CN111508606B - Glaucoma diagnostic system - Google Patents
Glaucoma diagnostic system Download PDFInfo
- Publication number
- CN111508606B CN111508606B CN202010467826.4A CN202010467826A CN111508606B CN 111508606 B CN111508606 B CN 111508606B CN 202010467826 A CN202010467826 A CN 202010467826A CN 111508606 B CN111508606 B CN 111508606B
- Authority
- CN
- China
- Prior art keywords
- age
- compensation
- rnfl
- dfd
- gender
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Eye Examination Apparatus (AREA)
Abstract
一种青光眼诊断系统,包括:OCT扫描仪,受试者数据输入模块,数据存储模块,数据处理模块和显示模块,OCT扫描仪测量受试者RNFL厚度、AL、DFA和DFD,受试者数据输入模块输入受试者AGE、GENDER,数据存储模块用于存储受试者RNFL厚度、AL、DFA、DFD、AGE和GENDER数据以及RNFL厚度补偿结果;数据处理模块包括第一补偿单元和第二补偿单元,第一补偿单元内置使用AGE对RNFL厚度进行垂直方向补偿的模型;第二补偿单元内置使用AL、DFA、DFD和GENDER对RNFL厚度进行垂直和水平方向补偿的模型;显示模块用于查看输入输出的数据。与现有技术相比,本发明的眼科诊断装置提高了青光眼诊断准确率。
A glaucoma diagnosis system, comprising: an OCT scanner, a subject data input module, a data storage module, a data processing module and a display module, the OCT scanner measures the subject RNFL thickness, AL, DFA and DFD, and the subject data The input module inputs the subjects AGE and GENDER, and the data storage module is used to store the RNFL thickness, AL, DFA, DFD, AGE and GENDER data of the subjects and the RNFL thickness compensation results; the data processing module includes a first compensation unit and a second compensation unit unit, the first compensation unit has a built-in model for vertical compensation of RNFL thickness using AGE; the second compensation unit has a built-in model for vertical and horizontal compensation of RNFL thickness using AL, DFA, DFD and GENDER; the display module is used to view the input output data. Compared with the prior art, the ophthalmic diagnostic device of the present invention improves the accuracy of glaucoma diagnosis.
Description
技术领域technical field
本发明属于眼科医疗诊断设备领域,更具体地,涉及一种青光眼诊断系统。The invention belongs to the field of ophthalmic medical diagnosis equipment, and more particularly, relates to a glaucoma diagnosis system.
背景技术Background technique
现有技术中使用视网膜神经纤维层(Retinal Nerve Fiber Layer,简称RNFL)来诊断青光眼,但是某些因素可能导致视网膜神经纤维层发生变化,例如:年龄(AGE),性别(GENDER),眼轴长度(Axial Length,简称AL)、视盘—中心凹角(Disc–Foveal Angle,简称DFA)和视盘—中心凹距离(Disc–Foveal Distance,简称DFD),这些因素与RNFL厚度的变化有显著性关系,例如:AL增长会导致RNFL厚度减小,DFD增长会导致上象限(SuperiorQuadrant)中的RNFL厚度减小且下象限(Inferior Quadrant)中的RNFL厚度增加。由于这些因素会使RNFL厚度发生变化,所以如果忽视这些因素对RNFL厚度的影响,将会降低青光眼的诊断系统的准确率。Retinal Nerve Fiber Layer (RNFL) is used in the prior art to diagnose glaucoma, but certain factors may cause changes in the retinal nerve fiber layer, such as age (AGE), gender (GENDER), axial length of the eye (Axial Length, referred to as AL), optic disc-foveal angle (Disc-Foveal Angle, referred to as DFA) and optic disc-foveal distance (Disc-Foveal Distance, referred to as DFD), these factors have a significant relationship with the change of RNFL thickness, such as : AL increase leads to a decrease in RNFL thickness, DFD increase leads to a decrease in RNFL thickness in the Superior Quadrant and an increase in RNFL thickness in the Inferior Quadrant. Since these factors can vary RNFL thickness, ignoring the effect of these factors on RNFL thickness will reduce the accuracy of glaucoma diagnostic systems.
现有青光眼诊断系统是根据测量得到的RNFL厚度直接对青光眼进行诊断,将正常人各年龄组光学相干断层扫描(Optical Coherence Tomography,OCT)测量的RNFL厚度平均值1.96个标准差作为正常值的下限,分析OCT测量RNFL厚度的敏感性与特异性。这种方法由于未考虑上述导致RNFL形变的因素,从而会影响青光眼的诊断准确率。The existing glaucoma diagnosis system directly diagnoses glaucoma based on the measured RNFL thickness, and takes the average RNFL thickness measured by optical coherence tomography (OCT) of normal people in each age group, 1.96 standard deviations, as the lower limit of the normal value. , to analyze the sensitivity and specificity of OCT in measuring RNFL thickness. This method does not consider the above-mentioned factors that lead to the deformation of RNFL, which will affect the diagnostic accuracy of glaucoma.
现有技术中还从未有过利用AGE、GENDER、AL、DFA和DFD对RNFL厚度进行补偿用于辅助青光眼诊断的青光眼诊断系统。There has never been a glaucoma diagnostic system using AGE, GENDER, AL, DFA and DFD to compensate the thickness of RNFL for assisting glaucoma diagnosis in the prior art.
发明内容SUMMARY OF THE INVENTION
为了补偿AGE、GENDER、AL、DFA和DFD等因素对RNFL的形变影响,以及提高青光眼诊断的准确率,提供了一种青光眼诊断系统,其通过内置模块,利用AGE、GENDER、AL、DFA和DFD对RNFL进行补偿,且补偿后的RNFL曲线能提高青光眼诊断系统诊断青光眼的准确率。In order to compensate the deformation effects of AGE, GENDER, AL, DFA and DFD and other factors on the RNFL, and to improve the accuracy of glaucoma diagnosis, a glaucoma diagnosis system is provided, which uses AGE, GENDER, AL, DFA and DFD through built-in modules. Compensating the RNFL, and the compensated RNFL curve can improve the accuracy of the glaucoma diagnosis system in diagnosing glaucoma.
