CN111521490B - Induction test device for hydrogen bond fracture of loaded coal rock - Google Patents
Induction test device for hydrogen bond fracture of loaded coal rock Download PDFInfo
- Publication number
- CN111521490B CN111521490B CN202010510561.1A CN202010510561A CN111521490B CN 111521490 B CN111521490 B CN 111521490B CN 202010510561 A CN202010510561 A CN 202010510561A CN 111521490 B CN111521490 B CN 111521490B
- Authority
- CN
- China
- Prior art keywords
- coal rock
- vacuum box
- charge
- hydrogen bond
- transparent vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003245 coal Substances 0.000 title claims abstract description 87
- 239000011435 rock Substances 0.000 title claims abstract description 83
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 68
- 239000001257 hydrogen Substances 0.000 title claims abstract description 68
- 238000012360 testing method Methods 0.000 title claims abstract description 38
- 230000006698 induction Effects 0.000 title claims abstract description 22
- 239000000523 sample Substances 0.000 claims abstract description 38
- 238000002329 infrared spectrum Methods 0.000 claims abstract description 28
- 230000001681 protective effect Effects 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims description 23
- 230000003595 spectral effect Effects 0.000 claims description 16
- 230000002265 prevention Effects 0.000 abstract description 4
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 230000008859 change Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000005670 electromagnetic radiation Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000004566 IR spectroscopy Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000011076 safety test Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
- G01N3/10—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
- G01N3/12—Pressure testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/003—Generation of the force
- G01N2203/0042—Pneumatic or hydraulic means
- G01N2203/0044—Pneumatic means
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
一种受载煤岩氢键断裂的感应试验装置,属于煤岩监测和事故防治技术领域。所述受载煤岩氢键断裂的感应试验装置,包括设置于透明真空箱内部的底座和电荷传感器,以及设置于透明真空箱外部的红外光谱分析仪和计算机,底座设置有带孔防护外壳,透明真空箱的底部设置有底部开关口,底部开关口与红外光谱分析仪通过通道连通,电荷传感器的顶端设置有电荷探头,计算机分别与透明真空箱、电荷传感器和红外光谱分析仪连接。所述受载煤岩氢键断裂的感应试验装置,能够模拟深层井下煤岩压力状态,并且能够从宏观上和微观上对煤岩样本进行测试分析,快速有效的判断出氢键断裂情况,为预测预报矿井动力灾害提供理论依据。
The invention relates to an induction test device for hydrogen bond fracture of loaded coal rock, which belongs to the technical field of coal rock monitoring and accident prevention and control. The induction test device for the rupture of the hydrogen bond of the loaded coal rock includes a base and a charge sensor arranged inside the transparent vacuum box, an infrared spectrum analyzer and a computer arranged outside the transparent vacuum box, the base is provided with a protective shell with holes, The bottom of the transparent vacuum box is provided with a bottom switch port, and the bottom switch port communicates with the infrared spectrum analyzer through a channel, and the top of the charge sensor is provided with a charge probe, and the computer is respectively connected with the transparent vacuum box, the charge sensor and the infrared spectrum analyzer. The induction test device for the hydrogen bond fracture of the loaded coal rock can simulate the pressure state of the deep underground coal rock, and can test and analyze the coal rock sample from the macroscopic and microscopic perspectives, and quickly and effectively judge the hydrogen bond fracture situation. It provides a theoretical basis for predicting and forecasting mine dynamic disasters.
Description
技术领域technical field
本发明涉及煤岩监测和事故防治技术领域,特别涉及一种受载煤岩氢键断裂的感应试验装置。The invention relates to the technical field of coal rock monitoring and accident prevention, in particular to an induction test device for hydrogen bond fracture of loaded coal rock.
背景技术Background technique
随着对煤炭资源需求的逐年增长以及采矿技术的进步,越来越多的煤矿进入了深部开发时期,深部开采成为煤炭行业发展的必然趋势。而由于深部煤岩的组成结构特征、变形破坏特征、能量聚释特征及工程相应特征均与浅部煤岩体明显不同,更易引发断裂塌方事故,造成生命财产损失,所以需要新的监测技术和防治技术。With the increasing demand for coal resources and the advancement of mining technology, more and more coal mines have entered the deep development period, and deep mining has become an inevitable trend in the development of the coal industry. However, since the composition and structure characteristics, deformation and failure characteristics, energy accumulation and release characteristics and corresponding engineering characteristics of deep coal and rock are obviously different from those of shallow coal and rock, it is more likely to cause fracture and landslide accidents, resulting in loss of life and property, so new monitoring technologies and prevention technology.
煤的基本结构具实是由多个煤大分子组成的分子团,分子间弱相互作用普遍存在,煤分子间和分子内部存在大量的氢键交联。而且,受载煤岩变形破裂过程中有电磁辐射信号,而产生电磁辐射是由于带电粒子变速运动造成的。所以电磁辐射的前提和基础是电荷的分离,也就是在宏观上表现出正负电荷,这些分离电荷的最终恢复,是煤岩体在宏观上表现为电中性的过程就是电磁辐射的过程。综上,电荷转移的过程也就是电磁辐射发生的过程。The basic structure of coal is indeed a molecular group composed of multiple coal macromolecules, weak interactions between molecules are common, and there are a large number of hydrogen bond crosslinks between and within coal molecules. Moreover, there are electromagnetic radiation signals in the process of deformation and fracture of loaded coal rocks, and the generation of electromagnetic radiation is caused by the variable speed movement of charged particles. Therefore, the premise and foundation of electromagnetic radiation is the separation of charges, that is, positive and negative charges on the macroscopic scale. The final recovery of these separated charges is the process of the coal rock mass being electrically neutral on the macroscopic scale, which is the process of electromagnetic radiation. In summary, the process of charge transfer is also the process of electromagnetic radiation.
现有研究计算了大分子有机物间的氢键相互作用,得到电荷的转移量越大,氢键相互作用越强的结论;以及当煤岩体变形破裂时,受影响的大部分为分子间的氢键,因为外力的作用不足以改变煤分子内部的构型。当氢键断裂发生时,必然伴随有电荷的转移。伴随着煤岩体的破坏,大量的氢键发生断裂,大量电荷进行转移。因此,煤体破坏过程中氢键的断裂为电荷的分离作出重要的贡献,也就是说,氢键的断裂,是煤岩电磁辐射发生的主要原因。因此,研究煤岩破裂过程中氢键断裂状态对于揭示煤岩电磁辐射机理以及煤岩动力灾害的机理具有重要的意义。Existing research has calculated the hydrogen bond interaction between macromolecular organic matter, and obtained the conclusion that the greater the amount of charge transfer, the stronger the hydrogen bond interaction; Hydrogen bonds, because the action of external force is not enough to change the internal configuration of coal molecules. When hydrogen bond breaking occurs, it must be accompanied by charge transfer. With the destruction of coal and rock mass, a large number of hydrogen bonds are broken, and a large number of charges are transferred. Therefore, the breaking of hydrogen bonds in the process of coal destruction makes an important contribution to the separation of charges, that is to say, the breaking of hydrogen bonds is the main cause of coal-rock electromagnetic radiation. Therefore, it is of great significance to study the hydrogen bond breaking state in the coal-rock fracture process to reveal the mechanism of coal-rock electromagnetic radiation and the mechanism of coal-rock dynamic disasters.
发明内容Contents of the invention
为了解决现有技术存在的技术问题,本发明提供了一种受载煤岩氢键断裂的感应试验装置,能够模拟深层井下煤岩压力状态,并且能够从宏观上和微观上对煤岩样本进行测试分析,快速有效的判断出氢键断裂情况,为预测预报矿井动力灾害提供理论依据。In order to solve the technical problems existing in the prior art, the present invention provides an induction test device for hydrogen bond fracture of loaded coal rocks, which can simulate the pressure state of deep underground coal rocks, and can conduct macroscopic and microscopic analysis of coal rock samples. Test analysis can quickly and effectively judge the hydrogen bond breaking situation, and provide a theoretical basis for predicting mine dynamic disasters.
为了实现上述目的,本发明的技术方案是:In order to achieve the above object, technical scheme of the present invention is:
一种受载煤岩氢键断裂的感应试验装置,包括设置于透明真空箱内部的底座和电荷传感器,以及设置于透明真空箱外部的红外光谱分析仪和计算机;An induction test device for hydrogen bond rupture of loaded coal rocks, comprising a base and a charge sensor arranged inside a transparent vacuum box, and an infrared spectrum analyzer and a computer arranged outside the transparent vacuum box;
所述底座设置有带孔防护外壳,带孔防护外壳用于套装煤岩样本;The base is provided with a protective casing with holes, and the protective casing with holes is used to cover coal and rock samples;
所述透明真空箱的底部设置有底部开关口,所述底部开关口与红外光谱分析仪通过通道连通,用以使破裂后的煤岩样本从透明真空箱进入红外光谱分析仪;The bottom of the transparent vacuum box is provided with a bottom switch port, and the bottom switch port communicates with the infrared spectrum analyzer through a channel, so that the cracked coal rock sample enters the infrared spectrum analyzer from the transparent vacuum box;
所述电荷传感器的顶端设置有电荷探头,用于探测电荷信号;The top of the charge sensor is provided with a charge probe for detecting charge signals;
所述计算机分别与透明真空箱、电荷传感器和红外光谱分析仪连接,计算机控制透明真空箱对煤岩样本施压,并接收透明真空箱的压力信号、电荷传感器的电荷信号和红外光谱分析仪的光谱信号。The computer is respectively connected with the transparent vacuum box, the charge sensor and the infrared spectrum analyzer, and the computer controls the transparent vacuum box to apply pressure to the coal rock sample, and receives the pressure signal of the transparent vacuum box, the charge signal of the charge sensor and the infrared spectrum analyzer. spectral signal.
进一步的,所述透明真空箱内部还设置有加热棒和温度传感器,所述加热棒和温度传感器分别与计算机连接,计算机控制加热棒加温,并接收温度传感器的温度信号。Further, a heating rod and a temperature sensor are arranged inside the transparent vacuum box, and the heating rod and the temperature sensor are respectively connected to a computer, and the computer controls the heating of the heating rod and receives a temperature signal from the temperature sensor.
进一步的,所述压力信号、电荷信号、光谱信号和温度信号依次经过接收模块、滤波器、调制器、A/D转换器和解调器输入到计算机中。Further, the pressure signal, charge signal, spectral signal and temperature signal are sequentially input into the computer through the receiving module, filter, modulator, A/D converter and demodulator.
进一步的,所述底部开关口设置有开关,所述开关与计算机连接,计算机控制底部开关口的开闭。Further, the bottom opening is provided with a switch, the switch is connected to a computer, and the computer controls the opening and closing of the bottom opening.
进一步的,所述透明真空箱设有压力表和泄压开关。Further, the transparent vacuum box is provided with a pressure gauge and a pressure release switch.
本发明的有益效果:Beneficial effects of the present invention:
1)本发明中的各部件连接精准、结构简单、体积小,保证各部件在安装过程和工作中的精确性,将误差降到最低,并且本发明具有足够的结构强度,耐久性好、操作简单方便、制作成本低、控制精度高,满足安全工作需求;1) The components in the present invention are precisely connected, simple in structure, and small in size, ensuring the accuracy of each component in the installation process and work, and minimizing errors, and the present invention has sufficient structural strength, good durability, and easy operation Simple and convenient, low production cost, high control precision, to meet the needs of safe work;
2)本发明通过真空箱模拟深层井下压力对煤岩样本进行感应实验,运用红外光谱技术和感应技术,具体通过红外光谱分析仪、电荷传感器和温度传感器从宏观上和微观上对煤岩样本受载氢键断裂情况进行测试分析,根据光谱信号和电荷信号数据图像能够快速有效的判断出氢键断裂情况,并根据温度和压力信号数据图像得到温度和压力对氢键断裂的影响,为预测预报矿井动力灾害提供理论依据;2) The present invention simulates the deep downhole pressure through a vacuum box to conduct induction experiments on coal and rock samples, using infrared spectrum technology and sensing technology, specifically through infrared spectrum analyzers, charge sensors and temperature sensors to macroscopically and microscopically affect the coal rock samples. Test and analyze the hydrogen-loaded bond breakage. According to the spectral signal and charge signal data image, the hydrogen bond breakage can be quickly and effectively judged, and the influence of temperature and pressure on hydrogen bond breakage can be obtained according to the temperature and pressure signal data image. Provide a theoretical basis for mine dynamic disasters;
3)本发明的实验数据能够为深层井下的地压灾害提供预警,为预测预警矿井动力灾害提供理论依据,尽量避免造成井下严重破坏和人员伤亡,降低深层井下工作的生命财产损失。3) The experimental data of the present invention can provide early warning for ground pressure disasters in deep underground mines, provide a theoretical basis for predicting and early warning mine dynamic disasters, avoid serious damage and casualties in underground mines, and reduce the loss of life and property in deep underground mines.
本发明的其他特征和优点将在下面的具体实施方式中部分予以详细说明。Other features and advantages of the present invention will be partially explained in the following detailed description.
附图说明Description of drawings
图1是本发明实施例提供的一种受载煤岩氢键断裂的感应试验装置的结构示意图;Fig. 1 is a structural schematic diagram of an induction test device for hydrogen bond fracture of loaded coal rock provided by an embodiment of the present invention;
图2是本发明实施例提供的计算机控制结构原理图;Fig. 2 is the schematic diagram of the computer control structure provided by the embodiment of the present invention;
图3是本发明实施例提供的常温下受载煤岩氢键断裂试验的程序框图;Fig. 3 is a program block diagram of the hydrogen bond fracture test of loaded coal rock under normal temperature provided by the embodiment of the present invention;
图4是本发明实施例提供的升温时受载煤岩氢键断裂试验的程序框图。Fig. 4 is a program block diagram of a hydrogen bond fracture test of loaded coal rock when the temperature is raised provided by the embodiment of the present invention.
说明书附图中的附图标记包括:The reference signs in the accompanying drawings of the specification include:
1-压力表,2-泄压开关,3-加热棒,4-带孔防护外壳,5-煤岩样本,6-底座,7-电荷探头,8-电荷传感器,9-底部开关口,10-通道,11-红外光谱分析仪,12-温度传感器,13-透明真空箱,14-计算机。1-pressure gauge, 2-pressure relief switch, 3-heating rod, 4-protective casing with holes, 5-coal rock sample, 6-base, 7-charge probe, 8-charge sensor, 9-bottom switch port, 10 -channel, 11-infrared spectrum analyzer, 12-temperature sensor, 13-transparent vacuum box, 14-computer.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them.
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“竖向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In describing the present invention, it should be understood that the terms "longitudinal", "transverse", "vertical", "upper", "lower", "front", "rear", "left", "right", The orientation or positional relationship indicated by "vertical", "horizontal", "top", "bottom", "inner", "outer", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and Simplified descriptions, rather than indicating or implying that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and thus should not be construed as limiting the invention.
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。In the description of the present invention, unless otherwise specified and limited, it should be noted that the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be mechanical connection or electrical connection, or two The internal communication of each element may be directly connected or indirectly connected through an intermediary. Those skilled in the art can understand the specific meanings of the above terms according to specific situations.
为了解决现有技术存在的问题,如图1至图4所示,本发明提供了一种受载煤岩氢键断裂的感应试验装置,包括设置于透明真空箱13内部的底座6和电荷传感器8,以及设置于透明真空箱13外部的红外光谱分析仪11和计算机14;In order to solve the problems existing in the prior art, as shown in Figures 1 to 4, the present invention provides an induction test device for hydrogen bond rupture of loaded coal rocks, including a
底座6设置有带孔防护外壳4,带孔防护外壳4用于套装煤岩样本5;The
透明真空箱13的底部设置有底部开关口9,底部开关口9与红外光谱分析仪11通过通道10连通,用以使破裂后的煤岩样本5从透明真空箱13进入红外光谱分析仪11;The bottom of the
电荷传感器8的顶端设置有电荷探头7,用于探测电荷信号;The top of the charge sensor 8 is provided with a
计算机14分别与透明真空箱13、电荷传感器8和红外光谱分析仪11连接,计算机14控制透明真空箱13对煤岩样本5施压,并接收透明真空箱13的压力信号、电荷传感器8的电荷信号和红外光谱分析仪11的光谱信号。The
本发明中,透明真空箱13通过计算机14控制实现抽气施压功能,模拟深层煤岩压力状态,满足契合现场工作的实际情况,透明真空箱13内部设有底座6,用于对带孔防护外壳4进行固定,将煤岩样本5套入带孔防护外壳4,固定于底座6,带孔防护外壳4满足不影响真空箱对煤岩样本5施加压力的同时,还能防止煤岩样本5炸裂对试验装置造成影响,在实际使用时,由于煤岩硬度很低,再结合带孔防护外壳4保护,碎裂不会对其他设备造成影响。透明真空箱13底部设有电荷传感器8,电荷传感器8顶端设有电荷探头7,电荷探头7和电荷传感器8相配合,对施压后的煤岩样本5进行电荷信号进行探测,用于分析受载煤岩氢键断裂时的电荷变化;当受载煤岩样本5氢键断裂时,产生电荷转移,电荷探头7进行探测,电荷传感器8实时将电荷信号输出并传入计算机14中,实现对受载煤岩样本5氢键断裂情况宏观上的感应试验。透明真空箱13设有底部开关口9,底部开关口9与通道10相连接,通道10另一端与红外光谱分析仪11相连,煤岩样本5受载破裂后,通过通道10进入红外光谱分析仪11进行红外辐射扫描分析,实现对煤岩样本5的回收检测。红外光谱技术是由物质分子中的成键原子吸收红外辐射而产生振动能级跃迁所引起的吸收光谱,有机物的红外光谱可以反映其化学结构特点,不同的特征振动频率(吸收峰)表现出不同基团的存在。红外光谱分析仪11运用红外光谱技术对煤岩的羟基氢键变化进行研究,可根据煤岩中光谱吸收带透射率变化,判断煤岩的羟基氢键处于不同的状态,分析煤岩羟基氢键的强度变化,判断出氢键发生断裂的状态,并将光谱信号输出传入计算机14中,实现对受载煤岩氢键断裂微观上的感应试验。In the present invention, the
如图1所示,透明真空箱13内部还设置有加热棒3和温度传感器12,加热棒3和温度传感器12分别与计算机14连接,计算机14控制加热棒3加温,并接收温度传感器12的温度信号。As shown in Figure 1, a
本发明中,加热棒3和温度传感器12相配合,分析温度对受载煤岩氢键断裂的影响,具体的,透明真空箱13上端连接加热棒3,通过计算机14控制其加热,模拟不同温度下对氢键断裂造成的影响,再由置于真空箱底端的温度传感器12,将对应的温度信号输出传入计算机14中,实现不同温度下受载煤岩氢键断裂的感应试验,进而实现温度和电荷相结合判断受载煤岩样本5氢键断裂情况,数据更加精确可靠,可参考意义强。In the present invention, the
如图2所示,压力信号、电荷信号、光谱信号和温度信号依次经过接收模块、滤波器、调制器、A/D转换器和解调器输入到计算机14中。压力信号、电荷信号、光谱信号和温度信号输入计算机14后,通过数据处理软件比如Matlab软件获得时间—氢键谱图—电荷—压力感应曲线和时间—氢键谱图—电荷—温度—压力—感应曲线。具体的,常温下受载煤岩氢键断裂试验时,计算机14通过接收模块将信号传入滤波器进行处理后,经过调制器对模拟信号进行编码调制,再通过A/D转换将模拟信号转换为数字信号,数字信号经过解调器译码解调后,经过发射器将数据传入计算机14中,通过对光谱信号、电荷感应数字信号和对应时间的记录,经过数据处理得到时间—氢键谱图—电荷—压力感应曲线,进而分析对氢键断裂影响规律;或者,升温时受载煤岩氢键断裂试验时,计算机14通过接收模块将信号传入滤波器进行处理后,经过调制器对模拟信号进行编码调制,再通过A/D转换将模拟信号转换为数字信号,数字信号经过解调器译码解调后,经过发射器将数据传入计算机14中,通过对对光谱数字信号、电荷感应数字信号、温度数字信号和对应时间的进行记录,经过数据处理得到时间—氢键谱图—电荷—温度—压力—感应曲线,进而分析对氢键断裂影响规律。As shown in FIG. 2 , the pressure signal, charge signal, spectral signal and temperature signal are input into the
本实施例中,底部开关口9设置有开关,开关与计算机14连接,计算机14控制底部开关口9的开闭。In this embodiment, the
透明真空箱13设有压力表1和泄压开关2。压力表1和泄压开关2置于透明真空箱13上,内部连接气压阀,压力表1用于试验时对真空箱内部压力情况进行观察,试验结束后泄压开关2开启,放出透明真空箱13内部压力,使箱内外压强一致,工作安全可靠,满足安全试验的要求。The
本发明的受载煤岩氢键断裂的感应试验装置的工作过程如下:The working process of the induction test device of the hydrogen bond fracture of the loaded coal rock of the present invention is as follows:
如图3所示,试验开始,计算机14控制透明真空箱13开始抽气施压工作,对放置于带孔防护外壳4内部的煤岩样本5模拟深层井下压力状态,进行施压;同时,电荷探头7开始工作,检测受载煤岩样本5因氢键断裂释放产生的电荷;当煤岩样本5破裂后,透明真空箱13停止施压工作,通过电荷传感器8将电荷信号传入计算机14中;然后,底部开关口9开启,煤岩样本5通过通道10进入红外光谱分析仪11中;红外光谱分析仪11运用红外光谱技术对煤岩的羟基氢键变化进行研究,根据煤岩中光谱吸收带透射率变化,判断煤岩的羟基氢键处于不同的状态,分析煤岩羟基氢键的强度变化,判断出氢键发生断裂的状态,将光谱信号也输出传入计算机14中,得到时间—氢键谱图—电荷—压力感应曲线;As shown in Figure 3, when the test starts, the
氢键断裂伴随的不只是电荷释放,还有能量变化,氢键断裂需要吸收能量,当井下温度不同或井下设备工作产生热量时,对受载煤岩氢键断裂程度和速率造成影响,为实现判断不同温度对受载煤岩样本5氢键断裂的影响,引入加热装置;Hydrogen bond breaking is not only accompanied by charge release, but also energy change. Hydrogen bond breaking needs to absorb energy. When the downhole temperature is different or the downhole equipment generates heat, it will affect the degree and rate of hydrogen bond breaking in the loaded coal rock. To achieve To determine the influence of different temperatures on the hydrogen bond breakage of the loaded
如图4所示,试验开始,计算机14控制加热棒3开始工作,对试验装置进行加热;同时,计算机14控制透明真空箱13开始抽气施压工作,对煤岩样本5进行模拟受载施压;电荷探头7开始工作,检测加热后受载煤岩样本5因氢键断裂释放产生的电荷,温度传感器12也开启对试验装置温度进行检测;当煤岩样本5破裂后,透明真空箱13停止施压工作,电荷传感器8将电荷信号传入计算机14中,温度传感器12将温度信号传入计算机14;然后,底部开关口9开启,通过通道10将煤岩样本5送入红外光谱分析仪11中,红外光谱分析仪11运用红外光谱技术对煤岩的羟基氢键变化进行研究,可根据煤岩中光谱吸收带透射率变化,判断煤岩的羟基氢键处于不同的状态,分析煤岩羟基氢键的强度变化,判断出氢键发生断裂的状况,红外光谱分析仪11将光谱信号传入计算机14中,得到时间—氢键谱图—电荷—温度—压力—感应曲线。As shown in Figure 4, when the test starts, the
试验结束后,通过泄压开关2使装置内外压强平衡,试验工作安全可靠。After the test is over, the internal and external pressure of the device is balanced through the
本发明中,煤岩样本5的破裂可由试验人员观察得到,计算机14实时记录真空箱的压力数据。In the present invention, the rupture of the
本发明在实际使用时,计算机14可根据需要调节透明真空箱13抽气施压的压强和速度,进行多次试验,实现更加契合现场工作的实际情况;计算机14也可同时控制加热棒3开启,根据需要调节加热温度和速度,进行多次试验,氢键断裂需要吸收能量,不同温度氢键断裂程度不同,实现判断不同温度对受载煤岩样本5氢键断裂的影响;计算机14对压力和温度进行控制,根据需要调节透明真空箱13抽气施压速度和加热棒3加热温度,并进行多次试验,试验完成根据煤岩破裂过程中光谱吸收带透射率变化、电荷感应和温度变化,通过接收多次信号整理归纳,最后可得出时间—氢键谱图—电荷—温度—压力曲线,进而从微观和宏观上分析对氢键断裂影响规律,经过多次测试,数据真实可靠;实验得出的规律及影响因素,对深层井下工作制度和预防提供参考价值,即保护了井下设备的安全,也保护了现场工作人员的安全,有利于深层井下的防护工作。When the present invention is used in practice, the
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications, substitutions and modifications can be made to these embodiments without departing from the principle and spirit of the present invention. The scope of the invention is defined by the claims and their equivalents.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010510561.1A CN111521490B (en) | 2020-06-08 | 2020-06-08 | Induction test device for hydrogen bond fracture of loaded coal rock |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010510561.1A CN111521490B (en) | 2020-06-08 | 2020-06-08 | Induction test device for hydrogen bond fracture of loaded coal rock |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111521490A CN111521490A (en) | 2020-08-11 |
CN111521490B true CN111521490B (en) | 2023-03-14 |
Family
ID=71911428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010510561.1A Active CN111521490B (en) | 2020-06-08 | 2020-06-08 | Induction test device for hydrogen bond fracture of loaded coal rock |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111521490B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116359251B (en) * | 2023-05-31 | 2024-01-02 | 清华大学 | Indoor model test method and device for crack propagation mechanism under high-energy radiation action of dry-hot rock |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5876121A (en) * | 1994-08-05 | 1999-03-02 | Mcgill University | Substrate temperature measurement by infrared spectroscopy |
JP2004138560A (en) * | 2002-10-18 | 2004-05-13 | Nippon Shokubai Co Ltd | Sample holding heating device for infrared spectrum measurement, infrared spectrum analytical method for solid sample and developing method for carrier including catalist component |
JP2004340803A (en) * | 2003-05-16 | 2004-12-02 | Asahi Kasei Corp | Cell for infrared analytical measurement and measuring method using the same |
CN103116099A (en) * | 2013-01-25 | 2013-05-22 | 辽宁工程技术大学 | Testing device for coal-rock temperature affection on coal-rock electric charges |
CN103135017A (en) * | 2013-01-25 | 2013-06-05 | 辽宁工程技术大学 | Test device for charge induction of coal rocks under load |
CN110044739A (en) * | 2019-04-17 | 2019-07-23 | 辽宁工程技术大学 | A kind of loaded coal rock microseism and electric charge induction monitoring test device and monitoring method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101907659B (en) * | 2010-06-25 | 2013-03-20 | 华北电力大学 | Temperature controllable PEA space charge test device |
-
2020
- 2020-06-08 CN CN202010510561.1A patent/CN111521490B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5876121A (en) * | 1994-08-05 | 1999-03-02 | Mcgill University | Substrate temperature measurement by infrared spectroscopy |
JP2004138560A (en) * | 2002-10-18 | 2004-05-13 | Nippon Shokubai Co Ltd | Sample holding heating device for infrared spectrum measurement, infrared spectrum analytical method for solid sample and developing method for carrier including catalist component |
JP2004340803A (en) * | 2003-05-16 | 2004-12-02 | Asahi Kasei Corp | Cell for infrared analytical measurement and measuring method using the same |
CN103116099A (en) * | 2013-01-25 | 2013-05-22 | 辽宁工程技术大学 | Testing device for coal-rock temperature affection on coal-rock electric charges |
CN103135017A (en) * | 2013-01-25 | 2013-06-05 | 辽宁工程技术大学 | Test device for charge induction of coal rocks under load |
CN110044739A (en) * | 2019-04-17 | 2019-07-23 | 辽宁工程技术大学 | A kind of loaded coal rock microseism and electric charge induction monitoring test device and monitoring method |
Non-Patent Citations (5)
Title |
---|
冲击破坏条件下煤的红外光谱特征研究;王其江等;《煤矿安全》;20170920(第09期);全文 * |
原位漫反射红外光谱中采用新的实验手段研究煤岩显微组分中的氢键;李东涛等;《高等学校化学学报》;20030515(第04期);全文 * |
煤中氢键类型的研究煤中氢键类型的研究;陈茺等;《燃料化学学报》;19980415(第02期);第140页 * |
煤体冲击破坏过程中的近磁场突变效应及其机理研究;李成武等;《采矿与安全工程学报》;20130715(第04期);全文 * |
煤岩破裂过程中电荷感应机理分析;唐治等;《岩土工程学报》;20130615(第06期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111521490A (en) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020133729A1 (en) | Method and system for in-situ test of mechanical behaviors and seepage characteristics of coal rock mass under influence of real mining induced stress | |
CN107796646A (en) | Simulate the experimental rig and test method of deep-lying tunnel Blasting Excavation off-load | |
CN106885755A (en) | A kind of underground coal mine quickly determines the method and apparatus of coal-bed gas parameter | |
CN203055478U (en) | Test system for whole leakage rate of containment vessel | |
CN111521490B (en) | Induction test device for hydrogen bond fracture of loaded coal rock | |
CN102830038A (en) | Apparatus and method for rapid determination of parameters of residual gas on mining working face of underground coal mine | |
CN108548726B (en) | Rock crack growth testing device under thermosetting coupling condition | |
CN105424905A (en) | Gas abnormity desorption characteristic test device and method in coal body destruction process | |
CN200995920Y (en) | Stiff cageway state inspector | |
CN105738225B (en) | Deep hole rock/upper home position testing method and test machine people | |
CN104103155B (en) | A kind of oil gas dangerous matter sources grading forewarning system system | |
CN102913286A (en) | Drilling cutting method impact dangerousness detection automation analyzing system and method for coal mines | |
CN103884666A (en) | Distributed-type laser combustible gas concentration monitoring method and device | |
CN105510148A (en) | Device for testing packer rubber barrel contact stress at high temperature and method thereof | |
CN110646178A (en) | A fully automatic drill stand multifunctional test bench | |
CN103926479A (en) | Charge monitoring device in coal gas migration process and monitoring method thereof | |
CN205067044U (en) | Infilled wall combustible gas dynamic response test device that explodes | |
CN113703037A (en) | Data acquisition method for industrial detonator in blasting operation field | |
CN103883353A (en) | Distribution laser gas purely passive warning and monitoring device | |
CN108225134B (en) | Sound, light and gas collecting device after explosive device explosion | |
CN201074528Y (en) | Acoustic emission sensor | |
CN102879732B (en) | Method and system for testing board card | |
CN207487990U (en) | Simulate the experimental rig of deep-lying tunnel Blasting Excavation off-load | |
CN103616293B (en) | Colliery old gob caving band fragmented rock body secondary deformation compaction simulation experimental provision | |
CN102768165A (en) | Instrument and method for quickly detecting residual gas volume by high temperature method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |