CN111508841A - Semiconductor structure and manufacturing method thereof - Google Patents
Semiconductor structure and manufacturing method thereof Download PDFInfo
- Publication number
- CN111508841A CN111508841A CN201910093348.2A CN201910093348A CN111508841A CN 111508841 A CN111508841 A CN 111508841A CN 201910093348 A CN201910093348 A CN 201910093348A CN 111508841 A CN111508841 A CN 111508841A
- Authority
- CN
- China
- Prior art keywords
- gate
- drain
- layer
- trench
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 86
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000002955 isolation Methods 0.000 claims abstract description 68
- 239000000758 substrate Substances 0.000 claims abstract description 52
- 238000000151 deposition Methods 0.000 claims abstract description 10
- 239000011800 void material Substances 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 28
- 125000006850 spacer group Chemical group 0.000 claims 2
- 238000013500 data storage Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 45
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 30
- 239000000377 silicon dioxide Substances 0.000 description 15
- 235000012239 silicon dioxide Nutrition 0.000 description 15
- 238000005530 etching Methods 0.000 description 12
- 238000001312 dry etching Methods 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/025—Manufacture or treatment of FETs having insulated gates [IGFET] of vertical IGFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/34—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明提供了一种半导体结构及其制造方法,所述制造方法包括如下步骤:提供一表面形成有源区的半导体衬底;在半导体衬底上形成沟槽且沟槽的相对侧边分别形成连接沟槽的源/漏;在沟槽中形成栅极,栅极与沟槽之间还形成有栅介质层;部分去除栅极与源/漏重叠区域之间的栅介质层;在栅极的上方沉积隔离层,以于栅极与源/漏重叠区域之间形成密闭的空隙层。本发明通过在晶体管的栅漏交叠区引入空隙层取代栅介质层,减小了栅漏电压,有效地抑制了栅致漏极漏电流,从而提高了器件可靠性并减少了器件功耗,使DRAM器件的数据保存及读写性能得到了提升。
The present invention provides a semiconductor structure and a manufacturing method thereof, the manufacturing method comprising the following steps: providing a semiconductor substrate with an active area formed on the surface; forming a groove on the semiconductor substrate and forming a source/drain connected to the groove on the opposite sides of the groove; forming a gate in the groove, and forming a gate dielectric layer between the gate and the groove; partially removing the gate dielectric layer between the gate and the source/drain overlapping area; depositing an isolation layer above the gate to form a closed gap layer between the gate and the source/drain overlapping area. The present invention reduces the gate-drain voltage and effectively suppresses the gate-induced drain leakage current by introducing a gap layer to replace the gate dielectric layer in the gate-drain overlapping area of the transistor, thereby improving the device reliability and reducing the device power consumption, so that the data storage and read-write performance of the DRAM device are improved.
Description
技术领域technical field
本发明涉及半导体集成电路制造领域,特别是涉及一种半导体结构及其制造方法。The present invention relates to the field of semiconductor integrated circuit manufacturing, in particular to a semiconductor structure and a manufacturing method thereof.
背景技术Background technique
DRAM(Dynamic Random Access Memory),即动态随机存取存储器,是一种广泛应用的存储器件。随着对DRAM储存容量的要求不断提高,晶圆单位面积上的器件密度随之增加,设计特征尺寸随之减小。为了确保DRAM器件不断做小时,储存单元的数据保存时间以及刷新特性仍能达到设计要求,在DRAM器件的设计中,字线结构的开发与优化是其中的重要环节。DRAM (Dynamic Random Access Memory), namely dynamic random access memory, is a widely used storage device. As the requirements for DRAM storage capacity continue to increase, the device density per unit area of the wafer increases and the design feature size decreases. In order to ensure that DRAM devices continue to operate for hours, the data retention time and refresh characteristics of memory cells can still meet the design requirements. In the design of DRAM devices, the development and optimization of word line structures are an important part of it.
目前,在现有的DRAM字线结构中,在栅漏交叠区的栅极(gate)金属层和漏极(drain)掺杂区之间有栅氧化层进行隔离。当栅漏交叠区的栅漏电压较大时,交叠区界面附近硅衬底中的电子在价带和导带之间发生带间隧穿(band-to-band tunneling),进而形成漏电流,即栅致漏极漏电流(GIDL,gate-induced drain leakage)。栅致漏极漏电流会随着器件尺寸减小、栅氧化层减薄而愈加显著。栅致漏极漏电流过大会降低器件可靠性并增加器件功耗,对DRAM器件的数据保存及读写造成不良影响。Currently, in the existing DRAM word line structure, there is a gate oxide layer between the gate metal layer and the drain doped region in the gate-drain overlap region for isolation. When the gate-drain voltage of the gate-drain overlap region is large, the electrons in the silicon substrate near the interface of the overlap region undergo band-to-band tunneling between the valence band and the conduction band, thereby forming a drain Current, namely gate-induced drain leakage current (GIDL, gate-induced drain leakage). The gate-induced drain leakage current will become more significant as the device size decreases and the gate oxide is thinned. Excessive gate-induced drain leakage current will reduce the reliability of the device and increase the power consumption of the device, which will adversely affect the data storage and reading and writing of the DRAM device.
因此,有必要提出一种新的半导体结构及其制造方法,解决上述问题。Therefore, it is necessary to propose a new semiconductor structure and a manufacturing method thereof to solve the above problems.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种半导体结构及其制造方法,用于解决现有技术中因栅致漏极漏电流过大而影响半导体器件可靠性和功耗的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a semiconductor structure and a manufacturing method thereof, which are used to solve the problem that the reliability and power consumption of semiconductor devices are affected by excessive gate-induced drain leakage current in the prior art. The problem.
为实现上述目的及其它相关目的,本发明提供了一种半导体结构的制造方法,其特征在于,包括如下步骤:In order to achieve the above object and other related objects, the present invention provides a method for manufacturing a semiconductor structure, which is characterized in that it includes the following steps:
提供一半导体衬底,所述半导体衬底的表面形成有源区;providing a semiconductor substrate, the surface of which forms an active region;
在所述有源区上设置沟槽,所述沟槽的相对侧边分别形成有源/漏,所述源/漏连接到所述沟槽;A trench is provided on the active region, and source/drain is formed on opposite sides of the trench, and the source/drain is connected to the trench;
在所述沟槽中形成栅极,所述栅极与所述沟槽之间还形成有栅介质层;A gate is formed in the trench, and a gate dielectric layer is further formed between the gate and the trench;
部分去除所述栅极与所述源/漏重叠区域之间的所述栅介质层;partially removing the gate dielectric layer between the gate electrode and the source/drain overlap region;
在所述栅极的上方沉积隔离层,以于所述栅极与所述源/漏重叠区域之间形成密闭的空隙层。An isolation layer is deposited over the gate to form a closed void layer between the gate and the source/drain overlap region.
作为本发明的一种可选方案,所述空隙层的底部至少不低于所述源/漏的底部。As an optional solution of the present invention, the bottom of the void layer is at least not lower than the bottom of the source/drain.
作为本发明的一种可选方案,所述栅极的顶部高于所述源/漏的底部且低于所述沟槽的顶部。As an optional solution of the present invention, the top of the gate is higher than the bottom of the source/drain and lower than the top of the trench.
作为本发明的一种可选方案,所述空隙层的顶部至少不高于所述栅极的顶部。As an optional solution of the present invention, the top of the void layer is at least not higher than the top of the gate.
作为本发明的一种可选方案,所述隔离层的顶部与所述沟槽的顶部齐平;所述隔离层的底部与所述栅极的顶部齐平。As an optional solution of the present invention, the top of the isolation layer is flush with the top of the trench; the bottom of the isolation layer is flush with the top of the gate.
作为本发明的一种可选方案,所述半导体衬底包含P型半导体衬底,所述源/漏包含N型掺杂源/漏。As an optional solution of the present invention, the semiconductor substrate includes a P-type semiconductor substrate, and the source/drain includes an N-type doped source/drain.
本发明还提供了一种半导体结构,包括:The present invention also provides a semiconductor structure, comprising:
半导体衬底,所述半导体衬底的表面形成有有源区;a semiconductor substrate, an active region is formed on the surface of the semiconductor substrate;
沟槽,位于所述有源区上,所述沟槽的相对侧边分别形成有源/漏,所述源/漏连接到所述沟槽;a trench, located on the active region, the opposite sides of the trench are respectively formed with source/drain, and the source/drain is connected to the trench;
栅极,位于所述沟槽中;a gate located in the trench;
栅介质层,位于所述栅极与所述沟槽之间,所述栅介质层的顶部低于所述栅极的顶部;a gate dielectric layer, located between the gate and the trench, the top of the gate dielectric layer is lower than the top of the gate;
隔离层,位于所述栅极的上方;an isolation layer, located above the gate;
空隙层,形成于所述栅极与所述源/漏重叠区域之间,位于所述栅介质层的上方。A void layer is formed between the gate electrode and the source/drain overlap region, and is located above the gate dielectric layer.
作为本发明的一种可选方案,所述空隙层的底部至少不低于所述源/漏底部。As an optional solution of the present invention, the bottom of the void layer is at least not lower than the bottom of the source/drain.
作为本发明的一种可选方案,所述栅极的顶部高于所述源/漏的底部且低于所述沟槽的顶部。As an optional solution of the present invention, the top of the gate is higher than the bottom of the source/drain and lower than the top of the trench.
作为本发明的一种可选方案,所述空隙层的顶部至少不高于所述栅极的顶部。As an optional solution of the present invention, the top of the void layer is at least not higher than the top of the gate.
如上所述,本发明提供了一种半导体结构及其制造方法,通过在晶体管的栅漏交叠区引入空隙层取代栅介质层,减小了栅漏电压,有效地抑制了栅致漏极漏电流,从而提高了器件可靠性并减少了器件功耗,使DRAM器件的数据保存及读写性能得到了提升。As described above, the present invention provides a semiconductor structure and a manufacturing method thereof. By introducing a void layer in the gate-drain overlap region of a transistor to replace the gate dielectric layer, the gate-drain voltage is reduced and gate-induced drain leakage is effectively suppressed. Therefore, the reliability of the device is improved, the power consumption of the device is reduced, and the data storage and read/write performance of the DRAM device are improved.
附图说明Description of drawings
图1显示为本发明实施例一中提供的半导体结构的制造方法所得半导体结构的俯视图。FIG. 1 is a top view of the semiconductor structure obtained by the method for fabricating the semiconductor structure provided in the first embodiment of the present invention.
图2至图10显示为本发明实施例一中提供半导体结构的制造方法中各步骤在图1的aa’处的截面图。2 to 10 are cross-sectional views of each step in the manufacturing method for providing a semiconductor structure according to Embodiment 1 of the present invention at aa' of FIG. 1 .
图11至图12显示为本发明实施例二中提供的半导体结构在图1的aa’处的截面图。11 to 12 are cross-sectional views of the semiconductor structure provided in the second embodiment of the present invention taken at aa' of FIG. 1 .
元件标号说明Component label description
100 半导体衬底100 Semiconductor substrates
100a 有源区100a active area
100b 浅沟槽隔离结构100b Shallow Trench Isolation Structure
101 源/漏101 Source/Drain
102 沟槽102 Groove
103 栅介质层103 gate dielectric layer
104 栅极104 grid
104a 栅极材料层104a gate material layer
105 隔离层105 isolation layer
105a 隔离材料层105a Isolation material layer
106 空隙层106 void layer
106a 空隙沟槽106a void groove
107 硬掩膜层107 Hard mask layer
107a 硬掩膜材料层107a Hard mask material layer
108 栅漏交叠区108 Gate-Drain Overlap
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其它优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1至图12。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。See Figures 1 to 12. It should be noted that the diagrams provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, although the diagrams only show the components related to the present invention rather than the number, shape and the number of components in actual implementation. For dimension drawing, the shape, quantity and proportion of each component can be arbitrarily changed during actual implementation, and the component layout shape may also be more complicated.
实施例一Example 1
请参阅图1至图10,本实施例提供了一种半导体结构的制造方法,包括如下步骤:Referring to FIG. 1 to FIG. 10 , the present embodiment provides a method for fabricating a semiconductor structure, including the following steps:
提供一半导体衬底100,所述半导体衬底100的表面形成有源区;A
在所述有源区上设置沟槽102,所述沟槽102的相对侧边分别形成有源/漏101,所述源/漏101连接到所述沟槽102;A
在所述沟槽102中形成栅极104,所述栅极与所述沟槽之间还形成有栅介质层103;A
部分去除所述栅极104与所述源/漏101重叠区域之间的所述栅介质层103;Partially remove the
在所述栅极104的上方沉积隔离层105,以于所述栅极104与所述源/漏101重叠区域之间形成密闭的空隙层106。An
如图1所示,是本实施例中提供的半导体结构的制造方法所得半导体结构的俯视图。图2至图11是本实施例中提供的半导体结构的制造方法中各步骤在图1的aa’处的截面图。As shown in FIG. 1 , it is a top view of the semiconductor structure obtained by the manufacturing method of the semiconductor structure provided in this embodiment. 2 to 11 are cross-sectional views at aa' of FIG. 1 of each step in the manufacturing method of the semiconductor structure provided in this embodiment.
作为示例,如图1至图4所示,本实施例中的所述半导体结构包含应用于DRAM器件的埋入式字线结构。在半导体衬底100上形成有若干个有源区100a和分隔所述有源区的浅沟槽隔离结构100b;所述源/漏101形成于所述有源区100a上;所述沟槽102形成于所述有源区100a和所述浅沟槽隔离结构100b上并连通多个所述有源区100a。需要注意的是,图1中未显示被所述有源区100a和所述浅沟槽隔离结构100b所覆盖的所述半导体衬底100,图2至图4中未显示所述浅沟槽隔离结构100b。在本实施例中,所述半导体衬底100上形成有若干个有源区100a和分隔所述有源区100a的浅沟槽隔离结构100b,通过在所述有源区100a上进行离子注入工艺形成源/漏101。可选地,所述半导体衬底100包含P型硅衬底,所述源/漏101包含N型掺杂源/漏,所述浅沟槽隔离结构100b包含二氧化硅层。本实施例中,所述源/漏101是通过在所述有源区100a上进行掺杂后同时形成的,根据在晶体管结构中的连接关系可以进一步区分为源极或漏极,如图11所示,图中沟槽左侧连接位线的所述源/漏101为源极,沟槽右侧连接电容的所述源/漏101为漏极。如图1所示,所述有源区100a按一定间隔在所述半导体衬底100周期性排列,所形成的沟槽102横向贯通若干个所述有源区100a以及所述有源区100a之间的所述浅沟槽隔离结构100b。通过在所述沟槽102内形成字线结构,使所述字线结构连接若干个所述有源区100a。As an example, as shown in FIGS. 1 to 4 , the semiconductor structure in this embodiment includes a buried word line structure applied to a DRAM device. A plurality of
作为示例,如图2至图4所示,在所述半导体衬底100上形成沟槽102的过程包括如下步骤:As an example, as shown in FIGS. 2 to 4 , the process of forming the
在所述半导体衬底100上形成硬掩膜材料层107a,如图2所示;forming a hard
通过光刻和刻蚀形成图形化的硬掩膜层107,如图3所示;A patterned
以所述硬掩膜层107作为刻蚀掩膜,通过干法刻蚀形成所述沟槽102,如图4所示。Using the
在本实施中,在形成所述沟槽102前,所述半导体衬底100上已形成了源/漏101和浅沟槽隔离结构100b,因此,所述硬掩膜材料层107a沉积于所述源/漏101和所述浅沟槽隔离结构100b的上表面,如图2所示。可选地,所述硬掩膜材料层107a包含二氧化硅层。通过对所述硬掩膜材料层107a进行光刻和刻蚀,得到图形化的硬掩膜层107,如图3所示。通过干法刻蚀所形成的沟槽102贯穿所述源/漏101并接触到所述半导体衬底100,即所述沟槽102的底部至少低于所述源/漏101的底部,如图4所示。在图4中,所述沟槽102将所述源/漏101分隔为左侧的源极和右侧的漏极。需要指出的是,本发明并不限定所述沟槽102、所述源/漏101和所述浅沟槽隔离结构100b的形成顺序。例如,在其他实施例中,也可以先在所述半导体衬底100上形成所述沟槽102,并引入牺牲层覆盖所述沟槽102,再通过离子注入在所述半导体衬底100上形成所述源/漏101。此外,所述硬掩膜材料层107a除了二氧化硅层外,还可包含形成于上层的无定形碳层,以提高干法刻蚀时的刻蚀选择比,并在干法刻蚀后去除残余的所述无定形碳层。In this embodiment, before the
作为示例,如图5所示,在所述沟槽102的表面形成栅介质层103。可选地,所述栅介质层103包含二氧化硅层,形成所述二氧化硅层的方法包含采用炉管热氧化工艺在所述沟槽102的侧壁及底部的硅材料上生长二氧化硅层。在本实施例中,由于除了所述沟槽102的表面外的其他位置都被已二氧化硅层所覆盖,因此炉管热氧化工艺只会在所述沟槽102的表面位置的硅材料上生成所述二氧化硅层。As an example, as shown in FIG. 5 , a
作为示例,如图6至图7所示,在所述沟槽102中形成所述栅极104的过程包括如下步骤:As an example, as shown in FIGS. 6 to 7 , the process of forming the
在所述沟槽102中沉积栅极材料层104a,所述栅极材料层104a至少填满所述沟槽102;depositing a
通过回刻去除所述沟槽102中的部分所述栅极材料层104a,剩余的部分所述栅极材料层104a形成所述栅极104,所述栅极104的顶部高于所述源/漏101的底部且低于所述沟槽102的顶部。Part of the
可选地,如图6所示,通过化学气相沉积或原子层沉积等工艺,在所述硬掩膜层107上及所述沟槽102中沉积栅极材料层104a。所述栅极材料层104a包含钨金属层。在图6中,通过回刻工艺去除所述硬掩膜层107上及所述沟槽102中的部分所述栅极材料层104a,所述沟槽102底部剩余的部分即形成所述栅极104,如图7所示。所述回刻工艺可以选择干法刻蚀或湿法刻蚀。Optionally, as shown in FIG. 6 , a
此外,作为本实施例的一个可选方案,在沉积所述栅极材料层104a前,还可以先沉积一层粘附层,例如氮化钛层,以改善所述栅极材料层104a与所述沟槽102表面的栅氧化层的结合性能,防止出现分层开裂。在图7中,回刻去除部分所述栅极材料层104a时,也同时去除这部分所述栅极材料层104a下层的所述粘附层。In addition, as an optional solution of this embodiment, before depositing the
作为示例,如图8所示,去除所述沟槽102侧壁上的部分所述栅介质层103的方法包括干法刻蚀或湿法刻蚀,通过刻蚀使所述栅介质层103的顶部低于所述栅极104的顶部。可选地,所述栅介质层103包含二氧化硅层,所述干法刻蚀可选CF4、CHF3等CF系气体作为刻蚀气体进行各向同性刻蚀,或者可采用DHF等药液对所述二氧化硅层进行湿法刻蚀。在刻蚀过程中,位于所述沟槽102侧壁上部位置暴露在外的部分所述栅介质层103被刻蚀去除,且随着刻蚀的进行,所述栅极材料层104a与所述沟槽102侧壁之间的部分所述栅介质层103也将被刻蚀去除,并在所述源/漏101、所述栅极104和所述栅介质层103之间形成一沟槽结构,在本发明中将其定义为空隙沟槽106a。在图8中,所述栅极104的左右两侧各形成了一道所述空隙沟槽106a。As an example, as shown in FIG. 8 , the method for removing part of the
需要指出的是,在本实施例中,所述空隙沟槽106a的底部高于所述源/漏101的顶部。也即是说,所述空隙沟槽106a不会延伸进入所述源/漏101下层的所述半导体衬底100中。所述半导体衬底100与所述栅极104之间还是由所述栅介质层103,即二氧化硅层所隔离的。在本发明的其他实施方案中,所述空隙沟槽106a也可以进一步延伸进入所述源/漏101下层的所述半导体衬底100中,即所述半导体衬底100与所述栅极104之间的部分区域由所述空隙沟槽106a隔离。上述区别决定了本发明所得的晶体管结构的栅漏交叠区以及部分沟道区域的隔离介质的构成,对于所述隔离介质的取舍将对所述晶体管的栅致漏极漏电流及开关特性等性能产生重要影响。本实施例中,沟道区域的隔离介质将完全由二氧化硅栅介质层构成,这就确保了所得器件具有较好的开关特性。It should be noted that, in this embodiment, the bottom of the
作为示例,如图9至图10所示,在所述栅极104上方形成所述隔离层105的过程包括如下步骤:As an example, as shown in FIG. 9 to FIG. 10 , the process of forming the
在所述硬掩膜层107的表面及所述沟槽102中所述栅极104的上方沉积隔离材料层105a;depositing an
去除所述硬掩膜层107表面的所述隔离材料层105a,在所述沟槽102中残留的部分所述隔离材料层105a形成所述隔离层105,并在所述源/漏101、所述栅极104和所述栅介质层103之间形成空隙层106。The
可选地,所述空隙层106的顶部至少不高于所述栅极104的顶部。这确保了所述空隙层106仅存在于所述栅极104与所述源/漏101之间,而不会向上侵入所述隔离层105中,进而影响所述隔离层105的隔离效果。Optionally, the top of the
可选地,通过化学气相沉积或原子层沉积等方法在所述硬掩膜层107的表面及所述沟槽102中所述栅极104的上方沉积隔离材料层105a,所述隔离材料层105a包含氮化硅层,如图9所示。通过回刻工艺或化学机械研磨去除所述硬掩膜层107表面的所述隔离材料层105a,在所述沟槽102中残留的部分所述隔离材料层105a形成所述隔离层105。可选地,所述回刻工艺或化学机械研磨还进一步去除所述硬掩膜层107,最终使所述隔离层105的顶部与所述源/漏101的表面齐平,如图10所示。Optionally, an
具体地,在所述沟槽102中所述栅极104的上方沉积所述隔离材料层105a时,需要确保所述空隙沟槽106a中不会由于所述隔离材料层105a的沉积而被填满,以在所述源/漏101、所述栅极104和所述栅介质层103之间形成空隙层106。因此,在使用化学气相沉积沉积所述隔离材料层105a时,可以采用沉积速率较高、台阶覆盖能力相对较弱的等离子体增强化学气相沉积(PECVD)或常压化学气相沉积(APCVD),使所述空隙沟槽106a中还未沉积所述隔离材料层105a或所述隔离材料层105a沉积较少时,所述空隙沟槽106a的顶部已经因沉积而封口闭合,在所述空隙沟槽106a中形成所述空隙层106。由于所述栅介质层103在晶体管结构中相对很薄,由所述栅介质层103形成的所述空隙沟槽106a的开口也很小,因此采用现有的沉积工艺完全可以现实在所述空隙沟槽106a中不沉积或少沉积所述隔离材料层105a。可选地,当所述隔离材料层105a为氮化硅层时,所述氮化硅层与所述沟槽102侧壁的硅衬底可能存在应力问题,可先在所述沟槽102侧壁沉积垫氧层以改善应力问题,所述垫氧层的厚度要远小于所述栅介质层103的厚度,不影响所述空隙层106的形成。Specifically, when depositing the
需要指出的是,在图10中所显示的是在本实施例中所述空隙沟槽106a中完全未沉积所述隔离材料层105a的情况。在本发明的其他实施方案中,所述空隙沟槽106a中也可能基于沉积制程工艺,在其侧壁及底部沉积所述隔离材料层105a的薄层,而在所述空隙沟槽106a的中间位置形成所述空隙层106,但这并不会影响本发明所取得的技术效果。此外,在本发明的其他实施方案中,还可以先在所述空隙沟槽106a中填充牺牲材料层,然后再沉积所述隔离材料层105a。在所述隔离材料层105a沉积完成后,再通过干法或湿法刻蚀工艺去除所述牺牲材料层。该方案也可以使所述空隙沟槽106a中完全不会沉积所述隔离材料层105a。It should be noted that, what is shown in FIG. 10 is the case where the
在本发明所引入的所述空隙层106可以是真空层、空气层或其他低介电常数气体填充层。真空层是一种理想的低介电常数(low-k)介质层,真空的相对介电常数为1.0,而空气的相对介电常数(~1.0006)非常接近真空的相对介电常数。作为low-k介质使用时,两者的性能相近。因此,在本发明中,所述空隙层106并不具体限定为真空层或空气层。如果还考虑选用真空层或空气层对于器件结构可靠性的影响,则当所述空隙层106为空气层时,可能会由于空气受热膨胀或空气中含有的水汽而存在影响器件性能的风险。因此,作为可选方案,在沉积所述隔离材料层105a时,可选PECVD等在真空条件下进行的沉积工艺,使所述空隙层中保持真空,以进一步提高所得器件的稳定性,具体采用的沉积工艺及工艺参数还需要根据器件设计的实际需求进行优化和取舍,以确保在减小栅漏交叠区隔离介质的相对介电常数的同时,不会影响所得半导体器件的性能及可靠性。The
实施例二Embodiment 2
本实施例提供了一种半导体结构,如图1及图10所示,所述半导体结构包括:This embodiment provides a semiconductor structure, as shown in FIG. 1 and FIG. 10 , the semiconductor structure includes:
半导体衬底100,所述半导体衬底100的表面形成有有源区;A
沟槽102,位于所述有源区上,所述沟槽102的相对侧边分别形成有源/漏101,所述源/漏101连接到所述沟槽102;The
栅极104,位于所述沟槽102中;
栅介质层103,位于所述栅极104与所述沟槽102之间,所述栅介质层103的顶部低于所述栅极104的顶部;The
隔离层105,位于所述栅极104的上方;The
空隙层106,形成于所述栅极104与所述源/漏101重叠区域之间,位于所述栅介质层103的上方;A
如图1所示,是本实施例中提供的半导体结构的俯视图。图10是本实施例中提供的半导体结构的在图1的aa’处的截面图。可选地,本实施例中所述半导体结构可以按照实施例一中所述的半导体结构的制造方法得到。As shown in FIG. 1 , it is a top view of the semiconductor structure provided in this embodiment. Fig. 10 is a cross-sectional view at aa' of Fig. 1 of the semiconductor structure provided in this embodiment. Optionally, the semiconductor structure in this embodiment can be obtained according to the manufacturing method of the semiconductor structure described in the first embodiment.
作为示例,如图1和图10所示,所述半导体结构包含应用于DRAM器件的埋入式字线结构。所述半导体衬底100还包括若干个有源区100a和分隔所述有源区100a的浅沟槽隔离结构100b;所述源/漏101位于所述有源区100a的上表面;所述沟槽102位于所述有源区100a和所述浅沟槽隔离结构100b上并连通多个所述有源区100a。需要注意的是,图1中未显示被所述有源区100a和所述浅沟槽隔离结构100b所覆盖的所述半导体衬底100,图10中未显示所述浅沟槽隔离结构100b。可选地,所述半导体衬底100包含P型半导体衬底,例如P型硅衬底,所述源/漏101包含N型掺杂源/漏。如图1所示,所述有源区100a按一定间隔在所述半导体衬底100周期性排列,所形成的沟槽102横向贯通若干个所述有源区100a以及所述有源区100a之间的所述浅沟槽隔离结构100b。通过在所述沟槽102内形成字线结构,使所述字线结构连接若干个所述有源区100a。As an example, as shown in FIGS. 1 and 10, the semiconductor structure includes a buried word line structure applied to a DRAM device. The
作为示例,如图10所示,所述栅极104包含钨层,所述栅介质层103包含二氧化硅层,所述隔离层105包含氮化硅层,所述空隙层106包含真空层或空气层。As an example, as shown in FIG. 10 , the
作为示例,如图10所示,所述栅极104的顶部高于所述源/漏101的底部且低于所述沟槽102的顶部。As an example, as shown in FIG. 10 , the top of the
作为示例,如图10所示,所述空隙层106的顶部至少不高于所述栅极104的顶部。As an example, as shown in FIG. 10 , the top of the
作为示例,如图10所示,所述空隙层106的底部至少不低于所述源/漏101的底部。在本实施例中,如图10所示,在栅漏交叠区108上部的大部分空间由所述空隙层106构成,在靠近所述源/漏101的底部位置则仍保留了一段所述栅介质层103。这既确保了通过引入所述空隙层106改善了栅漏交叠区108的栅致漏极漏电流,又能确保在沟道区域仍采用所述栅介质层103进行隔离,具有良好的开关特性。可选地,所述空隙层106的底部与所述源/漏101的底部齐平,所述栅漏交叠区108的隔离介质完全由所述空隙层106构成。在该情况下,所述栅漏交叠区108将具有较好的抗栅致漏极漏电流特性。As an example, as shown in FIG. 10 , the bottom of the
在本实施例中,通过限定所述栅极104的顶部至少不高于所述源/漏101的底部,且所述第二栅极105的顶部高于所述源/漏101的底部,使栅漏交叠区108处的栅极材料完全由所述第二栅极105所构成,即由多晶硅层构成,而非钨金属层构成。这将显著减少所述栅漏交叠区108处产生的栅致漏极漏电流。In this embodiment, by defining that the top of the
如图11所示,是本发明所提供的埋入式字线结构,其中,在栅漏交叠区108处的大部分隔离介质由所述空隙层106构成,所述源/漏101为N型掺杂,所述半导体衬底100为P型硅衬底。当晶体管关断、DRAM储存数据时,字线栅极保持负偏压且右端连接电容的漏极为正偏压,此时的栅漏电压将是该器件可能达到的最大值。如图12所示,当所述栅漏交叠区108处的隔离介质完全由所述栅介质层103,即二氧化硅层构成时,在较高的栅漏电压下,就会在图12中的箭头方向产生大量的栅致漏极漏电流。而在图11中本发明所提供的埋入式字线结构中,由于采用所述空隙层106部分替代了所述二氧化硅层,在晶体管关断时,栅漏交叠区108处的栅漏电压将大幅下降,这将大幅减少栅漏交叠区108处的栅致漏极漏电流,甚至避免产生栅致漏极漏电流。通过改善DRAM存储单元的栅漏交叠区108处的栅致漏极漏电流的特性,可以显著提高DRAM器件的可靠性及读写性能并减少器件关断时的功耗。需要指出的是,本实施例虽然说明了本发明所提供的半导体结构应用于DRAM埋入式字线结构时对于栅致漏极漏电流改善的优越性,但这并不限制本发明所提供的半导体结构的应用范围。本发明对于其他晶体管结构中由于栅漏电压而产生的栅致漏极漏电流都具有显著的改善作用。As shown in FIG. 11, it is the buried word line structure provided by the present invention, wherein most of the isolation dielectric at the gate-
综上所述,本发明提供了一种半导体结构及其制造方法,所述半导体结构的制造方法包括如下步骤:提供一半导体衬底,所述半导体衬底的表面形成有有源区;在所述半导体衬底上形成沟槽,所述沟槽贯穿所述有源区且所述沟槽的底部低于所述有源区的底部;在所述沟槽的表面形成栅介质层;在所述沟槽中形成栅极,所述栅极的顶部高于所述有源区的底部且低于所述沟槽的顶部;去除所述沟槽侧壁上的部分所述栅介质层,使所述栅介质层的顶部低于所述栅极的顶部;在所述栅极上方形成隔离层,所述隔离层填满所述沟槽中所述栅极上方的空间,并在所述有源区、所述栅极和所述栅介质层之间形成空隙层。所述半导体结构包括:半导体衬底,所述半导体衬底的表面形成有有源区;沟槽,位于所述半导体衬底上,所述沟槽贯穿所述有源区且所述沟槽的底部低于所述有源区的底部;栅极,位于所述沟槽中,所述栅极的顶部高于所述有源区的底部且低于所述沟槽的顶部;栅介质层,位于所述栅极与所述半导体衬底之间,所述栅介质层的顶部低于所述栅极的顶部;空隙层,位于所述有源区、所述栅极和所述栅介质层之间;隔离层,位于所述栅极的上方,填满所述沟槽中所述栅极上方的空间。本发明通过在晶体管的栅漏交叠区引入空隙层取代栅介质层,减小了栅漏电压,有效地抑制了栅致漏极漏电流,从而提高了器件可靠性并减少了器件功耗,使DRAM器件的数据保存及读写性能得到了提升。In summary, the present invention provides a semiconductor structure and a method for manufacturing the same. The method for manufacturing the semiconductor structure includes the following steps: providing a semiconductor substrate, an active region is formed on the surface of the semiconductor substrate; A trench is formed on the semiconductor substrate, the trench penetrates the active region and the bottom of the trench is lower than the bottom of the active region; a gate dielectric layer is formed on the surface of the trench; A gate is formed in the trench, and the top of the gate is higher than the bottom of the active region and lower than the top of the trench; part of the gate dielectric layer on the sidewall of the trench is removed to make The top of the gate dielectric layer is lower than the top of the gate; an isolation layer is formed over the gate, the isolation layer fills up the space above the gate in the trench, and is located on the A void layer is formed between the source region, the gate electrode and the gate dielectric layer. The semiconductor structure includes: a semiconductor substrate, an active area is formed on the surface of the semiconductor substrate; a trench is located on the semiconductor substrate, the trench penetrates the active area and the trench is the bottom is lower than the bottom of the active region; the gate is located in the trench, the top of the gate is higher than the bottom of the active region and lower than the top of the trench; the gate dielectric layer, between the gate and the semiconductor substrate, the top of the gate dielectric layer is lower than the top of the gate; the void layer is located between the active region, the gate and the gate dielectric layer between; an isolation layer, located above the gate, filling the space above the gate in the trench. The invention reduces the gate-drain voltage and effectively suppresses the gate-induced drain leakage current by introducing a void layer in the gate-drain overlap region of the transistor to replace the gate dielectric layer, thereby improving the reliability of the device and reducing the power consumption of the device. The data storage and read/write performance of the DRAM device have been improved.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910093348.2A CN111508841A (en) | 2019-01-30 | 2019-01-30 | Semiconductor structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910093348.2A CN111508841A (en) | 2019-01-30 | 2019-01-30 | Semiconductor structure and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111508841A true CN111508841A (en) | 2020-08-07 |
Family
ID=71875694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910093348.2A Pending CN111508841A (en) | 2019-01-30 | 2019-01-30 | Semiconductor structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111508841A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114121802A (en) * | 2021-11-16 | 2022-03-01 | 上海华力集成电路制造有限公司 | Manufacturing method of semiconductor device using stress memory technology |
CN114267641A (en) * | 2020-09-16 | 2022-04-01 | 长鑫存储技术有限公司 | Manufacturing method of embedded word line transistor, transistor and memory |
CN115036312A (en) * | 2021-03-04 | 2022-09-09 | 华邦电子股份有限公司 | Semiconductor memory structure and method of forming the same |
WO2023060729A1 (en) * | 2021-10-15 | 2023-04-20 | 长鑫存储技术有限公司 | Semiconductor device and manufacturing method therefor |
WO2023134015A1 (en) * | 2022-01-12 | 2023-07-20 | 长鑫存储技术有限公司 | Semiconductor structure and preparation method therefor |
US12289882B2 (en) | 2021-10-15 | 2025-04-29 | Changxin Memory Technologies, Inc. | Semiconductor device including air gap structure above word line |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080061320A1 (en) * | 2006-09-08 | 2008-03-13 | Qimonda Ag | Transistor, Memory Cell Array and Method of Manufacturing a Transistor |
CN108063140A (en) * | 2017-11-27 | 2018-05-22 | 睿力集成电路有限公司 | Transistor arrangement, memory cell array and preparation method thereof |
US20180145080A1 (en) * | 2016-11-18 | 2018-05-24 | Samsung Electronics Co., Ltd. | Semiconductor device and method for fabricating the same |
CN209312720U (en) * | 2019-01-30 | 2019-08-27 | 长鑫存储技术有限公司 | Semiconductor structure |
-
2019
- 2019-01-30 CN CN201910093348.2A patent/CN111508841A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080061320A1 (en) * | 2006-09-08 | 2008-03-13 | Qimonda Ag | Transistor, Memory Cell Array and Method of Manufacturing a Transistor |
US20180145080A1 (en) * | 2016-11-18 | 2018-05-24 | Samsung Electronics Co., Ltd. | Semiconductor device and method for fabricating the same |
CN108063140A (en) * | 2017-11-27 | 2018-05-22 | 睿力集成电路有限公司 | Transistor arrangement, memory cell array and preparation method thereof |
CN209312720U (en) * | 2019-01-30 | 2019-08-27 | 长鑫存储技术有限公司 | Semiconductor structure |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114267641A (en) * | 2020-09-16 | 2022-04-01 | 长鑫存储技术有限公司 | Manufacturing method of embedded word line transistor, transistor and memory |
CN115036312A (en) * | 2021-03-04 | 2022-09-09 | 华邦电子股份有限公司 | Semiconductor memory structure and method of forming the same |
WO2023060729A1 (en) * | 2021-10-15 | 2023-04-20 | 长鑫存储技术有限公司 | Semiconductor device and manufacturing method therefor |
US12289882B2 (en) | 2021-10-15 | 2025-04-29 | Changxin Memory Technologies, Inc. | Semiconductor device including air gap structure above word line |
CN114121802A (en) * | 2021-11-16 | 2022-03-01 | 上海华力集成电路制造有限公司 | Manufacturing method of semiconductor device using stress memory technology |
WO2023134015A1 (en) * | 2022-01-12 | 2023-07-20 | 长鑫存储技术有限公司 | Semiconductor structure and preparation method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111508841A (en) | Semiconductor structure and manufacturing method thereof | |
KR102527904B1 (en) | Semiconductor device and method for fabricating the same | |
CN101536166B (en) | Methods of forming field effect transistors, pluralities of field effect transistors, and dram circuitry comprising a plurality of individual memory cells | |
CN101281886B (en) | Recessed gate MOS transistor device and method of making same | |
CN100536141C (en) | Semiconductor device having a fin channel transistor and preparation method thereof | |
CN100440517C (en) | Semiconductor device with increased channel length and manufacturing method thereof | |
US7666743B2 (en) | Methods of fabricating semiconductor devices including transistors having recessed channels | |
US20110263090A1 (en) | Semiconductor device ahving vertical pillar transistors and method for manufacturing the same | |
WO2014161471A1 (en) | Semiconductor device having u-shaped channel | |
CN209312720U (en) | Semiconductor structure | |
TWI523202B (en) | Buried digitline (bdl) access device and memory array | |
CN101789433A (en) | Array structure of dynamic random access memory (DRAM) and preparation method thereof | |
CN104091803A (en) | Split gate memory, semiconductor device and method for making semiconductor device | |
WO2022198959A1 (en) | Semiconductor structure and method for forming same | |
US20070032032A1 (en) | Connecting structure and method for manufacturing the same | |
WO2014166346A1 (en) | Semiconductor memory with u-shaped channel | |
CN115188760B (en) | Method for forming semiconductor structure | |
US12310005B2 (en) | Semiconductor structure and manufacturing method thereof | |
CN103208495B (en) | Semiconductor device and manufacturing method thereof | |
CN113707610A (en) | Semiconductor device and method of forming the same | |
CN114256075B (en) | A high-speed, low-leakage split-gate semi-floating-gate transistor and a method for manufacturing the same | |
WO2022057396A1 (en) | Buried word line transistor production method, transistor, and memory | |
TW202335191A (en) | Memory structure and method of forming thereof | |
TWI854564B (en) | Semiconductor device and method forming the same | |
US20090098698A1 (en) | Memory device and fabrication thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200807 |