本发明提供了一种青光眼诊断系统,包括:OCT扫描仪,受试者数据输入模块,数据存储模块,数据处理模块和显示模块,OCT扫描仪测量受试者RNFL厚度、AL、DFA和DFD,受试者数据输入模块输入受试者AGE、GENDER,数据存储模块用于存储受试者RNFL厚度、AL、DFA、DFD、AGE和GENDER数据以及RNFL厚度补偿结果;数据处理模块包括第一补偿单元和第二补偿单元,第一补偿单元内置使用AGE对RNFL厚度进行垂直方向补偿的模型;第二补偿单元内置使用AL、DFA、DFD和GENDER对RNFL厚度进行垂直和水平方向补偿的模型;显示模块用于查看输入输出的数据。The invention provides a glaucoma diagnosis system, comprising: an OCT scanner, a subject data input module, a data storage module, a data processing module and a display module, the OCT scanner measures the subject's RNFL thickness, AL, DFA and DFD, The subject data input module inputs subjects AGE and GENDER, and the data storage module is used to store subject RNFL thickness, AL, DFA, DFD, AGE and GENDER data and RNFL thickness compensation results; the data processing module includes a first compensation unit and the second compensation unit, the first compensation unit has a built-in model for vertical compensation of RNFL thickness using AGE; the second compensation unit has a built-in model for vertical and horizontal compensation of RNFL thickness using AL, DFA, DFD and GENDER; display module Used to view input and output data.
优选地,所述第一补偿模块内置如下模型对RNFL厚度进行垂直方向的补偿:Preferably, the first compensation module has the following built-in model to compensate the thickness of the RNFL in the vertical direction:
y′AGE=[x1]×WAGE×AGE_RBF+ytrain y′ AGE = [x1]×W AGE ×AGE_RBF+y train
式中:where:
y′AGE表示经AGE补偿后的RNFL厚度;y′ AGE represents the RNFL thickness after AGE compensation;
[x1]是标准化后的AGE与偏置构成的n×2矩阵;[x1] is an n×2 matrix composed of normalized AGE and bias;
WAGE表示权重矩阵;W AGE represents the weight matrix;
AGE_RBF表示径向基矩阵;AGE_RBF represents radial basis matrix;
ytrain表示n个受试者的RNFL厚度。y train represents the RNFL thickness of n subjects.
优选地,权重矩阵WAGE的最优解为:Preferably, the optimal solution of the weight matrix W AGE is:
随机初始化权重矩阵WAGE;Randomly initialize the weight matrix W AGE ;
定义误差函数为y′AGE与ymean的均方误差函数MSE(y′AGE,ymean);Define the error function as the mean square error function MSE(y′ AGE ,y mean ) of y′ AGE and y mean ;
最小化误差函数MSE(y′AGE,ymean),获得权重矩阵WAGE的最优解。Minimize the error function MSE(y′ AGE , y mean ) to obtain the optimal solution of the weight matrix W AGE .
优选地,所述第二补偿单元内置如下模型对RNFL厚度进行水平方向和垂直方向的补偿:Preferably, the second compensation unit has the following built-in model to compensate the thickness of the RNFL in the horizontal direction and the vertical direction:
y′=s×g(y,p)y′=s×g(y,p)
式中:where:
s表示RNFL厚度在垂直方向的补偿量;s represents the compensation amount of RNFL thickness in the vertical direction;
y表示使用GENDER、AL、DFA和DFD因素补偿前的RNFL厚度;y represents the RNFL thickness before compensation using GENDER, AL, DFA and DFD factors;
p表示RNFL厚度在水平方向的补偿量;p represents the compensation amount of RNFL thickness in the horizontal direction;
g(y,p)是变换公式,对y进行离散到连续的变换。g(y,p) is the transformation formula, which transforms y from discrete to continuous.
优选地,对y进行离散到连续的变换的变换公式g(y,p)为:Preferably, the transformation formula g(y,p) for discrete-to-continuous transformation of y is:
式中:where:
p表示RNFL厚度在水平方向的补偿量;p represents the compensation amount of RNFL thickness in the horizontal direction;
p是向量p中的元素,表示向下取整运算。p is the element in the vector p, Represents a round-down operation.
优选地,以如下方式获得RNFL厚度在水平方向的补偿量p:Preferably, the compensation amount p of the RNFL thickness in the horizontal direction is obtained as follows:
p=i+Δpp=i+Δp
Δp=L×tanh(Δp′)Δp=L×tanh(Δp′)
式中:where:
p是N维列向量,表示RNFL厚度在水平方向的补偿量;p is an N-dimensional column vector, representing the compensation amount of the RNFL thickness in the horizontal direction;
i是N维列向量i=(1,2,…,N)T,表示获取RNFL厚度的初始位置;i is an N-dimensional column vector i=(1,2,...,N) T , indicating the initial position for obtaining the thickness of the RNFL;
Δp是N维列向量Δp=(Δp1,Δp2,…,ΔpN),表示RNFL厚度在水平方向补偿的变化量;Δp is an N-dimensional column vector Δp=(Δp 1 ,Δp 2 ,...,Δp N ), which represents the compensation variation of the RNFL thickness in the horizontal direction;
L为常数;L is a constant;
tanh()为双曲正切函数tanh() is the hyperbolic tangent function
由如下的公式计算获得, It is calculated by the following formula,
其中,i为N维列向量i=(1,2,…,N)T中的元素;Among them, i is the element in the N-dimensional column vector i=(1,2,...,N) T ;
cj为m维列向量c=(c1,c2,…,cm)中的元素,m维列向量c表示把RNFL等分了m份,j为1至m的正整数;c j is the element in the m -dimensional column vector c=(c 1 ,c 2 ,...,cm ), The m-dimensional column vector c represents that the RNFL is divided into m equal parts, and j is a positive integer from 1 to m;
参数σ控制高斯核的宽度;The parameter σ controls the width of the Gaussian kernel;
wj是m维列向量w_RBF中的元素w j is the element in the m-dimensional column vector w_RBF
w_RBF=z×WFC w_RBF =z×WFC
z是4×n矩阵,由性别数据和经标准化的AL、DFA、DFD数据构成,以如下的表达式表示z is a 4×n matrix, which consists of gender data and normalized AL, DFA, DFD data, and is represented by the following expression
ALstandard_k,DFAstandard_k,DFDstandard_k,GENDERk分别表示n个正常受试者中第k个受试者性别数据和经标准化的AL、DFA、DFD数据。AL standard_k , DFA standard_k , DFD standard_k , GENDER k represent the gender data of the k-th subject and the standardized AL, DFA, and DFD data in n normal subjects, respectively.
优选地,获取WFC最优解的方式为:Preferably, the way to obtain the optimal solution of WFC is:
1)随机初始化权重矩阵WFC;1) Randomly initialize the weight matrix W FC ;
2)定义误差函数为y′与ymean的均方误差函数MSE(y′,ymean),为了防止训练时参数WFC过拟合,定义损失函数Loss=MSE(y′,ymean)+λ|WFC|2;2) Define the error function as the mean square error function MSE(y', y mean ) of y' and y mean . In order to prevent the parameter W FC from overfitting during training, define the loss function Loss=MSE(y', y mean )+ λ|W FC | 2 ;
3)最小化损失函数Loss,获得权重矩阵WFC的最优解,以及w_RBF。3) Minimize the loss function Loss to obtain the optimal solution of the weight matrix W FC and w_RBF.
优选地,以如下方式获得RNFL厚度在垂直方向补偿量s:Preferably, the compensation amount s of the RNFL thickness in the vertical direction is obtained as follows:
s=L×tanh(s′)s=L×tanh(s′)
wj是m维列向量s_w_RBF中的元素w j are elements in the m-dimensional column vector s_w_RBF
s_w_RBF=z×s_WFC s_w_RBF=z×s_W FC
式中:where:
L为常数;L is a constant;
s_w_RBF表示计算s过程中的RBF神经网络的权重矩阵;s_w_RBF represents the weight matrix of the RBF neural network in the process of calculating s;
s_WFC表示计算s过程中的FC神经网络的权重矩阵;s_W FC represents the weight matrix of the FC neural network in the process of calculating s;
z是4×n矩阵,由性别数据和经标准化的AL、DFA、DFD数据构成。z is a 4xn matrix consisting of gender data and normalized AL, DFA, DFD data.
优选地,获得s_WFC与s_w_RBF的训练方法为:Preferably, the training method for obtaining s_W FC and s_w_RBF is:
1)随机初始化权重矩阵s_WFC;1) Randomly initialize the weight matrix s_W FC ;
2)定义误差函数为y′与ymean的均方误差函数MSE(y′,ymean),定义损失函数Loss=MSE(y′,ymean)+λ|s_WFC|2,损失函数带有正则项,正则项系数为λ;2) Define the error function as the mean square error function MSE(y', y mean ) of y' and y mean , define the loss function Loss=MSE(y', y mean )+λ|s_W FC | 2 , the loss function has Regular term, the coefficient of the regular term is λ;
3)通过训练神经网络的方法最小化损失函数MSE,求出权重矩阵s_WFC的最优解,求出s_w_RBF。3) Minimize the loss function MSE by training the neural network, find the optimal solution of the weight matrix s_W FC , and find s_w_RBF.
本发明的有益效果在于,与现有技术相比,在验证集中,与原RNFL做青光眼诊断系统的结果相比,使用具有补偿功能的青光眼诊断系统的RNFL用来诊断青光眼的AUROC(接受者操作特征曲线下面积,Area Under the Receiver Operating Characteristic curve,简称AUROC)从原来的0.779提高至0.861。对于验证集中AL最长的10%的样本,AUROC从原来的0.703提高至0.842;对于验证集中AL最长的20%的样本,AUROC从原来的0.748提高至0.889;对于验证集中AL最长的30%的样本,AUROC从原来的0.767提高至0.891。The beneficial effect of the present invention is that, compared with the prior art, in the validation set, compared with the results of the original RNFL for the glaucoma diagnostic system, the AUROC (Receiver Operating The area under the characteristic curve, Area Under the Receiver Operating Characteristic curve, referred to as AUROC) increased from 0.779 to 0.861. For the 10% of the samples with the longest AL in the validation set, the AUROC increased from 0.703 to 0.842; for the 20% of the samples with the longest AL in the validation set, the AUROC increased from 0.748 to 0.889; for the 30 with the longest AL in the validation set % of the samples, AUROC increased from 0.767 to 0.891.
附图说明Description of drawings
图1是本发明的一种青光眼诊断系统的结构框图;Fig. 1 is the structural block diagram of a kind of glaucoma diagnosis system of the present invention;
图2是本发明的青光眼诊断系统的数据处理模块内置模型示意图;Fig. 2 is the built-in model schematic diagram of the data processing module of the glaucoma diagnosis system of the present invention;
图3是本发明的青光眼诊断系统补偿前后的RNFL厚度曲线示意图。3 is a schematic diagram of the RNFL thickness curve before and after compensation by the glaucoma diagnostic system of the present invention.
具体实施方式Detailed ways
下面结合附图对本申请作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本申请的保护范围。The present application will be further described below with reference to the accompanying drawings. The following examples are only used to more clearly illustrate the technical solutions of the present invention, and cannot be used to limit the protection scope of the present application.
加粗小写英文字母表示向量或矩阵,将1×n矩阵称为n维行向量,将n×1矩阵称为n维列向量。Bold and lowercase English letters represent vectors or matrices. A 1×n matrix is called an n-dimensional row vector, and an n×1 matrix is called an n-dimensional column vector.
如图1所示,本发明的提供了一种青光眼诊断系统,包括:OCT(光学相干断层扫描,Optical Coherence Tomography,简称OCT)扫描仪,受试者数据输入模块,数据存储模块,数据处理模块和显示模块。OCT扫描仪测量受试者RNFL厚度、AL(眼轴长度,Axial Length,简称AL)、DFA(视盘-中心凹角,Disc–Foveal Angle,简称DFA)和DFD(视盘-中心凹距离,Disc–Foveal Distance,简称DFD);受试者数据输入模块输入受试者AGE(年龄)、GENDER(性别);数据存储模块用于存储受试者RNFL厚度、AL、DFA、DFD、AGE和GENDER数据,RNFL厚度补偿结果。As shown in FIG. 1, the present invention provides a glaucoma diagnosis system, including: an OCT (Optical Coherence Tomography, OCT for short) scanner, a subject data input module, a data storage module, and a data processing module and display module. The OCT scanner measured the RNFL thickness, AL (Axial Length, AL), DFA (Disc-Foveal Angle, DFA) and DFD (Disc-Foveal Distance, Disc-Foveal) Distance, referred to as DFD); subject data input module input subjects AGE (age), GENDER (sex); data storage module is used to store subjects RNFL thickness, AL, DFA, DFD, AGE and GENDER data, RNFL Thickness compensation result.
数据处理模块包括第一补偿单元和第二补偿单元,第一补偿单元内置使用AGE对RNFL厚度进行垂直方向补偿的补偿模型;第二补偿单元内置使用AL、DFA、DFD和GENDER对RNFL厚度进行垂直和水平方向补偿的补偿模型。The data processing module includes a first compensation unit and a second compensation unit. The first compensation unit has a built-in compensation model for vertical compensation of RNFL thickness using AGE; and compensation model for horizontal compensation.
使用n个正常受试者的AGE、GENDER、AL、DFA和DFD训练神经网络,获得补偿模型,将青光眼患者AGE、GENDER、AL、DFA和DFD代入补偿模型,所述青光眼诊断系统将获得青光眼患者RNFL厚度补偿结果,用于辅助诊断青光眼。Use the AGE, GENDER, AL, DFA and DFD of n normal subjects to train a neural network, obtain a compensation model, and substitute AGE, GENDER, AL, DFA and DFD of glaucoma patients into the compensation model, the glaucoma diagnostic system will obtain glaucoma patients RNFL thickness compensation results to aid in the diagnosis of glaucoma.
如图2所示,第一补偿单元用于使用AGE对RNFL厚度进行垂直方向的补偿。其内置模型为:As shown in FIG. 2 , the first compensation unit is used to compensate the thickness of the RNFL in the vertical direction by using the AGE. Its built-in model is:
y′AGE=[x1]×WAGE×AGE_RBF+ytrain (1)y′ AGE = [x1]×W AGE ×AGE_RBF+y train (1)
式中:where:
y′AGE是n×N矩阵,表示经年龄补偿后的RNFL厚度;y′ AGE is an n×N matrix representing the age-compensated RNFL thickness;
[x1]是标准化后的AGE与偏置构成的n×2矩阵;[x1] is an n×2 matrix composed of normalized AGE and bias;
WAGE是2×m矩阵,表示权重矩阵;W AGE is a 2×m matrix, representing the weight matrix;
AGE_RBF是m×N矩阵,表示径向基矩阵;AGE_RBF is an m×N matrix, representing a radial basis matrix;
ytrain是n×N矩阵,表示n个受试者的RNFL厚度。y train is an n × N matrix representing the RNFL thickness of n subjects.
该模型的训练过程为:The training process of this model is:
对AGE进行标准化,所属领域的技术人员可以使用多种方式进行标准化,作为一种举例,本实施例使用如下公式对AGE进行标准化:To standardize AGE, those skilled in the art can use various methods to standardize. As an example, this embodiment uses the following formula to standardize AGE:
式中:where:
AGEstandard_k表示n个正常受试者中第k个正常受试者经过标准化后的年龄;AGE standard_k represents the normalized age of the kth normal subject among n normal subjects;
AGE1AGE2…AGEn分别表示每个正常受试者的年龄,AGEk表示n个正常受试者中第k个正常受试者的年龄;AGE 1 AGE 2 ... AGE n respectively represent the age of each normal subject, AGE k represents the age of the kth normal subject among n normal subjects;
AGEmean表示n个正常受试者的平均年龄;AGE mean represents the average age of n normal subjects;
AGEstd表示n个正常受试者年龄的标准差。AGE std represents the standard deviation of the age of n normal subjects.
n个正常受试者经过标准化后的年龄形成n维列向量x,即The normalized ages of n normal subjects form an n-dimensional column vector x, that is
x=(AGEstandard_1,AGEstandard_2,…,AGEstandard_n)T。x=(AGE standard_1 ,AGE standard_2 ,…,AGE standard_n ) T .
为n维列向量x添加一列每个元素都是1的偏置,获得n×2矩阵,即[x1]。Add a column offset of 1 to the n-dimensional column vector x to obtain an n × 2 matrix, that is, [x1].
定义N维列向量i=(1,2,…,N)T表示获取RNFL厚度的初始位置,定义受试者k的RNFL厚度为环形N维行向量yk=(tk1,tk2,…,tkN),k=1,2,…,n,n个受试者的RNFL厚度形成n×N矩阵N的优选值为768。使用ytrain计算正常受试者RNFL厚度均值ymean,即计算ytrain每一列元素的均值,将其作为列元素形成ymean,同一列中的元素均是该位置RNFL厚度均值,同一行中的元素是不同位置的RNFL厚度均值,即ymean是如下的n×N矩阵,Define an N-dimensional column vector i=(1,2,...,N) T represents the initial position to obtain the RNFL thickness, and define the RNFL thickness of subject k as an annular N-dimensional row vector y k =(t k1 ,t k2 ,... ,t kN ),k=1,2,...,n, the RNFL thicknesses of n subjects form an n×N matrix A preferred value for N is 768. Use y train to calculate the mean RNFL thickness y mean of normal subjects, that is, calculate the mean value of each column element of y train , and use it as a column element to form y mean . The elements are the mean values of RNFL thickness at different locations, i.e. y mean is an n×N matrix as follows,
如图3所示,示出了补偿前后的RNFL厚度曲线示意图,环形是指RNFL曲线是圆形的这个事实。但是做后续计算的时候以及画RNFL厚度曲线的图的时候,是把RNFL厚度曲线展开了,展开后是一个波浪形的曲线,那么这个波浪形的曲线在补偿的时候会在垂直和水平,即上下和左右方向上有移动。As shown in FIG. 3 , a schematic diagram of the RNFL thickness curve before and after compensation is shown, and the ring refers to the fact that the RNFL curve is circular. However, when doing subsequent calculations and drawing the RNFL thickness curve, the RNFL thickness curve is expanded, and after expansion is a wavy curve, then the wavy curve will be vertical and horizontal during compensation, that is There is movement in up and down and left and right directions.
因为年龄只会使RNFL曲线在垂直方向上改变,不会在水平方向上改变,所以用年龄补偿RNFL时,只在垂直方向上有变化,在水平方向上没有变化。以如下公式对RNFL厚度进行垂直方向的补偿时:Because age only changes the RNFL curve vertically, not horizontally, when compensating for RNFL with age, there is only a vertical change and no horizontal change. When compensating the RNFL thickness in the vertical direction with the following formula:
y′AGE=[x1]×WAGE×AGE_RBF+ytrain y′ AGE = [x1]×W AGE ×AGE_RBF+y train
权重矩阵WAGE是由训练上述公式所表示的神经网络得到的,m的优选值为10,即权重矩阵WAGE是2×10矩阵,使用如下方法获得权重矩阵WAGE的最优解:The weight matrix W AGE is obtained by training the neural network represented by the above formula, and the preferred value of m is 10, that is, the weight matrix W AGE is a 2×10 matrix, and the optimal solution of the weight matrix W AGE is obtained by the following method:
1)随机初始化权重矩阵WAGE;1) Randomly initialize the weight matrix W AGE ;
2)定义误差函数为y′AGE与ymean的均方误差函数MSE(y′AGE,ymean);2) Define the error function as the mean square error function MSE(y′ AGE , y mean ) of y′ AGE and y mean ;
3)使用带有KKT条件的拉格朗日乘子法最小化误差函数MSE(y′AGE,ymean),求出权重矩阵WAGE的最优解。3) Use the Lagrange multiplier method with KKT conditions to minimize the error function MSE(y′ AGE , y mean ), and obtain the optimal solution of the weight matrix W AGE .
径向基矩阵AGE_RBF元素的值以如下公式(4)计算获得,其是二维高斯核函数。The values of the elements of the radial basis matrix AGE_RBF are calculated by the following formula (4), which is a two-dimensional Gaussian kernel function.
式中:where:
i为N维列向量i=(1,2,…,N)T中的元素;i is the element in the N-dimensional column vector i=(1,2,...,N) T ;
cj为m维列向量c=(c1,c2,…,cm)T中的元素,m维列向量c表示把RNFL等分了m份,j为1至m的正整数;m是一个超参数,在计算时可以由所属领域的技术人员进行设定,例如但不限于,设m为10、20、30等;分成m份,是为了利用第i个位置与第cj个位置的距离信息,加高斯核就是为了利用距离信息,即高斯核里的欧式距离;参数σ控制高斯核的宽度;c j is the element in the m-dimensional column vector c=(c 1 ,c 2 ,...,c m ) T , The m-dimensional column vector c represents that the RNFL is divided into m equal parts, and j is a positive integer from 1 to m; m is a hyperparameter, which can be set by those skilled in the art during calculation, for example, but not limited to, let m It is 10, 20, 30, etc.; it is divided into m parts, in order to use the distance information between the ith position and the c jth position, and the Gaussian kernel is added to use the distance information, that is, the Euclidean distance in the Gaussian kernel; the parameter σ controls the Gaussian the width of the nucleus;
如上所述,m的优选值为10,N的优选值为768时,径向基矩阵AGE_RBF优选采用10×768矩阵。As mentioned above, when the preferred value of m is 10 and the preferred value of N is 768, the radial basis matrix AGE_RBF is preferably a 10×768 matrix.
将权重矩阵WAGE的最优解带入公式(1),进而得到正常受试者补偿后的RNFL厚度y′AGE。The optimal solution of the weight matrix W AGE is put into formula (1), and then the compensated RNFL thickness y′ AGE of normal subjects is obtained.
所述第二补偿单元用于在使用年龄补偿RNFL厚度的基础上,同时使用GENDER、AL、DFA和DFD因素对第一补偿单元得出的RNFL厚度进行垂直方向和水平方向的补偿。The second compensation unit is used to compensate the RNFL thickness obtained by the first compensation unit in vertical and horizontal directions by simultaneously using GENDER, AL, DFA and DFD factors on the basis of using age to compensate the RNFL thickness.
即,在使用年龄补偿RNFL厚度的基础上,继续使用如下内置模型同时在水平方向和垂直方向对RNFL厚度进行补偿:That is, on the basis of using age to compensate the RNFL thickness, continue to use the following built-in model to compensate the RNFL thickness in both the horizontal and vertical directions:
y′=s×g(y,p) (5)y′=s×g(y,p) (5)
式中:where:
s表示RNFL厚度在垂直方向的补偿量;s represents the compensation amount of RNFL thickness in the vertical direction;
y表示使用GENDER、AL、DFA和DFD因素补偿前的RNFL厚度;y represents the RNFL thickness before compensation using GENDER, AL, DFA and DFD factors;
p是N维列向量,表示RNFL厚度在水平方向的补偿量;p is an N-dimensional column vector, representing the compensation amount of the RNFL thickness in the horizontal direction;
g(y,p)是变换公式,对y进行离散到连续的变换。g(y,p) is the transformation formula, which transforms y from discrete to continuous.
由于实际的RNFL厚度是连续的,而矩阵y是离散的,使用如下的公式对y进行离散到连续的近似变换:Since the actual RNFL thickness is continuous and the matrix y is discrete, an approximate discrete-to-continuous transformation of y is performed using the following formula:
式中:where:
p是N维列向量,表示RNFL厚度在水平方向的补偿量;p is an N-dimensional column vector, representing the compensation amount of the RNFL thickness in the horizontal direction;
p是向量p中的元素即p=(p1,p2,…,pN)T,表示向下取整运算,结果是不大于p的最大整数,mod N表示求余运算,例如p=1000.3,N=768, p is an element in the vector p ie p=(p 1 ,p 2 ,...,p N ) T , Represents a round-down operation, and the result is the largest integer not greater than p, mod N represents the remainder operation, for example, p=1000.3, N=768,
y表示使用GENDER、AL、DFA和DFD因素补偿前的RNFL厚度;y represents the RNFL thickness before compensation using GENDER, AL, DFA and DFD factors;
p由如下的公式(7)计算获得,p is calculated by the following formula (7),
p=i+Δp (7)p=i+Δp (7)
式中:where:
p是N维列向量,表示RNFL厚度在水平方向的补偿量;p is an N-dimensional column vector, representing the compensation amount of the RNFL thickness in the horizontal direction;
i是N维列向量i=(1,2,…,N)T,表示获取RNFL厚度的初始位置;i is an N-dimensional column vector i=(1,2,...,N) T , indicating the initial position for obtaining the thickness of the RNFL;
Δp是N维列向量Δp=(Δp1,Δp2,…,ΔpN),表示RNFL厚度在水平方向补偿的变化量。Δp is an N -dimensional column vector Δp=(Δp 1 , Δp 2 , .
Δp由如下的公式(8)计算获得,Δp is calculated by the following formula (8),
Δp=L×tanh(Δp′) (8)Δp=L×tanh(Δp′) (8)
式中:where:
L为常数,L的取值优选但不限于L=200;L is a constant, and the value of L is preferably but not limited to L=200;
tanh()为双曲正切函数,即如下的公式(9),tanh() is the hyperbolic tangent function, that is, the following formula (9),
Δp′是N维列向量Δp′=(Δp′1,Δp′2,…,Δp′N)T。Δp' is an N-dimensional column vector Δp' = (Δp' 1 , Δp' 2 , . . . , Δp' N ) T .
把初始位置向量i中的元素i作为RBF神经网络的输入,其输出为向量y的第i个位置的水平变量,即Δp'i由如下的公式(10)计算获得,The element i in the initial position vector i is used as the input of the RBF neural network, and its output is the horizontal variable of the ith position of the vector y, that is, Δp' i is calculated by the following formula (10),
由如下的公式(11)计算获得, It is calculated by the following formula (11),
exp()表示以自然常数e为底的指数函数;exp() represents the exponential function with the natural constant e as the base;
i是N维列向量i=(1,2,…,N)T,表示获取RNFL厚度的初始位置;i is an N-dimensional column vector i=(1,2,...,N) T , indicating the initial position for obtaining the thickness of the RNFL;
cj为m维列向量c=(c1,c2,…,cm)中的元素,m维列向量c表示把RNFL等分了m份,j为1至m的正整数,m的取值优选但不限于6;c j is the element in the m -dimensional column vector c=(c 1 ,c 2 ,...,cm ), The m-dimensional column vector c represents that the RNFL is divided into m equal parts, j is a positive integer from 1 to m, and the value of m is preferably but not limited to 6;
参数σ控制高斯核的宽度;The parameter σ controls the width of the Gaussian kernel;
wj是m维列向量w_RBF中的元素w j is the element in the m-dimensional column vector w_RBF
w_RBF=z×WFC (12)w_RBF=z×W FC (12)
式中:where:
w_RBF表示RBF神经网络的权重矩阵;w_RBF represents the weight matrix of the RBF neural network;
WFC表示FC神经网络的权重矩阵;W FC represents the weight matrix of the FC neural network;
z是4×n矩阵,由性别数据和经标准化的AL、DFA、DFD数据构成。z is a 4xn matrix consisting of gender data and normalized AL, DFA, DFD data.
获得WFC与w_RBF的训练方法为:The training method to obtain W FC and w_RBF is:
1)随机初始化权重矩阵WFC;1) Randomly initialize the weight matrix W FC ;
2)定义误差函数为y′与ymean的均方误差函数MSE(y′,ymean),为了防止训练时参数WFC过拟合,定义损失函数Loss=MSE(y′,ymean)+λ|WFC|2,损失函数带有正则项,正则项系数为λ,λ的取值优选但不限于为0.003;2) Define the error function as the mean square error function MSE(y', y mean ) of y' and y mean . In order to prevent the parameter W FC from overfitting during training, define the loss function Loss=MSE(y', y mean )+ λ|W FC | 2 , the loss function has a regular term, the regular term coefficient is λ, and the value of λ is preferably but not limited to 0.003;
3)训练神经网络最小化损失函数,求出权重矩阵WFC的最优解,求出w_RBF。3) Train the neural network to minimize the loss function, find the optimal solution of the weight matrix W FC , and find w_RBF.
其中,z是4×n矩阵,由性别数据和经标准化的AL、DFA、DFD数据构成,以如下的表达式(13)表示Among them, z is a 4×n matrix, which consists of gender data and normalized AL, DFA, and DFD data, and is represented by the following expression (13)
式中:where:
ALstandard_k,DFAstandard_k,DFDstandard_k,GENDERk分别表示n个正常受试者中第k个受试者性别数据和经标准化的AL、DFA、DFD数据;AL standard_k , DFA standard_k , DFD standard_k , GENDER k represent the gender data of the kth subject and the standardized AL, DFA, and DFD data in n normal subjects, respectively;
ALstandard_k,DFAstandard_k,DFDstandard_k采用如下的公式(13)计算获得,AL standard_k , DFA standard_k , DFD standard_k are calculated by the following formula (13),
AL表示受试者眼轴长度。AL represents the subject's axial length.
AL1AL2…ALn分别表示每个正常受试者的眼轴长度。AL 1 AL 2 ... AL n represent the axial length of each normal subject, respectively.
ALmean表示n个正常受试者的平均眼轴长度。AL mean represents the mean axial length of n normal subjects.
ALstd表示n个正常受试者眼轴长度的标准差。AL std represents the standard deviation of the axial length of n normal subjects.
DFA表示受试者视盘-中心凹角。DFA represents the subject's optic disc-foveal angle.
DFA1DFA2…DFAn分别表示每个正常受试者的视盘-中心凹角。DFA 1 DFA 2 ... DFA n represent the optic disc-foveal angle of each normal subject, respectively.
DFAmean表示n个正常受试者的平均视盘-中心凹角。DFA mean represents the mean optic disc-foveal angle of n normal subjects.
DFAstd表示n个正常受试者视盘-中心凹角的标准差。DFA std represents the standard deviation of the optic disc-foveal angle of n normal subjects.
DFD表示受试者视盘-中心凹距离。DFD represents the subject optic disc-foveal distance.
DFD1DFD2…DFDn分别表示每个正常受试者的视盘-中心凹距离。DFD 1 DFD 2 ... DFD n represents the disc-foveal distance of each normal subject, respectively.
DFDmean表示n个正常受试者的平均视盘-中心凹距离。DFD mean represents the mean disc-foveal distance of n normal subjects.
DFDstd表示n个正常受试者视盘-中心凹距离的标准差。DFD std represents the standard deviation of the optic disc-foveal distance in n normal subjects.
以0或1表示n个正常受试者的性别GENDER,无需进行标准化。Represent the gender GENDER of n normal subjects as 0 or 1 without normalization.
表示RNFL厚度在垂直方向补偿量s的计算过程如下:The calculation process of the compensation amount s representing the thickness of the RNFL in the vertical direction is as follows:
s=L×tanh(s′)s=L×tanh(s′)
wj是m维列向量s_w_RBF中的元素w j are elements in the m-dimensional column vector s_w_RBF
s_w_RBF=z×s_WFC s_w_RBF=z×s_W FC
式中:where:
L为常数,优选但不限于,L=0.9。L is a constant, preferably, but not limited to, L=0.9.
s_w_RBF表示计算s过程中的RBF神经网络的权重矩阵;s_w_RBF represents the weight matrix of the RBF neural network in the process of calculating s;
s_WFC表示计算s过程中的FC神经网络的权重矩阵;s_W FC represents the weight matrix of the FC neural network in the process of calculating s;
z是4×n矩阵,由性别数据和经标准化的AL、DFA、DFD数据构成。z is a 4xn matrix consisting of gender data and normalized AL, DFA, DFD data.
获得s_WFC与s_w_RBF的训练方法为:The training method to obtain s_W FC and s_w_RBF is:
1)随机初始化权重矩阵s_WFC;1) Randomly initialize the weight matrix s_W FC ;
2)定义误差函数为y′与ymean的均方误差函数MSE(y′,ymean),为了防止训练时参数s_WFC过拟合,定义损失函数Loss=MSE(y′,ymean)+λ|s_WFC|2,损失函数带有正则项,正则项系数为λ,λ的取值优选但不限于为0.003;2) Define the error function as the mean square error function MSE(y', y mean ) of y' and y mean . In order to prevent the parameter s_W FC from overfitting during training, define the loss function Loss=MSE(y', y mean )+ λ|s_W FC | 2 , the loss function has a regular term, the regular term coefficient is λ, and the value of λ is preferably but not limited to 0.003;
3)通过训练神经网络的方法最小化损失函数,求出权重矩阵s_WFC的最优解,求出s_w_RBF。3) Minimize the loss function by training the neural network, find the optimal solution of the weight matrix s_W FC , and find s_w_RBF.
显示模块用于显示受试者原始RNFL厚度、AGE、GENDER、AL、DFA和DFD,以及补偿后的RNFL厚度。The display module is used to display the subject's original RNFL thickness, AGE, GENDER, AL, DFA and DFD, as well as the compensated RNFL thickness.
本发明的有益效果在于,与现有技术相比,在验证集中,与原RNFL做青光眼诊断系统的结果相比,使用具有补偿功能的青光眼诊断系统的RNFL用来诊断青光眼的AUROC(接受者操作特征曲线下面积,Area Under the Receiver Operating Characteristic curve,简称AUROC)从原来的0.779提高至0.861。对于验证集中AL最长的10%的样本,AUROC从原来的0.703提高至0.842;对于验证集中AL最长的20%的样本,AUROC从原来的0.748提高至0.889;对于验证集中AL最长的30%的样本,AUROC从原来的0.767提高至0.891。The beneficial effect of the present invention is that, compared with the prior art, in the validation set, compared with the results of the original RNFL for the glaucoma diagnostic system, the AUROC (Receiver Operating The area under the characteristic curve, Area Under the Receiver Operating Characteristic curve, referred to as AUROC) increased from 0.779 to 0.861. For the 10% of the samples with the longest AL in the validation set, the AUROC increased from 0.703 to 0.842; for the 20% of the samples with the longest AL in the validation set, the AUROC increased from 0.748 to 0.889; for the 30 with the longest AL in the validation set % of the samples, AUROC increased from 0.767 to 0.891.
本发明申请人结合说明书附图对本发明的实施示例做了详细的说明与描述,但是本领域技术人员应该理解,以上实施示例仅为本发明的优选实施方案,详尽的说明只是为了帮助读者更好地理解本发明精神,而并非对本发明保护范围的限制,相反,任何基于本发明的发明精神所作的任何改进或修饰都应当落在本发明的保护范围之内。The applicant of the present invention has described and described the embodiments of the present invention in detail with reference to the accompanying drawings, but those skilled in the art should understand that the above embodiments are only preferred embodiments of the present invention, and the detailed description is only to help readers better Rather, any improvement or modification based on the spirit of the present invention should fall within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010467826.4A CN111508606B (en) | 2020-05-28 | 2020-05-28 | Glaucoma diagnostic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010467826.4A CN111508606B (en) | 2020-05-28 | 2020-05-28 | Glaucoma diagnostic system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111508606A CN111508606A (en) | 2020-08-07 |
CN111508606B true CN111508606B (en) | 2022-08-23 |
Family
ID=71864411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010467826.4A Active CN111508606B (en) | 2020-05-28 | 2020-05-28 | Glaucoma diagnostic system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111508606B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113177038B (en) * | 2021-04-25 | 2022-02-18 | 首都医科大学附属北京同仁医院 | Retinal nerve fiber layer data correction method, device and electronic device |
CN114376504B (en) * | 2022-03-22 | 2022-08-19 | 汕头大学·香港中文大学联合汕头国际眼科中心 | Retinal nerve fiber layer data analysis method and system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108733913A (en) * | 2018-05-17 | 2018-11-02 | 北京化工大学 | A kind of ophthalmology OCT equipment lateral resolution detection methods based on DWPSO algorithms |
CN109102885A (en) * | 2018-08-20 | 2018-12-28 | 北京邮电大学 | The cataract automatic grading method combined based on convolutional neural networks with random forest |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7286227B2 (en) * | 2002-09-30 | 2007-10-23 | Carl Zeiss Meditec, Inc. | Method and system for removing the effects of corneal birefringence from a polarimetric image of the retina |
-
2020
- 2020-05-28 CN CN202010467826.4A patent/CN111508606B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108733913A (en) * | 2018-05-17 | 2018-11-02 | 北京化工大学 | A kind of ophthalmology OCT equipment lateral resolution detection methods based on DWPSO algorithms |
CN109102885A (en) * | 2018-08-20 | 2018-12-28 | 北京邮电大学 | The cataract automatic grading method combined based on convolutional neural networks with random forest |
Non-Patent Citations (2)
Title |
---|
《Deep learning in ophthalmology: The technical and clinical considerations》;Daniel S.W. Ting 等;《Progress in Retinal and Eye Research》;20190430;第1-24页 * |
《目前国内青光眼诊断中存在的问题》;李建军 等;《眼科》;20190125;第28卷(第1期);第1-4页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111508606A (en) | 2020-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Lightweight attention convolutional neural network for retinal vessel image segmentation | |
JP6439729B2 (en) | Sleep state estimation device | |
US11875277B2 (en) | Learning and applying contextual similiarities between entities | |
CN111508606B (en) | Glaucoma diagnostic system | |
CN111796681A (en) | Adaptive line-of-sight estimation method and medium based on differential convolution in human-computer interaction | |
CN106682389A (en) | Health management system for monitoring ocular lesions resulting from high blood pressure | |
US11181978B2 (en) | System and method for gaze estimation | |
CN114190897B (en) | Training method of sleep stage model, sleep stage method and device | |
Deepa et al. | Automated grading of diabetic retinopathy using CNN with hierarchical clustering of image patches by siamese network | |
Chao et al. | Method of recognizing sleep postures based on air pressure sensor and convolutional neural network: For an air spring mattress | |
Tian et al. | A severity score for retinopathy of prematurity | |
Elsharkawy et al. | Diabetic retinopathy diagnostic CAD system using 3d-oct higher order spatial appearance model | |
CN112132203B (en) | Fractional flow reserve measurement method and system based on intravascular ultrasound image | |
CN117672523A (en) | Sugar control level evaluation system and method for diabetics | |
US20200395125A1 (en) | Method and apparatus for monitoring a human or animal subject | |
Sasikala et al. | Classification of diabetic retinopathy based on Functional Linked Neural network utilizing segmented fundus image features | |
US12243351B2 (en) | Gaze estimation apparatus, gaze estimation method, model generation apparatus, and model generation method | |
Parashar et al. | Computer-aided diagnosis of glaucoma at early-stage using retinal fundus images | |
CN114041758A (en) | Radial artery palpation positioning method and device, electronic equipment and storage medium | |
JP7346419B2 (en) | Learning and applying contextual similarities between entities | |
KR102766729B1 (en) | An apparatus for corneal diagnosis based on learning model and a method of thereof | |
CN112037914B (en) | Construction method, system and equipment of obsessive-compulsive disorder risk assessment model | |
US20250124694A1 (en) | Method for training model for recognizing medical image, method for recognizing medical image, and electronic device | |
Huang et al. | Sufficient dimension reduction with simultaneous estimation of effective dimensions for time-to-event data | |
US20240008803A1 (en) | Body fluid volume estimation device, body fluid volume estimation method, and non-transitory computer-readable medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |