表示被测金属工件的导热系数;α表示被测金属工件的导温系数;ρd表示微裂纹处的密度;kd表示微裂纹处的导热系数。In the formula: x represents the abscissa coordinate value of the corresponding point of the second temperature collection point in the thermal infrared image; y represents the vertical axis coordinate value of the corresponding point of the second temperature collection point in the thermal infrared image; z represents the The vertical axis coordinates of the corresponding points of the two temperature collection points in the thermal infrared image; t indicates the corresponding moment when the temperature value of the corresponding point of the first temperature collection point in the thermal infrared image is 50°C; g(x, y, z) represents the heat source function; ρ represents the density of the tested metal workpiece; c p represents the constant pressure heat capacity of the measured metal workpiece; k represents the thermal conductivity of the measured metal workpiece; α represents the temperature conductivity of the measured metal workpiece ; ρ d represents the density at the microcrack; k d represents the thermal conductivity at the microcrack.
所述步骤二中,半导体激光器的工作参数设定过程如下:上位机生成代码指令,并将代码指令发送至单片机;单片机将代码指令转换为电平信号,并将电平信号发送至数字电位器,由此设定数字电位器的输出电压;数字电位器的输出电压经放大器进行放大后加载至半导体激光器,由此设定半导体激光器的工作参数。In the second step, the working parameter setting process of the semiconductor laser is as follows: the upper computer generates code instructions, and sends the code instructions to the single-chip microcomputer; the single-chip computer converts the code instructions into level signals, and sends the level signals to the digital potentiometer , thereby setting the output voltage of the digital potentiometer; the output voltage of the digital potentiometer is amplified by the amplifier and then loaded to the semiconductor laser, thereby setting the working parameters of the semiconductor laser.
与传统的金属表面微裂纹深度检测技术相比,本发明所述的基于透射式激光热成像的金属微裂纹深度检测系统及方法以激光加热技术和红外测温技术为基础,运用双点采样策略,实现了对金属工件进行表面微裂纹深度检测,由此不仅有效提高了检测精度、有效加快了检测速度,而且使得检测结果更加直观。Compared with the traditional metal surface micro-crack depth detection technology, the metal micro-crack depth detection system and method based on transmission laser thermal imaging in the present invention is based on laser heating technology and infrared temperature measurement technology, and uses a double-point sampling strategy , to realize the depth detection of surface micro-cracks on metal workpieces, thereby not only effectively improving the detection accuracy, effectively speeding up the detection speed, but also making the detection results more intuitive.
本发明有效解决了传统的金属表面微裂纹深度检测技术检测精度低、检测速度慢、检测结果直观性差的问题,适用于金属表面微裂纹深度检测。The invention effectively solves the problems of low detection accuracy, slow detection speed, and poor visibility of detection results in the traditional metal surface micro-crack depth detection technology, and is suitable for the detection of the metal surface micro-crack depth.
附图说明Description of drawings
图1是本发明所述系统的结构示意图。Fig. 1 is a schematic structural diagram of the system of the present invention.
图2是本发明所述方法中微裂纹、激光加热点、温度采集点的示意图。Fig. 2 is a schematic diagram of microcracks, laser heating points, and temperature collection points in the method of the present invention.
图3是本发明所述方法中第二个温度采集点在热红外图像中的对应点的温度值与微裂纹的深度之间的关系曲线图。Fig. 3 is a graph showing the relationship between the temperature value of the corresponding point in the thermal infrared image and the depth of the microcrack at the second temperature collection point in the method of the present invention.
图中:1-被测金属工件,2-聚焦透镜,3-半导体激光器,4-放大器,5-数字电位器,6-单片机,7-上位机,8-红外热像仪,9-稳压电源,10-供电电源。In the figure: 1-metal workpiece under test, 2-focusing lens, 3-semiconductor laser, 4-amplifier, 5-digital potentiometer, 6-single-chip microcomputer, 7-host computer, 8-infrared thermal imager, 9-voltage regulator Power supply, 10-power supply.
具体实施方式Detailed ways
基于透射式激光热成像的金属微裂纹深度检测系统,包括被测金属工件1、聚焦透镜2、半导体激光器3、放大器4、数字电位器5、单片机6、上位机7、红外热像仪8;Metal microcrack depth detection system based on transmission laser thermal imaging, including
其中,半导体激光器3的出射端正对聚焦透镜2的入射端;聚焦透镜2的出射端正对被测金属工件1的正面;放大器4的信号输出端与半导体激光器3的信号输入端连接;数字电位器5的信号输出端与放大器4的信号输入端连接;单片机6的信号输出端与数字电位器5的信号输入端连接;上位机7的信号输出端与单片机6的信号输入端连接;红外热像仪8的探测端正对被测金属工件1的背面。Wherein, the outgoing end of
还包括稳压电源9、供电电源10;稳压电源9的输出端与数字电位器5的电压端连接;供电电源10的输出端分别与单片机6的供电端、数字电位器5的供电端、放大器4的供电端连接。Also comprise stabilized
所述数字电位器5为X9C103数字电位器;X9C103数字电位器的第五引脚与放大器4的信号输入端连接;单片机6的信号输出端分别与X9C103数字电位器的第一引脚、第二引脚、第七引脚连接;稳压电源9的输出端分别与X9C103数字电位器的第三引脚、第六引脚连接;供电电源10的输出端分别与X9C103数字电位器的第四引脚、第八引脚连接。Described
基于透射式激光热成像的金属微裂纹深度检测方法(该方法是基于本发明所述的基于透射式激光热成像的金属微裂纹深度检测系统实现的),该方法是采用如下步骤实现的:Metal microcrack depth detection method based on transmission laser thermal imaging (this method is realized based on the metal microcrack depth detection system based on transmission laser thermal imaging of the present invention), the method is realized by the following steps:
步骤一:针对被测金属工件1正面出现的某一微裂纹,在被测金属工件1的正面选定激光加热点,在被测金属工件1的背面选定两个温度采集点;激光加热点和两个温度采集点满足如下条件:Step 1: For a certain microcrack that appears on the front of the
激光加热点位于微裂纹的正下方2mm处,第一个温度采集点既位于激光加热点背面对应处的正上方又位于微裂纹背面对应处的正上方,第二个温度采集点位于激光加热点背面对应处的正下方,两个温度采集点到激光加热点的竖直距离相等;The laser heating point is located 2mm directly below the micro-crack, the first temperature collection point is located directly above the corresponding position on the back of the laser heating point and directly above the corresponding position on the back of the micro-crack, and the second temperature collection point is located at the laser heating point Directly below the corresponding position on the back, the vertical distance from the two temperature collection points to the laser heating point is equal;
步骤二:设定半导体激光器3和红外热像仪8的工作参数;然后,启动半导体激光器3和红外热像仪8,半导体激光器3发出脉冲激光束,脉冲激光束经聚焦透镜2进行聚焦后垂直照射在激光加热点,由此对激光加热点进行加热;在加热过程中,红外热像仪8实时探测被测金属工件1背面的温度场变化,并根据探测结果实时生成热红外图像;Step 2: Set the operating parameters of the
步骤三:在热红外图像中选定温度值最高的坐标点,并将该坐标点定义为激光加热点在热红外图像中的对应点;Step 3: Select the coordinate point with the highest temperature value in the thermal infrared image, and define the coordinate point as the corresponding point of the laser heating point in the thermal infrared image;
步骤四:计算两个温度采集点到激光加热点的竖直距离在热红外图像中的对应像素点个数n;具体计算公式如下:Step 4: Calculate the number n of pixels corresponding to the vertical distance from the two temperature collection points to the laser heating point in the thermal infrared image; the specific calculation formula is as follows:
式中:d表示两个温度采集点到激光加热点的竖直距离;d1表示红外热像仪8的竖直拍摄范围;f表示红外热像仪8的焦距;u表示红外热像仪8和被测金属工件1之间的物距;V表示红外热像仪8的竖直分辨率;d、d1、f、u、V均为已知量;In the formula: d represents the vertical distance from the two temperature collection points to the laser heating point; d1 represents the vertical shooting range of the infrared
然后,根据计算结果在热红外图像中选定两个坐标点;两个坐标点满足如下条件:Then, according to the calculation results, two coordinate points are selected in the thermal infrared image; the two coordinate points meet the following conditions:
第一个坐标点位于激光加热点在热红外图像中的对应点的正上方,且该坐标点与激光加热点在热红外图像中的对应点之间相隔n个像素点;The first coordinate point is located directly above the corresponding point of the laser heating point in the thermal infrared image, and there are n pixels between the coordinate point and the corresponding point of the laser heating point in the thermal infrared image;
第二个坐标点位于激光加热点在热红外图像中的对应点的正下方,且该坐标点与激光加热点在热红外图像中的对应点之间相隔n个像素点;The second coordinate point is located directly below the corresponding point of the laser heating point in the thermal infrared image, and there are n pixels between the coordinate point and the corresponding point of the laser heating point in the thermal infrared image;
然后,将第一个坐标点定义为第一个温度采集点在热红外图像中的对应点,将第二个坐标点定义为第二个温度采集点在热红外图像中的对应点;Then, the first coordinate point is defined as the corresponding point of the first temperature collection point in the thermal infrared image, and the second coordinate point is defined as the corresponding point of the second temperature collection point in the thermal infrared image;
步骤五:持续记录两个温度采集点在热红外图像中的对应点的温度值,并根据记录结果绘制温度值变化曲线;Step 5: Continuously record the temperature values of the corresponding points of the two temperature collection points in the thermal infrared image, and draw the temperature value change curve according to the recording results;
步骤六:通过观察温度值变化曲线,得出当第一个温度采集点在热红外图像中的对应点的温度值为50℃时,第二个温度采集点在热红外图像中的对应点的温度值T(x,y,z,t);Step 6: By observing the temperature value change curve, it is obtained that when the temperature value of the corresponding point of the first temperature collection point in the thermal infrared image is 50°C, the temperature of the corresponding point of the second temperature collection point in the thermal infrared image temperature value T(x,y,z,t);
步骤七:根据第二个温度采集点在热红外图像中的对应点的温度值T(x,y,z,t),计算微裂纹的深度depth;具体计算公式如下:Step 7: According to the temperature value T(x, y, z, t) of the corresponding point of the second temperature collection point in the thermal infrared image, calculate the depth of the micro-crack; the specific calculation formula is as follows:
式中:x表示第二个温度采集点在热红外图像中的对应点的横轴坐标值;y表示第二个温度采集点在热红外图像中的对应点的纵轴坐标值;z表示第二个温度采集点在热红外图像中的对应点的竖轴坐标值;t表示第一个温度采集点在热红外图像中的对应点的温度值为50℃时对应的时刻;g(x,y,z)表示热源函数;ρ表示被测金属工件1的密度;cp表示被测金属工件1的恒压热容;k表示被测金属工件1的导热系数;α表示被测金属工件1的导温系数;ρd表示微裂纹处的密度;kd表示微裂纹处的导热系数。In the formula: x represents the abscissa coordinate value of the corresponding point of the second temperature collection point in the thermal infrared image; y represents the vertical axis coordinate value of the corresponding point of the second temperature collection point in the thermal infrared image; z represents the The vertical axis coordinates of the corresponding points of the two temperature collection points in the thermal infrared image; t indicates the corresponding moment when the temperature value of the corresponding point of the first temperature collection point in the thermal infrared image is 50°C; g(x, y, z) represents the heat source function; ρ represents the density of the tested
所述步骤二中,半导体激光器3的工作参数设定过程如下:上位机7生成代码指令,并将代码指令发送至单片机6;单片机6将代码指令转换为电平信号,并将电平信号发送至数字电位器5,由此设定数字电位器5的输出电压;数字电位器5的输出电压经放大器4进行放大后加载至半导体激光器3,由此设定半导体激光器3的工作参数。In said
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式作出多种变更或修改,但这些变更和修改均落入本发明的保护范围。Although the specific embodiments of the present invention have been described above, those skilled in the art should understand that these are only examples, and the protection scope of the present invention is defined by the appended claims. Those skilled in the art can make various changes or modifications to these embodiments without departing from the principle and essence of the present invention, but these changes and modifications all fall within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010549632.9A CN111537564B (en) | 2020-06-16 | 2020-06-16 | Metal micro-crack depth detection system and method based on transmission laser thermal imaging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010549632.9A CN111537564B (en) | 2020-06-16 | 2020-06-16 | Metal micro-crack depth detection system and method based on transmission laser thermal imaging |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111537564A CN111537564A (en) | 2020-08-14 |
CN111537564B true CN111537564B (en) | 2022-11-25 |
Family
ID=71980858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010549632.9A Active CN111537564B (en) | 2020-06-16 | 2020-06-16 | Metal micro-crack depth detection system and method based on transmission laser thermal imaging |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111537564B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112484681B (en) * | 2020-11-02 | 2022-04-29 | 中国人民解放军陆军装甲兵学院 | Crack depth detection method and device |
CN112649587A (en) * | 2020-12-01 | 2021-04-13 | 中北大学 | Metal classification device and method combining electromagnetic sensor and photoelectric sensor |
CN112834457B (en) * | 2021-01-23 | 2022-06-03 | 中北大学 | Metal microcrack three-dimensional characterization system and method based on reflective laser thermal imaging |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102721664B (en) * | 2012-04-25 | 2016-03-23 | 合肥利弗莫尔仪器科技有限公司 | A kind of multi-beam laser induction infrared radiation imaging device and method |
FR2995989B1 (en) * | 2012-09-24 | 2014-09-05 | Centre Nat Rech Scient | METHOD OF EVALUATING THE DEPTH OF A CRACK |
CN103383358A (en) * | 2013-07-12 | 2013-11-06 | 哈尔滨工业大学 | Dot-matrix type heat conduction temperature measurement nondestructive crack detection method |
CN103383368A (en) * | 2013-07-12 | 2013-11-06 | 哈尔滨工业大学 | Method for dot-matrix thermal conduction temperature measurement detection of workpiece defect |
WO2015056790A1 (en) * | 2013-10-18 | 2015-04-23 | 国立大学法人佐賀大学 | Cracking detection system and cracking detection method |
JP6244290B2 (en) * | 2014-10-29 | 2017-12-06 | 三菱重工業株式会社 | Crack evaluation method |
CN106770437B (en) * | 2016-11-22 | 2019-05-24 | 重庆师范大学 | Based on the method for quantitative measuring of integral mean in pulse infrared thermal wave technology |
CN108195928B (en) * | 2017-12-19 | 2021-05-14 | 电子科技大学 | Metal magnetic material defect detection device based on image fusion |
CN109254012A (en) * | 2018-10-09 | 2019-01-22 | 中北大学 | A kind of cracks of metal surface detection device and method based on semiconductor laser |
CN209911269U (en) * | 2019-04-03 | 2020-01-07 | 黑龙江科技大学 | Transmission light spot infrared thermal imaging detection device |
CN110400311A (en) * | 2019-08-01 | 2019-11-01 | 中北大学 | Feature extraction method of superalloy surface defect based on pulsed laser thermal imaging |
-
2020
- 2020-06-16 CN CN202010549632.9A patent/CN111537564B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111537564A (en) | 2020-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111537564B (en) | Metal micro-crack depth detection system and method based on transmission laser thermal imaging | |
CN103674839B (en) | A kind of visual Sample location operating system based on spot detection and method | |
CN100565175C (en) | Carry out the method for analysis of fatigue and detection with infrared thermal imagery | |
CN108760546A (en) | A kind of fatigue crack growth rate measurement method based on Infrared Thermography Technology | |
CN209606222U (en) | A kind of Fracture of Metal Material toughness specimen crack length on-Line Monitor Device | |
CN115156742A (en) | A real-time modification control system for laser processing parameters | |
CN111986187A (en) | Aerospace electronic welding spot defect detection method based on improved Tiny-YOLOv3 network | |
CN108398094B (en) | Coating Thickness Detection Method Based on the Intersection Point of Temperature Variation Slope Curve in K Range | |
CN116382388B (en) | Power battery heat insulation cotton cutting constant temperature control system based on data analysis | |
WO2025130554A1 (en) | Additive manufacturing quality inspection method and related device | |
CN118730600B (en) | A method and device for detecting abnormality of thermal imaging of uncooled infrared detector | |
CN110307904A (en) | A kind of temperature measuring equipment and temp measuring method of infrared thermal imaging camera lens | |
CN113465746B (en) | Full-automatic infrared temperature measurement system for industrial furnace temperature measurement | |
WO2025130555A1 (en) | Additive manufacturing quality inspection method and related apparatus | |
CN117723425A (en) | Method and device for measuring indentation depth of high-temperature monitored part in-situ indentation test | |
CN111272813A (en) | Temperature change rate detection method in curing process of part | |
US20020146057A1 (en) | System and method for non-contact temperature sensing | |
CN109580080A (en) | A kind of device and method measuring fluid field pressure at silk based on femtosecond laser | |
CN110308453A (en) | Multi-laser spot position detection device and method based on linear array CCD and FPGA | |
CN103528800A (en) | Optical athermal design effect detection system based on image processing | |
CN116576777A (en) | A three-dimensional measurement method for refractory bricks based on principal component analysis | |
CN109596222A (en) | A kind of micro- heat distribution test method and system | |
CN106441612A (en) | A friction pair three-point fusion temperature measurement system and temperature measurement method | |
CN112945704A (en) | Brinell hardness online detection system for intelligent factory | |
CN206311225U (en) | A kind of 3 points of fusion temp measuring systems of friction pair |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |