[go: up one dir, main page]

CN111505993A - Sequential control circuit - Google Patents

Sequential control circuit Download PDF

Info

Publication number
CN111505993A
CN111505993A CN202010374502.6A CN202010374502A CN111505993A CN 111505993 A CN111505993 A CN 111505993A CN 202010374502 A CN202010374502 A CN 202010374502A CN 111505993 A CN111505993 A CN 111505993A
Authority
CN
China
Prior art keywords
resistor
power
comparator
module
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010374502.6A
Other languages
Chinese (zh)
Other versions
CN111505993B (en
Inventor
周小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Priority to CN202010374502.6A priority Critical patent/CN111505993B/en
Publication of CN111505993A publication Critical patent/CN111505993A/en
Application granted granted Critical
Publication of CN111505993B publication Critical patent/CN111505993B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本发明提供一种时序控制电路,其包括:上电延时模块、参考电压产生模块以及控制时序产生模块;所述上电延时模块的输入端用于与电源输入端连接,所述上电延时模块的输出端与所述控制时序产生模块连接,以向所述控制时序产生模块输出第一电压;所述参考电压产生模块的输入端用于与所述电源输入端连接,所述参考电压产生模块的输出端与所述控制时序产生模块连接,以向所述控制时序产生模块输出第二电压;所述控制时序产生模块在所述第一电压和所述第二电压的驱动下输出时序控制信号;其中,所述时序控制电路被配置为,在所述电源输入端上电后,所述参考电压产生模块输出所述第二电压先于所述上电延时模块输出所述第一电压。

Figure 202010374502

The present invention provides a sequence control circuit, which includes: a power-on delay module, a reference voltage generation module and a control sequence generation module; an input end of the power-on delay module is used for connecting with a power input end, and the power-on delay module The output end of the delay module is connected with the control sequence generation module to output the first voltage to the control sequence generation module; the input end of the reference voltage generation module is used for connecting with the power input end, the reference The output end of the voltage generation module is connected to the control sequence generation module to output a second voltage to the control sequence generation module; the control sequence generation module outputs under the driving of the first voltage and the second voltage a timing control signal; wherein, the timing control circuit is configured to, after the power input terminal is powered on, the reference voltage generation module outputs the second voltage before the power-on delay module outputs the first voltage a voltage.

Figure 202010374502

Description

时序控制电路timing control circuit

技术领域technical field

本发明涉及医疗器械技术领域,特别涉及一种时序控制电路。The invention relates to the technical field of medical equipment, in particular to a timing control circuit.

背景技术Background technique

MRI(核磁共振成像)系统包含各种复杂的电子部件或单板,此类电子部件或单板中电路通常存在多路各不相同的电源电压供电。并且部件或单板需要对多路电源电压的上下电时序进行控制,这样才能在上电后正常工作或者更稳定可靠的工作。例如一些多路电源电压供电的高端处理芯片,有着严格的上下电时序要求,若各路电源电压上下电时序不符合要求,芯片可能会无法正常工作或永久性损坏。MRI (Magnetic Resonance Imaging) systems include various complex electronic components or single boards, and circuits in such electronic components or single boards are usually powered by multiple channels of different power supply voltages. In addition, the component or single board needs to control the power-on and power-on sequence of the multi-channel power supply voltage, so as to work normally or more stably and reliably after power-on. For example, some high-end processing chips powered by multiple power supply voltages have strict power-on and power-on sequence requirements. If the power-on and power-on sequence of each power supply voltage does not meet the requirements, the chip may not work normally or be permanently damaged.

在现有技术中,对部件或单板的多路电源电压上电或下电时序控制解决方案较多,主要有如下几种:In the prior art, there are many solutions for controlling the power-on or power-off sequence of the multi-channel power supply voltage of components or single boards, mainly including the following:

A、使用专用电源时序控制芯片来实现,此类芯片通常为各芯片厂家专用芯片,成本高、可扩展性较差,方案的可替代性差,若遇到芯片停产,必须更改设计进行替代;A. Use a dedicated power sequence control chip to achieve this. This type of chip is usually a dedicated chip for each chip manufacturer, with high cost, poor scalability, and poor substitutability of the solution. If the chip is out of production, the design must be changed to replace it;

B、通过可编程逻辑器件来实现电源时序控制,此类方法成本高,很多没有可编程逻辑器件的部件或单板中,若采用此方案实现,代价太高;B. The power sequence control is realized through programmable logic devices. Such methods are expensive. In many components or boards without programmable logic devices, if this solution is used, the cost is too high;

C、通过先上电电源的Pgood(电源输出正常信号)控制后上电电源的使能信号,此种方式不能实现下电控制,同时对于很多无Pgood信号的电源芯片,则无法采用此方案;C. Control the enable signal of the power supply after powering on the Pgood (power output normal signal) of the power supply first. This method cannot realize the power-off control, and at the same time, this scheme cannot be used for many power supply chips without Pgood signal;

D、通过在各路电源模块的电压输出链路上串接开关,如场效应管,通过控制开关打开的先后顺序来控制电源上下电时序,由于开关本身是有内阻的,在通过大电流时,会带来开通损耗,不仅会使电压引来额外的压降,还会给单板带来额外的热量。D. By connecting switches, such as field effect transistors, in series on the voltage output links of various power modules, the power-on and power-on sequence of the power supply is controlled by controlling the order in which the switches are turned on. Since the switches themselves have internal resistance, when a large current is passed , it will bring turn-on loss, which will not only cause additional voltage drop, but also bring additional heat to the board.

E、还有一些实现方案,需要通过提供一路备用电源(区别于主输入电源)来实现电源时序控制电路的优先供电,如此增加了部件或单板的输入电源的数量E. There are also some implementation schemes. It is necessary to provide a backup power supply (different from the main input power supply) to realize the priority power supply of the power supply sequence control circuit, which increases the number of input power supplies of components or single boards.

然而上述多种方案或多或少都存在着设计复杂、成本高、具有局限性、损耗高或者可靠性低等问题。However, the above-mentioned solutions have more or less problems such as complicated design, high cost, limitation, high loss or low reliability.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种时序控制电路,以解决现有技术中的一个或多个问题。The purpose of the present invention is to provide a timing control circuit to solve one or more problems in the prior art.

为解决上述技术问题,本发明提供一种时序控制电路,其包括:上电延时模块、参考电压产生模块以及控制时序产生模块;In order to solve the above technical problems, the present invention provides a timing control circuit, which includes: a power-on delay module, a reference voltage generating module and a control timing generating module;

所述上电延时模块的输入端用于与电源输入端连接,所述上电延时模块的输出端与所述控制时序产生模块连接,以向所述控制时序产生模块输出第一电压;The input end of the power-on delay module is connected to the power input end, and the output end of the power-on delay module is connected to the control sequence generation module, so as to output the first voltage to the control sequence generation module;

所述参考电压产生模块的输入端用于与所述电源输入端连接,所述参考电压产生模块的输出端与所述控制时序产生模块连接,以向所述控制时序产生模块输出第二电压;The input end of the reference voltage generation module is used for connecting with the power input end, and the output end of the reference voltage generation module is connected with the control sequence generation module, so as to output the second voltage to the control sequence generation module;

所述控制时序产生模块在所述第一电压和所述第二电压的驱动下输出时序控制信号;The control timing generation module outputs timing control signals driven by the first voltage and the second voltage;

其中,所述时序控制电路被配置为,在所述电源输入端上电后,所述参考电压产生模块输出所述第二电压先于所述上电延时模块输出所述第一电压。The timing control circuit is configured such that after the power input terminal is powered on, the reference voltage generating module outputs the second voltage before the power-on delay module outputs the first voltage.

可选的,所述时序控制电路还包括下电保持模块,所述下电保持模块用于与电源输入端连接,并用于在所述电源输入端下电后的预定时间内,为所述上电延时模块和所述参考电压产生模块供电。Optionally, the sequence control circuit further includes a power-off hold module, the power-off hold module is configured to be connected to the power input terminal and configured to provide the power-on hold module within a predetermined time after the power input terminal is powered off. The electrical delay module and the reference voltage generating module supply power.

可选的,所述控制时序产生模块包括至少两个时序产生单元,每个所述时序产生单元的第一输入端与所述参考电压产生模块的输出端连接,每个所述时序产生单元的第二输入端与所述上电延时模块的输出端连接,每个所述时序产生单元的输出端用于输出一个时序控制信号。Optionally, the control timing generation module includes at least two timing generation units, the first input terminal of each timing generation unit is connected to the output terminal of the reference voltage generation module, and the output terminal of each timing generation unit is The second input terminal is connected to the output terminal of the power-on delay module, and the output terminal of each timing generation unit is used for outputting a timing control signal.

可选的,所述时序产生单元包括:第一比较器、第一电阻、第二电阻及第一电容;Optionally, the timing generation unit includes: a first comparator, a first resistor, a second resistor and a first capacitor;

所述第一比较器的第一输入端经所述第一电阻与所述上电延时模块的输出端连接,所述第一比较器的第一输入端还经所述第二电阻接地,所述第一电容并联于所述第二电阻的两端;The first input end of the first comparator is connected to the output end of the power-on delay module through the first resistor, and the first input end of the first comparator is also grounded through the second resistor, the first capacitor is connected in parallel with both ends of the second resistor;

所述参考电压产生模块的输出端为所述第一比较器供电;The output end of the reference voltage generating module supplies power to the first comparator;

所述第一比较器被配置为,所述第一比较器的第一输入端的电压达到第一阈值时,所述第一比较器的输出端输出第一预定信号。The first comparator is configured such that when the voltage of the first input terminal of the first comparator reaches a first threshold value, the output terminal of the first comparator outputs a first predetermined signal.

可选的,所述控制时序产生模块还包括补偿单元,所述补偿单元包括:第二比较器、第三电阻、第四电阻以及与门;Optionally, the control sequence generation module further includes a compensation unit, and the compensation unit includes: a second comparator, a third resistor, a fourth resistor, and an AND gate;

所述第二比较器的第一输入端经所述第三电阻与所述电源输入端连接,所述第二比较器的第一输入端还经所述第四电阻接地;The first input terminal of the second comparator is connected to the power input terminal through the third resistor, and the first input terminal of the second comparator is also grounded through the fourth resistor;

所述参考电压产生模块的输出端为所述第二比较器供电;The output end of the reference voltage generating module supplies power to the second comparator;

所述第二比较器被配置为,所述第二比较器的第一输入端的电压达到第二阈值时,所述第二比较器的输出端输出第二预定信号;The second comparator is configured such that when the voltage of the first input terminal of the second comparator reaches a second threshold value, the output terminal of the second comparator outputs a second predetermined signal;

所述与门的输入端分别与所述第一比较器的输出端和所述第二比较器的输出端连接,所述与门的输出端被配置为输出所述时序控制信号。Input terminals of the AND gate are respectively connected to the output terminal of the first comparator and the output terminal of the second comparator, and the output terminal of the AND gate is configured to output the timing control signal.

可选的,所述时序产生单元还包括:第五电阻和第六电阻,所述第一比较器的第二输入端经所述第五电阻与所述参考电压产生模块的输出端连接,所述第一比较器的第二输入端还经所述第六电阻接地,所述第一阈值由所述第五电阻和所述第六电阻的阻值比确定;和/或,所述补偿单元还包括:第七电阻和第八电阻,所述第二比较器的第二输入端经所述第七电阻与所述参考电压产生模块的输出端连接,所述第二比较器的第二输入端还经所述第八电阻接地,所述第二阈值由所述第七电阻和所述第八电阻的阻值比确定。Optionally, the timing generation unit further includes: a fifth resistor and a sixth resistor, the second input end of the first comparator is connected to the output end of the reference voltage generating module through the fifth resistor, so The second input terminal of the first comparator is also grounded through the sixth resistor, and the first threshold is determined by the resistance ratio of the fifth resistor and the sixth resistor; and/or, the compensation unit It also includes: a seventh resistor and an eighth resistor, the second input end of the second comparator is connected to the output end of the reference voltage generating module through the seventh resistor, and the second input end of the second comparator The terminal is also grounded through the eighth resistor, and the second threshold is determined by the resistance ratio of the seventh resistor and the eighth resistor.

可选的,所述时序产生单元还包括:第九电阻和第十电阻,所述第一比较器的输出端经依次布置的所述第九电阻和所述第十电阻接地,所述第一预定信号的电压由所述第九电阻和所述第十电阻的阻值比确定;和/或,所述补偿单元还包括:第十一电阻和第十二电阻,所述第二比较器的输出端经依次布置的所述第十一电阻和所述第十二电阻接地,所述第二预定信号由所述第十一电阻和所述第十二电阻的连接点接出。Optionally, the timing generation unit further includes: a ninth resistor and a tenth resistor, the output end of the first comparator is grounded through the ninth resistor and the tenth resistor arranged in sequence, and the first The voltage of the predetermined signal is determined by the resistance ratio of the ninth resistor and the tenth resistor; and/or the compensation unit further includes: an eleventh resistor and a twelfth resistor, and the second comparator The output terminal is grounded through the eleventh resistor and the twelfth resistor arranged in sequence, and the second predetermined signal is connected to the connection point of the eleventh resistor and the twelfth resistor.

可选的,所述参考电压产生模块包括低压差线性稳压器。Optionally, the reference voltage generating module includes a low dropout linear regulator.

可选的,所述上电延时模块包括:第十三电阻、第十四电阻、第二电容及晶体管;Optionally, the power-on delay module includes: a thirteenth resistor, a fourteenth resistor, a second capacitor and a transistor;

所述晶体管的控制端经所述第十三电阻与所述电源输入端连接,所述晶体管的控制端还经所述第十四电阻接地,所述第二电容并联于所述第十三电阻的两端;所述晶体管的输入端与所述电源输入端连接,所述晶体管的输出端被配置为所述上电延时模块的输出端;所述晶体管被配置为,所述控制端的控制电压或控制电流达到第三阈值时导通,其中所述第三阈值由所述第十三电阻和所述第十四电阻的阻值比确定。The control terminal of the transistor is connected to the power input terminal through the thirteenth resistor, the control terminal of the transistor is also grounded through the fourteenth resistor, and the second capacitor is connected in parallel with the thirteenth resistor Both ends of the transistor; the input end of the transistor is connected to the power supply input end, and the output end of the transistor is configured as the output end of the power-on delay module; the transistor is configured as the control end of the control end Turning on when the voltage or control current reaches a third threshold, wherein the third threshold is determined by the resistance ratio of the thirteenth resistor and the fourteenth resistor.

可选的,所述晶体管包括MOS管,所述上电延时模块还包括二极管,所述二极管并联于所述第二电容的两端。Optionally, the transistor includes a MOS transistor, and the power-on delay module further includes a diode, and the diode is connected in parallel to both ends of the second capacitor.

在本发明提供的时序控制电路中,所述时序控制电路包括上电延时模块、参考电压产生模块以及控制时序产生模块;所述上电延时模块的输入端用于与电源输入端连接,所述上电延时模块的输出端与所述控制时序产生模块连接,以向所述控制时序产生模块输出第一电压;所述参考电压产生模块的输入端用于与所述电源输入端连接,所述参考电压产生模块的输出端与所述控制时序产生模块连接,以向所述控制时序产生模块输出第二电压;所述控制时序产生模块在所述第一电压和所述第二电压的驱动下输出时序控制信号;其中,所述时序控制电路被配置为,在所述电源输入端上电后,所述参考电压产生模块输出所述第二电压先于所述上电延时模块输出所述第一电压。如此配置,控制时序产生模块能够在第一电压和第二电压的驱动下输出时序控制信号,只依赖于单一的输入电源,即无需提供备用电源,不增加部件或单板的电源数量。由于第二电压先于第一电压输出,能够确保控制时序产生模块可靠地工作而输出时序控制信号,方案的可靠性高,电路简单、成本低。In the sequence control circuit provided by the present invention, the sequence control circuit includes a power-on delay module, a reference voltage generation module and a control sequence generation module; the input end of the power-on delay module is used for connecting with the power input end, The output end of the power-on delay module is connected to the control sequence generation module to output a first voltage to the control sequence generation module; the input end of the reference voltage generation module is used to connect to the power input end , the output end of the reference voltage generation module is connected to the control sequence generation module to output a second voltage to the control sequence generation module; the control sequence generation module is at the first voltage and the second voltage The timing control circuit is configured to output the timing control signal under the driving of the power source; wherein the timing control circuit is configured such that after the power input terminal is powered on, the reference voltage generation module outputs the second voltage before the power-on delay module The first voltage is output. With this configuration, the control sequence generation module can output sequence control signals driven by the first voltage and the second voltage, and only depends on a single input power supply, that is, no backup power supply is required, and the number of power supplies for components or boards is not increased. Because the second voltage is output before the first voltage, the control sequence generation module can work reliably and output the sequence control signal, and the solution has high reliability, simple circuit and low cost.

附图说明Description of drawings

本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:Those of ordinary skill in the art will appreciate that the accompanying drawings are provided for a better understanding of the present invention and do not constitute any limitation on the scope of the present invention. in:

图1是本发明一优选实施例提供的时序控制电路的示意框图;1 is a schematic block diagram of a timing control circuit provided by a preferred embodiment of the present invention;

图2是本发明一优选实施例提供的上电延时模块与下电保持模块的示意图;2 is a schematic diagram of a power-on delay module and a power-off hold module provided by a preferred embodiment of the present invention;

图3是本发明一优选实施例提供的参考电压产生模块的示意图;3 is a schematic diagram of a reference voltage generating module provided by a preferred embodiment of the present invention;

图4是本发明一优选实施例提供的控制时序产生模块的示意图;4 is a schematic diagram of a control sequence generation module provided by a preferred embodiment of the present invention;

图5是本发明一优选实施例提供的时序控制电路的时序关系图;5 is a timing diagram of a timing control circuit provided by a preferred embodiment of the present invention;

图6是本发明一优选实施例提供的时序控制电路的时序关系图,其中PCTL1于下电时未能成功输出;6 is a timing relationship diagram of a timing control circuit provided by a preferred embodiment of the present invention, wherein PCTL1 fails to output successfully when powered off;

图7是本发明一优选实施例提供的控制时序产生模块的示意图,其中包括补偿单元;7 is a schematic diagram of a control sequence generation module provided by a preferred embodiment of the present invention, which includes a compensation unit;

图8是本发明一优选实施例提供的时序控制电路的时序关系图,其中经补偿单元的作用,PCTL1于下电时能够成功输出。FIG. 8 is a timing relationship diagram of a timing control circuit provided by a preferred embodiment of the present invention, wherein the PCTL1 can be successfully output when powered off by the action of the compensation unit.

附图中:In the attached picture:

10-电源输入端;11-下电保持模块;12-上电延时模块;13-参考电压产生模块;14-控制时序产生模块;15-电源转换模块。10-power input terminal; 11-power-off hold module; 12-power-on delay module; 13-reference voltage generation module; 14-control sequence generation module; 15-power conversion module.

具体实施方式Detailed ways

为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。In order to make the objects, advantages and features of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. It should be noted that the accompanying drawings are all in a very simplified form and are not drawn to scale, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention. Furthermore, the structures shown in the drawings are often part of the actual structure. In particular, each drawing needs to show different emphases, and sometimes different scales are used.

如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本说明书中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。As used in this specification, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise. As used in this specification, the term "or" is generally employed in its sense including "and/or" unless the content clearly dictates otherwise.

本发明提供了一种时序控制电路,以解决现有技术中,时序控制电路设计复杂、成本高、具有局限性、损耗高或者可靠性低等问题中的一个或多个。The present invention provides a timing control circuit to solve one or more of the problems in the prior art, such as complicated design, high cost, limitation, high loss or low reliability of the timing control circuit.

以下参考附图进行描述。The following description is made with reference to the accompanying drawings.

请参考图1至图8,其中,图1是本发明一优选实施例提供的时序控制电路的示意框图,图2是本发明一优选实施例提供的上电延时模块与下电保持模块的示意图,图3是本发明一优选实施例提供的参考电压产生模块的示意图,图4是本发明一优选实施例提供的控制时序产生模块的示意图,图5是本发明一优选实施例提供的时序控制电路的时序关系图,图6是本发明一优选实施例提供的时序控制电路的时序关系图,其中PCTL1下电时未能成功输出,图7是本发明一优选实施例提供的控制时序产生模块的示意图,其中包括补偿单元,图8是本发明一优选实施例提供的时序控制电路的时序关系图,其中经补偿单元的作用,PCTL1下电时能够成功输出。Please refer to FIG. 1 to FIG. 8, wherein, FIG. 1 is a schematic block diagram of a timing control circuit provided by a preferred embodiment of the present invention, and FIG. 2 is a power-on delay module and a power-off hold module provided by a preferred embodiment of the present invention. Schematic diagram, FIG. 3 is a schematic diagram of a reference voltage generation module provided by a preferred embodiment of the present invention, FIG. 4 is a schematic diagram of a control sequence generation module provided by a preferred embodiment of the present invention, and FIG. 5 is a timing sequence provided by a preferred embodiment of the present invention. The timing relationship diagram of the control circuit, FIG. 6 is the timing relationship diagram of the timing control circuit provided by a preferred embodiment of the present invention, wherein PCTL1 fails to output when powered off, and FIG. 7 is the control sequence generation provided by a preferred embodiment of the present invention. A schematic diagram of a module including a compensation unit. FIG. 8 is a timing diagram of a timing control circuit provided by a preferred embodiment of the present invention, wherein the function of the compensation unit enables PCTL1 to output successfully when powered off.

如图1所示,本发明一优选实施例提供一种时序控制电路,其包括:上电延时模块12、参考电压产生模块13以及控制时序产生模块14;所述上电延时模块12的输入端用于与电源输入端10连接,所述上电延时模块12的输出端与所述控制时序产生模块14连接,所述上电延时模块12的输出端用于向所述控制时序产生模块14输出第一电压;所述参考电压产生模块13的输入端用于与所述电源输入端10连接,所述参考电压产生模块13的输出端与所述控制时序产生模块14连接,所述参考电压产生模块13的输出端用于向所述控制时序产生模块14输出第二电压;所述控制时序产生模块14在所述第一电压和所述第二电压的驱动下输出时序控制信号;其中,所述时序控制电路被配置为,在所述电源输入端10上电后,所述参考电压产生模块13输出第二电压先于所述上电延时模块12输出所述第一电压。可选的,控制时序产生模块14的输出端用于与一电源转换模块15连接,控制时序产生模块14所输出的时序控制信号用于控制电源转换模块15,电源转换模块15如可以是低压差线性稳压电源LDO或直流开关电源DC-DC。As shown in FIG. 1, a preferred embodiment of the present invention provides a timing control circuit, which includes: a power-on delay module 12, a reference voltage generation module 13, and a control timing generation module 14; The input terminal is used to connect with the power input terminal 10, the output terminal of the power-on delay module 12 is connected to the control sequence generation module 14, and the output terminal of the power-on delay module 12 is used to send the control sequence The generation module 14 outputs the first voltage; the input terminal of the reference voltage generation module 13 is used to connect with the power input terminal 10 , and the output terminal of the reference voltage generation module 13 is connected to the control sequence generation module 14 . The output end of the reference voltage generation module 13 is used to output the second voltage to the control sequence generation module 14; the control sequence generation module 14 outputs a timing control signal driven by the first voltage and the second voltage ; wherein, the timing control circuit is configured such that after the power input terminal 10 is powered on, the reference voltage generation module 13 outputs the second voltage before the power-on delay module 12 outputs the first voltage . Optionally, the output end of the control sequence generation module 14 is used to connect with a power conversion module 15, and the sequence control signal output by the control sequence generation module 14 is used to control the power conversion module 15. The power conversion module 15 may be a low dropout voltage. Linear regulated power supply LDO or DC switching power supply DC-DC.

如此配置,控制时序产生模块14能够在第一电压和第二电压的驱动下输出时序控制信号,只依赖于单一的输入电源(即电源输入端10),无需提供备用电源,不增加部件或单板的电源数量。由于第二电压先于第一电压输出,能够确保控制时序产生模块14可靠地工作而输出时序控制信号,方案的可靠性高,电路简单、成本低。In this configuration, the control sequence generation module 14 can output the sequence control signal driven by the first voltage and the second voltage, and only depends on a single input power supply (ie, the power input terminal 10 ), without providing a backup power supply, without adding components or single The number of power supplies for the board. Since the second voltage is output before the first voltage, the control sequence generation module 14 can work reliably and output the sequence control signal, and the solution has high reliability, simple circuit and low cost.

优选的,所述时序控制电路还包括下电保持模块11,所述下电保持模块11用于与电源输入端10(VIN_EXT)连接,并用于在所述电源输入端10下电后的预定时间内,为所述上电延时模块12和所述参考电压产生模块13供电。下电保持模块11主要功能是延长外部主输入电源10下电时间,确保在外部主输入电源10完全下电前使需要时序控制的电源转换模块15完成下电,可选的,下电保持模块11包括至少一个电容,该电容的容值一般较大。请参考图2,在一个示范性的实施例中,下电保持模块11包括电容C1、电容C2和电容C3,该三个电容并联,一端接电源输入端10(VIN_EXT),另一端接地。实际中,可通过调整总容值来调整下电延迟时间,理论上下电延迟时间Δt1=k*(C1+C2+C3)/P;其中k为常数,P为下电时部件或单板负载所需的功率。可以理解的,本领域技术人员可根据实际调整电容的数量和容值,以获得合适的下电延迟时间。Preferably, the sequence control circuit further includes a power-off hold module 11, the power-off hold module 11 is used for connecting with the power input terminal 10 (VIN_EXT) and used for a predetermined time after the power input terminal 10 is powered off Inside, the power-on delay module 12 and the reference voltage generating module 13 are powered. The main function of the power-off hold module 11 is to extend the power-off time of the external main input power supply 10 to ensure that the power conversion module 15 requiring sequence control is powered off before the external main input power supply 10 is completely powered off. Optionally, the power-off hold module 11 includes at least one capacitor, and the capacitance of the capacitor is generally larger. Referring to FIG. 2 , in an exemplary embodiment, the power-off hold module 11 includes a capacitor C1 , a capacitor C2 and a capacitor C3 , the three capacitors are connected in parallel, one end is connected to the power input terminal 10 (VIN_EXT), and the other end is grounded. In practice, the power-off delay time can be adjusted by adjusting the total capacitance value. In theory, the power-off delay time Δt1=k*(C1+C2+C3)/P; where k is a constant, and P is the component or board load during power-off required power. It can be understood that those skilled in the art can adjust the number and value of the capacitors according to the actual situation, so as to obtain a suitable power-off delay time.

请继续参考图2,所述上电延时模块12包括:第十三电阻R1、第十四电阻R2、第二电容C4及晶体管Q1。所述晶体管Q1的控制端经所述第十三电阻R1与所述电源输入端VIN_EXT连接,所述晶体管Q1的控制端还经所述第十四电阻R2接地,所述第二电容C4并联于所述第十三电阻R1的两端;所述晶体管Q1的输入端与所述电源输入端VIN_EXT连接,所述晶体管Q1的输出端被配置为所述上电延时模块12的输出端(其主要用于输出第一电压VIN);所述晶体管Q1被配置为,所述控制端的控制电压或控制电流达到第三阈值时导通,其中所述第三阈值由所述第十三电阻R1和所述第十四电阻R2的阻值比确定。上电延时模块12的主要功能是使电源输入端VIN_EXT经过延时后再给其它部件或单板进行供电。如此配置,可使参考电压产生模块13优先产生控制时序产生模块14所需的第二电压VREF。第一电压VIN相对于电源输入端VIN_EXT上电的延时时间可以通过R2与C4进行调整,具体的,VIN相对于VIN_EXT的延时时间Δt2=k*C4*R2,其中k为常数。延时时间Δt2只要能保证控制时序产生模块14正常工作前,第二电压VREF已准备就绪即可。R1与R2的比例则决定了Q1导通的第三阈值。在一个优选的实施例中,所述晶体管Q1包括MOS管,所述上电延时模块还包括二极管D1,所述二极管D1并联于所述第二电容C4的两端。MOS管主要由栅极电压控制导通,此时第三阈值即为该MOS管的导通电压,二极管D1可以是稳压管或TVS管,起到保护MOS管栅源极的作用。当然在其它的实施例中,晶体管Q1还可以包括三极管,其主要由电流控制导通,此时第三阈值即为该三极管的导通电流,本领域技术人员可以根据实际进行适当的变通,本发明对此不限。Please continue to refer to FIG. 2 , the power-on delay module 12 includes: a thirteenth resistor R1 , a fourteenth resistor R2 , a second capacitor C4 and a transistor Q1 . The control terminal of the transistor Q1 is connected to the power input terminal VIN_EXT through the thirteenth resistor R1, the control terminal of the transistor Q1 is also grounded through the fourteenth resistor R2, and the second capacitor C4 is connected in parallel with the power supply input terminal VIN_EXT. Both ends of the thirteenth resistor R1; the input end of the transistor Q1 is connected to the power input end VIN_EXT, and the output end of the transistor Q1 is configured as the output end of the power-on delay module 12 (which Mainly used to output the first voltage VIN); the transistor Q1 is configured to be turned on when the control voltage or control current of the control terminal reaches a third threshold, wherein the third threshold is determined by the thirteenth resistor R1 and The resistance ratio of the fourteenth resistor R2 is determined. The main function of the power-on delay module 12 is to make the power input terminal VIN_EXT supply power to other components or boards after a delay. With this configuration, the reference voltage generation module 13 can preferentially generate the second voltage VREF required by the control timing generation module 14 . The delay time of the first voltage VIN relative to the power-on of the power input terminal VIN_EXT can be adjusted through R2 and C4. Specifically, the delay time of VIN relative to VIN_EXT Δt2=k*C4*R2, where k is a constant. The delay time Δt2 only needs to ensure that the second voltage VREF is ready before the control sequence generation module 14 works normally. The ratio of R1 to R2 determines the third threshold at which Q1 turns on. In a preferred embodiment, the transistor Q1 includes a MOS transistor, the power-on delay module further includes a diode D1, and the diode D1 is connected in parallel to both ends of the second capacitor C4. The conduction of the MOS tube is mainly controlled by the gate voltage. At this time, the third threshold is the turn-on voltage of the MOS tube. The diode D1 can be a voltage regulator tube or a TVS tube to protect the gate and source of the MOS tube. Of course, in other embodiments, the transistor Q1 may also include a triode, which is mainly turned on by current control. At this time, the third threshold is the on-current of the triode. Those skilled in the art can make appropriate modifications according to the actual situation. Invention is not limited to this.

请参考图3,可选的,所述参考电压产生模块13包括低压差线性稳压器LDO,该低压差线性稳压器LDO的输入端接电源输入端10(VIN_EXT),另一端则被配置为参考电压产生模块13的输出端,用于输出第二电压VREF。当然实际中,参考电压产生模块13还可以包括其它常用的DC-DC电路,并不局限于低压差线性稳压器LDO。可以理解的,第二电压VREF小于第一电压VIN。Please refer to FIG. 3 , optionally, the reference voltage generating module 13 includes a low dropout linear regulator LDO, the input end of the low dropout linear regulator LDO is connected to the power input end 10 (VIN_EXT), and the other end is configured It is the output terminal of the reference voltage generating module 13 for outputting the second voltage VREF. Of course, in practice, the reference voltage generating module 13 may also include other commonly used DC-DC circuits, and is not limited to the low dropout linear regulator LDO. It can be understood that the second voltage VREF is lower than the first voltage VIN.

优选的,所述控制时序产生模块14包括至少两个时序产生单元,每个所述时序产生单元的第一输入端与所述参考电压产生模块13的输出端连接,每个所述时序产生单元的第二输入端与所述上电延时模块12的输出端连接,每个所述时序产生单元的输出端用于输出一个时序控制信号。Preferably, the control timing generation module 14 includes at least two timing generation units, the first input terminal of each timing generation unit is connected to the output terminal of the reference voltage generation module 13, and each timing generation unit The second input terminal of 1 is connected to the output terminal of the power-on delay module 12 , and the output terminal of each timing generation unit is used to output a timing control signal.

请参考图4,在一个示范性的实施例中,控制时序产生模块14包括两个时序产生单元20、21,以下以其中第一个时序产生单元20为例进行说明。时序产生单元20包括第一比较器U1、第一电阻R3、第二电阻R4及第一电容C5,所述第一比较器U1的第一输入端U1A经所述第一电阻R3与所述上电延时模块12的输出端连接,所述第一比较器U1的第一输入端U1A还经所述第二电阻R4接地,所述第一电容C5并联于所述第二电阻R4的两端;所述参考电压产生模块13的输出端为所述第一比较器U1供电;所述第一比较器U1被配置为,所述第一比较器U1的第一输入端U1A的电压达到第一阈值时,所述第一比较器U1的输出端输出第一预定信号,该第一预定信号即被配置为时序控制信号PCTL1。第一阈值如可为一参考电压,进一步的,该参考电压可由第二电压VREF分压得到,可选的,所述时序产生单元还包括:第五电阻R5和第六电阻R6,所述第一比较器U1的第二输入端U1B经所述第五电阻R5与所述参考电压产生模块13的输出端连接,所述第一比较器U1的第二输入端U1B还经所述第六电阻R6接地,所述第一阈值由所述第五电阻R5和所述第六电阻R6的阻值比确定。由于上电延时模块12的输出端所输出的第一电压VIN大于参考电压产生模块13的输出端所输出的第二电压VREF,故而将第一比较器U1的第一输入端U1A设定为第一比较器U1的正端,第二输入端U1B设定为第一比较器U1的负端。第一输入端U1A用于连接第一电压VIN通过R3、R4分压的电压信号,第一电压VIN通过R3、R4的分压后,可以通过R3和C5调整PCTL1的输出延时,具体的,PCTL1的输出延时时间与R3和C5的阻容乘积值成正比。可选的,参考电压产生模块13的输出端为所述第一比较器U1供电,这里还可以设置去耦电容C6,去耦电容C6的一端连接参考电压产生模块13的输出端,另一端接地。本领域技术人员可根据第一比较器U1的规格,选择合适的去耦电容C6。Referring to FIG. 4 , in an exemplary embodiment, the control timing generation module 14 includes two timing generation units 20 and 21 , and the first timing generation unit 20 is used as an example for description below. The timing generation unit 20 includes a first comparator U1, a first resistor R3, a second resistor R4 and a first capacitor C5. The first input end U1A of the first comparator U1 is connected to the upper The output end of the electrical delay module 12 is connected, the first input end U1A of the first comparator U1 is also grounded through the second resistor R4, and the first capacitor C5 is connected in parallel with both ends of the second resistor R4 ; The output end of the reference voltage generation module 13 supplies power to the first comparator U1; the first comparator U1 is configured such that the voltage of the first input end U1A of the first comparator U1 reaches the first When the threshold value is reached, the output terminal of the first comparator U1 outputs a first predetermined signal, and the first predetermined signal is configured as a timing control signal PCTL1. For example, the first threshold can be a reference voltage. Further, the reference voltage can be obtained by dividing the second voltage VREF. Optionally, the timing generation unit further includes: a fifth resistor R5 and a sixth resistor R6, the first The second input terminal U1B of a comparator U1 is connected to the output terminal of the reference voltage generating module 13 through the fifth resistor R5, and the second input terminal U1B of the first comparator U1 is also connected through the sixth resistor R6 is grounded, and the first threshold is determined by the resistance ratio of the fifth resistor R5 and the sixth resistor R6. Since the first voltage VIN output by the output terminal of the power-on delay module 12 is greater than the second voltage VREF output by the output terminal of the reference voltage generating module 13, the first input terminal U1A of the first comparator U1 is set as The positive terminal of the first comparator U1 and the second input terminal U1B are set as the negative terminal of the first comparator U1. The first input terminal U1A is used to connect the voltage signal of the first voltage VIN divided by R3 and R4. After the first voltage VIN is divided by R3 and R4, the output delay of PCTL1 can be adjusted through R3 and C5. Specifically, The output delay time of PCTL1 is proportional to the resistance-capacitance product value of R3 and C5. Optionally, the output terminal of the reference voltage generation module 13 supplies power to the first comparator U1, and a decoupling capacitor C6 can also be set here. One end of the decoupling capacitor C6 is connected to the output terminal of the reference voltage generation module 13, and the other end is grounded. . Those skilled in the art can select an appropriate decoupling capacitor C6 according to the specifications of the first comparator U1.

可选的,所述时序产生单元20还包括:第九电阻R7和第十电阻R8,所述第一比较器U1的输出端经依次布置的所述第九电阻R7和所述第十电阻R8接地,所述第一预定信号的电压由所述第九电阻R7和所述第十电阻R8的连接点接出。可以理解的,第一预定信号的电压由第九电阻R7和第十电阻R8的比值确定,以产生符合电源转换模块15所需电平的使能控制信号。Optionally, the timing generation unit 20 further includes: a ninth resistor R7 and a tenth resistor R8, and the output end of the first comparator U1 is arranged through the ninth resistor R7 and the tenth resistor R8 in sequence. Grounding, the voltage of the first predetermined signal is connected to the connection point of the ninth resistor R7 and the tenth resistor R8. It can be understood that the voltage of the first predetermined signal is determined by the ratio of the ninth resistor R7 and the tenth resistor R8 to generate an enable control signal that meets the level required by the power conversion module 15 .

优选的,第二个时序产生单元21的电路结构与第一个时序产生单元20的电路结构相类似,第一电压VIN通过R9、R10的分压后,可以通过R9和C7调整PCTL2的输出延时,具体的,PCTL2的输出延时时间与R9和C7的阻容乘积值成正比。两个时序产生单元20、21的设置,能够输出至少两路时序控制信号。可以理解的,本领域技术人员可根据实际需要,设置更多数量的时序产生单元,当设有N(N为自然数)个时序产生单元时,其能够输出N路时序控制信号PCTL1、PCTL2……PCTLN。Preferably, the circuit structure of the second timing generation unit 21 is similar to that of the first timing generation unit 20. After the first voltage VIN is divided by R9 and R10, the output delay of PCTL2 can be adjusted through R9 and C7. Specifically, the output delay time of PCTL2 is proportional to the value of the resistance-capacitance product of R9 and C7. The arrangement of the two timing generating units 20 and 21 can output at least two timing control signals. It can be understood that those skilled in the art can set a larger number of timing generation units according to actual needs. When there are N (N is a natural number) timing generation units, they can output N channels of timing control signals PCTL1, PCTL2... PCTLN.

以下结合附图5,说明本实施例提供的时序控制电路的时序关系。The following describes the timing relationship of the timing control circuit provided by this embodiment with reference to FIG. 5 .

在上电阶段:外部的电源输入端VIN_EXT第一时间上电,第二电压VREF第二时间上电(第二电压VREF在初始阶段随VIN_EXT的上升而上升,至VIN_EXT达到预定电压VT时,第二电压VREF输出正常,保持稳定的电压),延时Δt2时间后,第一电压VIN在第三时间上电,时序控制信号PCTL1、PCTL2……PCTLN在第四时间后根据各时序产生单元设定的延时依次产生置位,以驱动电源转换模块15的各路电源依序上电。In the power-on stage: the external power input terminal VIN_EXT is powered on for the first time, and the second voltage VREF is powered on for the second time (the second voltage VREF rises with the rise of VIN_EXT in the initial stage, and when VIN_EXT reaches the predetermined voltage VT, the first The output of the two voltages VREF is normal and maintains a stable voltage), after a delay of Δt2, the first voltage VIN is powered on at the third time, and the timing control signals PCTL1, PCTL2, ... PCTLN are set after the fourth time according to the timing generation units. The delays of , are set in sequence, so as to drive the various power sources of the power conversion module 15 to be powered on in sequence.

在下电阶段:外部的电源输入端VIN_EXT第五时间下电,第一电压VIN可以近似认为与VIN_EXT同时下电,时序控制信号PCTLN……PCTL2、PCTL1依次置零,以驱动电源转换模块15的各路电源依次下电。其中,在外部的电源输入端VIN_EXT下电后,可由下电保持模块11继续为上电延时模块12和参考电压产生模块13供电,此时VIN_EXT的电压逐渐下降。至VIN_EXT的电压降至低于预定电压VT时,第二电压VREF开始下电。第二电压VREF下电前,电源转换模块15所有需要下电时序控制的各路电源皆已完成下电,即所有的时序产生单元均已完成下电置零的输出,时序控制信号PCTL1、PCTL2……PCTLN均已置零。In the power-off stage: the external power input terminal VIN_EXT is powered off at the fifth time, the first voltage VIN can be approximately considered to be powered off at the same time as VIN_EXT, and the timing control signals PCTLN...PCTL2, PCTL1 are set to zero in turn to drive the power conversion module 15 Power off the circuits one by one. Wherein, after the external power input terminal VIN_EXT is powered off, the power-off holding module 11 can continue to supply power to the power-on delay module 12 and the reference voltage generating module 13, and the voltage of VIN_EXT gradually decreases at this time. When the voltage to VIN_EXT drops below the predetermined voltage VT, the second voltage VREF starts to power down. Before the second voltage VREF is powered off, all the power sources of the power conversion module 15 that need to be powered off sequence control have been powered off, that is, all the sequence generation units have completed the output of power off and reset to zero. The sequence control signals PCTL1 and PCTL2 ... PCTLN are all set to zero.

请参考图6,在其它的一些实施例中,若多个时序控制信号之间的延时较大,可能会导致第二电压VREF开始下电时,一部分的时序产生单元还未完成下电置零的输出,此时,电源转换模块15中最后一路或几路的电源未能按照设定时序依次下电,如此会产生问题。为此,本实施例还提供了一种设有补偿单元的控制时序产生模块,以解决上述问题。Referring to FIG. 6 , in some other embodiments, if the delay between the timing control signals is relatively large, it may cause that when the second voltage VREF starts to be powered down, some timing generation units have not completed the power down setting. If the output is zero, at this time, the power of the last channel or channels of the power conversion module 15 cannot be powered off in sequence according to the set sequence, which will cause problems. To this end, this embodiment also provides a control sequence generation module provided with a compensation unit to solve the above problem.

请参考图7,并结合图6,在一个示范性的实施例中,以第一个时序产生单元20作为范例进行说明。在图6示意的时序关系图中,图6中VN为各个补偿电路的下电阈值电压,N为自然数,且满足VN>…>V2>V1>VT。在第二电压VREF开始下电时,时序产生单元20的PCTL1未能成功输出(图中虚线部分),为此,控制时序产生模块14还包括一补偿单元30,所述补偿单元30包括:第二比较器U3、第三电阻R21、第四电阻R22以及与门U4;所述第二比较器U3的第一输入端U3A经所述第三电阻R21与所述电源输入端10连接,所述第二比较器U3的第一输入端U3A还经所述第四电阻R22接地;所述参考电压产生模块13的输出端为所述第二比较器U3供电;所述第二比较器U3被配置为,所述第二比较器U3的第一输入端U3A的电压达到第二阈值时,所述第二比较器U3的输出端输出第二预定信号PCTL1B;所述与门U4的输入端分别与所述第一比较器U1的输出端和所述第二比较器U3的输出端连接,所述与门U4的输出端被配置为输出所述时序控制信号PCTL1。进一步的,所述补偿单元30还包括:第七电阻R23和第八电阻R24,所述第二比较器U3的第二输入端U3B经所述第七电阻R23与所述参考电压产生模块13的输出端连接,所述第二比较器U3的第二输入端U3B还经所述第八电阻R24接地,所述第二阈值由所述第七电阻R23和所述第八电阻R24的阻值比确定。更进一步的,所述补偿单元30还包括:第十一电阻R25和第十二电阻R26,所述第二比较器U3的输出端经依次布置的所述第十一电阻R25和所述第十二电阻R26接地,所述第二预定信号PCTL1B由所述第十一电阻R25和所述第十二电阻R26的连接点接出。补偿单元30的比较器部分的具体电路结构和原理与时序产生单元20相似,可参考上述对于时序产生单元20的描述说明,唯其第一输入端U3A通过R21和R22的分压,直接与电源输入端10连接。由于补偿单元30的与门U4连接于时序产生单元20的输出端,该时序产生单元20的输出端并不再直接向电源转换模块15输出时序控制信号,因此在设有补偿单元30的控制时序产生模块14中,将时序产生单元20的输出端输出的信号定义为第一预定信号PCTL1A。需理解的,补偿单元30的第二阈值由R23和R24决定,并非限定必须与时序产生单元20的第一阈值由R3和R4决定同时满足,也可以是第二阈值由R23和R24决定,但第一阈值由其它的参考电压决定;同样的,第二预定信号由R25和R26的连接点接出,并非限定与第一预定信号由R7和R8的连接点接出同时满足,也可以是第二预定信号直接由第二比较器U3的输出端接出,或采用其它的方式接出,而第一预定信号由R7和R8的连接点接出;本发明对此均不限。Please refer to FIG. 7 , in conjunction with FIG. 6 , in an exemplary embodiment, the first timing generation unit 20 is used as an example for description. In the timing relationship diagram shown in FIG. 6 , VN in FIG. 6 is the power-off threshold voltage of each compensation circuit, N is a natural number, and satisfies VN>...>V2>V1>VT. When the second voltage VREF starts to be powered off, the PCTL1 of the timing generation unit 20 fails to output successfully (the dotted line in the figure). Therefore, the control timing generation module 14 further includes a compensation unit 30, and the compensation unit 30 includes: a first Two comparators U3, a third resistor R21, a fourth resistor R22 and an AND gate U4; the first input end U3A of the second comparator U3 is connected to the power supply input end 10 through the third resistor R21, and the The first input end U3A of the second comparator U3 is also grounded through the fourth resistor R22; the output end of the reference voltage generating module 13 supplies power to the second comparator U3; the second comparator U3 is configured Therefore, when the voltage of the first input terminal U3A of the second comparator U3 reaches the second threshold, the output terminal of the second comparator U3 outputs the second predetermined signal PCTL1B; the input terminals of the AND gate U4 are respectively connected with The output terminal of the first comparator U1 is connected to the output terminal of the second comparator U3, and the output terminal of the AND gate U4 is configured to output the timing control signal PCTL1. Further, the compensation unit 30 further includes: a seventh resistor R23 and an eighth resistor R24, the second input end U3B of the second comparator U3 communicates with the reference voltage generating module 13 via the seventh resistor R23 The output terminal is connected, the second input terminal U3B of the second comparator U3 is also grounded through the eighth resistor R24, and the second threshold value is determined by the resistance ratio of the seventh resistor R23 and the eighth resistor R24 Sure. Further, the compensation unit 30 further includes: an eleventh resistor R25 and a twelfth resistor R26, and the output end of the second comparator U3 is arranged through the eleventh resistor R25 and the tenth resistor R25 in sequence. The second resistor R26 is grounded, and the second predetermined signal PCTL1B is connected to the connection point of the eleventh resistor R25 and the twelfth resistor R26. The specific circuit structure and principle of the comparator part of the compensation unit 30 are similar to those of the sequence generation unit 20. Please refer to the above description for the sequence generation unit 20, except that the first input end U3A is directly connected to the power supply through the voltage division of R21 and R22. Input 10 is connected. Since the AND gate U4 of the compensation unit 30 is connected to the output end of the timing generation unit 20 , the output end of the timing generation unit 20 does not directly output the timing control signal to the power conversion module 15 . Therefore, when the control sequence of the compensation unit 30 is provided In the generating module 14, the signal output by the output terminal of the timing generating unit 20 is defined as the first predetermined signal PCTL1A. It should be understood that the second threshold value of the compensation unit 30 is determined by R23 and R24, and it is not limited that it must be satisfied at the same time as the first threshold value of the timing generation unit 20 is determined by R3 and R4, or the second threshold value is determined by R23 and R24, but The first threshold is determined by other reference voltages; in the same way, the second predetermined signal is connected by the connection point of R25 and R26, which is not limited to be satisfied at the same time as the first predetermined signal is connected by the connection point of R7 and R8, it can also be the first predetermined signal. The two predetermined signals are directly connected to the output terminal of the second comparator U3, or connected in other ways, while the first predetermined signal is connected to the connection point of R7 and R8; the present invention is not limited to this.

由于与门U4的设置,PCTL1=PCTL1A·PCTL1B,在上电过程中,PCTL1B先于PCTL1A置位,则PCTL1=PCTL1A,时序控制信号PCTL1的产生取决于时序产生单元20,即不受补偿电路30的影响;而在下电过程中,若PCTL1A后于PCTL1B置零或如图6中PCTL1未能正常输出置零,则PCTL1=PCTL1B,在外部的电源输入端的电压VIN_EXT下电至阈值V1时,PCTL1则会输出置零,此时补偿电路30发挥作用,如图8所示。其中,当外部的电源输入端的电压VIN_EXT下降至阈值V1时,电源转换模块15之需要下电的各路电源仍正常工作,即输出电压正常。较佳的,补偿单元30的各元件设置满足:VREF*R24/(R23+R24)=V1*R22/(R21+R22)。如此配置,当外部的电源输入端的电压VIN_EXT下电至第四阈值V1时,能确保补偿电路30的第二比较器U3的输出端所输出的第二预定信号PCTL1B能够置零。Due to the setting of the AND gate U4, PCTL1=PCTL1A·PCTL1B, during the power-on process, PCTL1B is set before PCTL1A, then PCTL1=PCTL1A, the generation of the timing control signal PCTL1 depends on the timing generation unit 20, that is, it is not affected by the compensation circuit 30 In the power-off process, if PCTL1A is set to zero after PCTL1B or PCTL1 fails to be set to zero normally as shown in Figure 6, then PCTL1=PCTL1B, when the voltage VIN_EXT of the external power input terminal is powered off to the threshold V1, PCTL1 Then the output will be set to zero, and the compensation circuit 30 will play a role at this time, as shown in FIG. 8 . Wherein, when the voltage VIN_EXT of the external power supply input terminal drops to the threshold value V1, each power supply of the power conversion module 15 that needs to be powered off still works normally, that is, the output voltage is normal. Preferably, the setting of each element of the compensation unit 30 satisfies: VREF*R24/(R23+R24)=V1*R22/(R21+R22). This configuration ensures that the second predetermined signal PCTL1B output by the output terminal of the second comparator U3 of the compensation circuit 30 can be set to zero when the voltage VIN_EXT of the external power input terminal is powered down to the fourth threshold V1.

以上以第一个时序产生单元20作为范例,说明了补偿电路30的作用。本领域技术人员可以理解,实际中,每个时序产生单元或一部分的时序产生单元均可以与一个对应的补偿电路配合使用。如此,可以确保控制时序产生模块14能在外部的电源输入端的电压VIN_EXT下电时,确实地输出时序控制信号。The function of the compensation circuit 30 is described above by taking the first timing generation unit 20 as an example. Those skilled in the art can understand that, in practice, each timing generation unit or a part of the timing generation units may be used in cooperation with a corresponding compensation circuit. In this way, it can be ensured that the control sequence generation module 14 can reliably output the sequence control signal when the voltage VIN_EXT of the external power input terminal is powered off.

综上所述,本发明提供的时序控制电路,主要采用分立无源器件、运放等器件,实现了一种低成本的电源电压时序控制方案,其成本低,结构简单,功耗低。进一步的,控制时序产生模块可包括多个时序产生单元,可以根据实际需求,扩展实现电源转换模块之多路电源的上电和下电的电源时序控制,方案的可扩展性强。同时各路时序产生单元之间的延时时间可根据实际应用更改硬件电路参数进行调整,调整方便,电路可靠性高。To sum up, the sequence control circuit provided by the present invention mainly adopts discrete passive devices, operational amplifiers and other devices to realize a low-cost power supply voltage sequence control scheme with low cost, simple structure and low power consumption. Further, the control sequence generation module may include multiple sequence generation units, which can be extended to realize the power sequence control of power-on and power-off of multiple power sources of the power conversion module according to actual needs, and the scheme is highly scalable. At the same time, the delay time between the timing generation units of each channel can be adjusted by changing the hardware circuit parameters according to the actual application, which is convenient to adjust and has high circuit reliability.

上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。The above description is only a description of the preferred embodiments of the present invention, and is not intended to limit the scope of the present invention. Any changes and modifications made by those of ordinary skill in the field of the present invention based on the above disclosure all belong to the protection scope of the claims.

Claims (10)

1.一种时序控制电路,其特征在于,包括:上电延时模块、参考电压产生模块以及控制时序产生模块;1. a sequence control circuit, is characterized in that, comprises: power-on delay module, reference voltage generation module and control sequence generation module; 所述上电延时模块的输入端用于与电源输入端连接,所述上电延时模块的输出端与所述控制时序产生模块连接,以向所述控制时序产生模块输出第一电压;The input end of the power-on delay module is connected to the power input end, and the output end of the power-on delay module is connected to the control sequence generation module, so as to output the first voltage to the control sequence generation module; 所述参考电压产生模块的输入端用于与所述电源输入端连接,所述参考电压产生模块的输出端与所述控制时序产生模块连接,以向所述控制时序产生模块输出第二电压;The input end of the reference voltage generation module is used for connecting with the power input end, and the output end of the reference voltage generation module is connected with the control sequence generation module, so as to output the second voltage to the control sequence generation module; 所述控制时序产生模块在所述第一电压和所述第二电压的驱动下输出时序控制信号;The control timing generation module outputs timing control signals driven by the first voltage and the second voltage; 其中,所述时序控制电路被配置为,在所述电源输入端上电后,所述参考电压产生模块输出所述第二电压先于所述上电延时模块输出所述第一电压。The timing control circuit is configured such that after the power input terminal is powered on, the reference voltage generating module outputs the second voltage before the power-on delay module outputs the first voltage. 2.根据权利要求1所述的时序控制电路,其特征在于,所述时序控制电路还包括下电保持模块,所述下电保持模块用于与电源输入端连接,并用于在所述电源输入端下电后的预定时间内,为所述上电延时模块和所述参考电压产生模块供电。2 . The sequence control circuit according to claim 1 , wherein the sequence control circuit further comprises a power-off hold module, the power-off hold module is used to connect to a power input terminal and to connect to the power input terminal. 3 . The power-on delay module and the reference voltage generating module are powered within a predetermined time after the terminal is powered off. 3.根据权利要求1所述的时序控制电路,其特征在于,所述控制时序产生模块包括至少两个时序产生单元,每个所述时序产生单元的第一输入端与所述参考电压产生模块的输出端连接,每个所述时序产生单元的第二输入端与所述上电延时模块的输出端连接,每个所述时序产生单元的输出端用于输出一个时序控制信号。3 . The timing control circuit according to claim 1 , wherein the control timing generating module comprises at least two timing generating units, and the first input terminal of each timing generating unit is connected to the reference voltage generating module. 4 . The output terminal of each timing generation unit is connected to the output terminal of the power-on delay module, and the output terminal of each timing generation unit is used for outputting a timing control signal. 4.根据权利要求3所述的时序控制电路,其特征在于,所述时序产生单元包括:第一比较器、第一电阻、第二电阻及第一电容;4. The timing control circuit according to claim 3, wherein the timing generating unit comprises: a first comparator, a first resistor, a second resistor and a first capacitor; 所述第一比较器的第一输入端经所述第一电阻与所述上电延时模块的输出端连接,所述第一比较器的第一输入端还经所述第二电阻接地,所述第一电容并联于所述第二电阻的两端;The first input end of the first comparator is connected to the output end of the power-on delay module through the first resistor, and the first input end of the first comparator is also grounded through the second resistor, the first capacitor is connected in parallel with both ends of the second resistor; 所述参考电压产生模块的输出端为所述第一比较器供电;The output end of the reference voltage generating module supplies power to the first comparator; 所述第一比较器被配置为,所述第一比较器的第一输入端的电压达到第一阈值时,所述第一比较器的输出端输出第一预定信号。The first comparator is configured such that when the voltage of the first input terminal of the first comparator reaches a first threshold value, the output terminal of the first comparator outputs a first predetermined signal. 5.根据权利要求4所述的时序控制电路,其特征在于,所述控制时序产生模块还包括补偿单元,所述补偿单元包括:第二比较器、第三电阻、第四电阻以及与门;5. The sequence control circuit according to claim 4, wherein the control sequence generation module further comprises a compensation unit, the compensation unit comprising: a second comparator, a third resistor, a fourth resistor and an AND gate; 所述第二比较器的第一输入端经所述第三电阻与所述电源输入端连接,所述第二比较器的第一输入端还经所述第四电阻接地;The first input terminal of the second comparator is connected to the power input terminal through the third resistor, and the first input terminal of the second comparator is also grounded through the fourth resistor; 所述参考电压产生模块的输出端为所述第二比较器供电;The output end of the reference voltage generating module supplies power to the second comparator; 所述第二比较器被配置为,所述第二比较器的第一输入端的电压达到第二阈值时,所述第二比较器的输出端输出第二预定信号;The second comparator is configured such that when the voltage of the first input terminal of the second comparator reaches a second threshold value, the output terminal of the second comparator outputs a second predetermined signal; 所述与门的输入端分别与所述第一比较器的输出端和所述第二比较器的输出端连接,所述与门的输出端被配置为输出所述时序控制信号。Input terminals of the AND gate are respectively connected to the output terminal of the first comparator and the output terminal of the second comparator, and the output terminal of the AND gate is configured to output the timing control signal. 6.根据权利要求5所述的时序控制电路,其特征在于,所述时序产生单元还包括:第五电阻和第六电阻,所述第一比较器的第二输入端经所述第五电阻与所述参考电压产生模块的输出端连接,所述第一比较器的第二输入端还经所述第六电阻接地,所述第一阈值由所述第五电阻和所述第六电阻的阻值比确定;和/或,所述补偿单元还包括:第七电阻和第八电阻,所述第二比较器的第二输入端经所述第七电阻与所述参考电压产生模块的输出端连接,所述第二比较器的第二输入端还经所述第八电阻接地,所述第二阈值由所述第七电阻和所述第八电阻的阻值比确定。6 . The timing control circuit according to claim 5 , wherein the timing generating unit further comprises: a fifth resistor and a sixth resistor, and the second input terminal of the first comparator is connected through the fifth resistor. 7 . Connected to the output end of the reference voltage generating module, the second input end of the first comparator is also grounded through the sixth resistor, and the first threshold is determined by the difference between the fifth resistor and the sixth resistor. and/or, the compensation unit further includes: a seventh resistor and an eighth resistor, the second input end of the second comparator is connected to the output of the reference voltage generating module via the seventh resistor The second input terminal of the second comparator is also grounded through the eighth resistor, and the second threshold is determined by the resistance ratio of the seventh resistor and the eighth resistor. 7.根据权利要求5所述的时序控制电路,其特征在于,所述时序产生单元还包括:第九电阻和第十电阻,所述第一比较器的输出端经依次布置的所述第九电阻和所述第十电阻接地,所述第一预定信号的电压由所述第九电阻和所述第十电阻的阻值比确定;和/或,所述补偿单元还包括:第十一电阻和第十二电阻,所述第二比较器的输出端经依次布置的所述第十一电阻和所述第十二电阻接地,所述第二预定信号由所述第十一电阻和所述第十二电阻的连接点接出。7 . The timing control circuit according to claim 5 , wherein the timing generating unit further comprises: a ninth resistor and a tenth resistor, and the output terminals of the first comparator are arranged in sequence through the ninth resistors. 8 . The resistor and the tenth resistor are grounded, and the voltage of the first predetermined signal is determined by the resistance ratio of the ninth resistor and the tenth resistor; and/or, the compensation unit further includes: an eleventh resistor and the twelfth resistor, the output terminal of the second comparator is grounded through the eleventh resistor and the twelfth resistor arranged in sequence, and the second predetermined signal is connected by the eleventh resistor and the twelfth resistor. The connection point of the twelfth resistor is connected out. 8.根据权利要求1所述的时序控制电路,其特征在于,所述参考电压产生模块包括低压差线性稳压器。8 . The timing control circuit according to claim 1 , wherein the reference voltage generating module comprises a low dropout linear regulator. 9 . 9.根据权利要求1所述的时序控制电路,其特征在于,所述上电延时模块包括:第十三电阻、第十四电阻、第二电容及晶体管;9. The timing control circuit according to claim 1, wherein the power-on delay module comprises: a thirteenth resistor, a fourteenth resistor, a second capacitor and a transistor; 所述晶体管的控制端经所述第十三电阻与所述电源输入端连接,所述晶体管的控制端还经所述第十四电阻接地,所述第二电容并联于所述第十三电阻的两端;所述晶体管的输入端与所述电源输入端连接,所述晶体管的输出端被配置为所述上电延时模块的输出端;所述晶体管被配置为,所述控制端的控制电压或控制电流达到第三阈值时导通,其中所述第三阈值由所述第十三电阻和所述第十四电阻的阻值比确定。The control terminal of the transistor is connected to the power input terminal through the thirteenth resistor, the control terminal of the transistor is also grounded through the fourteenth resistor, and the second capacitor is connected in parallel with the thirteenth resistor Both ends of the transistor; the input end of the transistor is connected to the power supply input end, and the output end of the transistor is configured as the output end of the power-on delay module; the transistor is configured as the control end of the control end Turning on when the voltage or control current reaches a third threshold, wherein the third threshold is determined by a resistance ratio of the thirteenth resistor and the fourteenth resistor. 10.根据权利要求9所述的时序控制电路,其特征在于,所述晶体管包括MOS管,所述上电延时模块还包括二极管,所述二极管并联于所述第二电容的两端。10 . The timing control circuit according to claim 9 , wherein the transistor comprises a MOS transistor, the power-on delay module further comprises a diode, and the diode is connected in parallel to both ends of the second capacitor. 11 .
CN202010374502.6A 2020-05-06 2020-05-06 Timing control circuit Active CN111505993B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010374502.6A CN111505993B (en) 2020-05-06 2020-05-06 Timing control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010374502.6A CN111505993B (en) 2020-05-06 2020-05-06 Timing control circuit

Publications (2)

Publication Number Publication Date
CN111505993A true CN111505993A (en) 2020-08-07
CN111505993B CN111505993B (en) 2024-11-08

Family

ID=71875133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010374502.6A Active CN111505993B (en) 2020-05-06 2020-05-06 Timing control circuit

Country Status (1)

Country Link
CN (1) CN111505993B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884498A (en) * 2020-08-28 2020-11-03 上海中兴易联通讯股份有限公司 Power-down time sequence control circuit and method for multi-channel power supply of indoor distribution system
CN112187034A (en) * 2020-08-28 2021-01-05 上海集成电路研发中心有限公司 Power supply sequential control circuit
CN112526897A (en) * 2020-12-15 2021-03-19 安徽皖通邮电股份有限公司 Control device and control method for power supply time sequence
CN112701899A (en) * 2020-12-11 2021-04-23 京东数科海益信息科技有限公司 Main controller starting circuit and method and electronic equipment
CN119382492A (en) * 2024-12-30 2025-01-28 苏州密尔光子科技有限公司 Power start-stop control device and laser

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076458A1 (en) * 2005-09-30 2007-04-05 Honeywell International, Inc. Timing control circuit for lossless switching converter
CN201974719U (en) * 2011-01-28 2011-09-14 北京研华兴业电子科技有限公司 Voltage sequence control card
CN203522681U (en) * 2013-10-18 2014-04-02 深圳市新格林耐特通信技术有限公司 Double-time-delay power-on sequential control circuit
WO2017084447A1 (en) * 2015-11-20 2017-05-26 上海斐讯数据通信技术有限公司 Power-on timing sequence control circuit, control method, power supply apparatus and electronic terminal
CN108153370A (en) * 2017-12-28 2018-06-12 杭州迪普科技股份有限公司 A kind of lower electric time sequence control device and method
CN207625530U (en) * 2017-12-07 2018-07-17 广州鲁邦通物联网科技有限公司 A kind of circuits for being compatible with different startup tfi modules
CN109215562A (en) * 2018-11-23 2019-01-15 京东方科技集团股份有限公司 A kind of display driver circuit and display driving method
CN109257038A (en) * 2018-11-28 2019-01-22 中国空空导弹研究院 High Speed Signal Processor System has access to electricity sequential control circuit
CN208904889U (en) * 2018-10-22 2019-05-24 昆山龙腾光电有限公司 Power supply timing control circuit
CN110544452A (en) * 2018-05-28 2019-12-06 京东方科技集团股份有限公司 Power supply timing control circuit and control method, display drive circuit, and display device
CN110634454A (en) * 2019-09-25 2019-12-31 京东方科技集团股份有限公司 Switch time sequence control circuit and method and display device
CN211698675U (en) * 2020-05-06 2020-10-16 上海联影医疗科技有限公司 Sequential control circuit

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076458A1 (en) * 2005-09-30 2007-04-05 Honeywell International, Inc. Timing control circuit for lossless switching converter
CN201974719U (en) * 2011-01-28 2011-09-14 北京研华兴业电子科技有限公司 Voltage sequence control card
CN203522681U (en) * 2013-10-18 2014-04-02 深圳市新格林耐特通信技术有限公司 Double-time-delay power-on sequential control circuit
WO2017084447A1 (en) * 2015-11-20 2017-05-26 上海斐讯数据通信技术有限公司 Power-on timing sequence control circuit, control method, power supply apparatus and electronic terminal
CN207625530U (en) * 2017-12-07 2018-07-17 广州鲁邦通物联网科技有限公司 A kind of circuits for being compatible with different startup tfi modules
CN108153370A (en) * 2017-12-28 2018-06-12 杭州迪普科技股份有限公司 A kind of lower electric time sequence control device and method
CN110544452A (en) * 2018-05-28 2019-12-06 京东方科技集团股份有限公司 Power supply timing control circuit and control method, display drive circuit, and display device
CN208904889U (en) * 2018-10-22 2019-05-24 昆山龙腾光电有限公司 Power supply timing control circuit
CN109215562A (en) * 2018-11-23 2019-01-15 京东方科技集团股份有限公司 A kind of display driver circuit and display driving method
CN109257038A (en) * 2018-11-28 2019-01-22 中国空空导弹研究院 High Speed Signal Processor System has access to electricity sequential control circuit
CN110634454A (en) * 2019-09-25 2019-12-31 京东方科技集团股份有限公司 Switch time sequence control circuit and method and display device
CN211698675U (en) * 2020-05-06 2020-10-16 上海联影医疗科技有限公司 Sequential control circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884498A (en) * 2020-08-28 2020-11-03 上海中兴易联通讯股份有限公司 Power-down time sequence control circuit and method for multi-channel power supply of indoor distribution system
CN112187034A (en) * 2020-08-28 2021-01-05 上海集成电路研发中心有限公司 Power supply sequential control circuit
CN111884498B (en) * 2020-08-28 2022-04-01 上海中兴易联通讯股份有限公司 Power-down time sequence control circuit and method for multi-channel power supply of indoor distribution system
CN112701899A (en) * 2020-12-11 2021-04-23 京东数科海益信息科技有限公司 Main controller starting circuit and method and electronic equipment
CN112526897A (en) * 2020-12-15 2021-03-19 安徽皖通邮电股份有限公司 Control device and control method for power supply time sequence
CN119382492A (en) * 2024-12-30 2025-01-28 苏州密尔光子科技有限公司 Power start-stop control device and laser

Also Published As

Publication number Publication date
CN111505993B (en) 2024-11-08

Similar Documents

Publication Publication Date Title
CN111505993A (en) Sequential control circuit
US20080203982A1 (en) Power supply system for motherboard
CN104699153B (en) Low-dropout linear regulator
US11435767B2 (en) Voltage regulator and bandgap voltage reference with novel start-up circuit and seamless voltage reference switch over for PSR enhancement
CN104242630B (en) power supply unit
CN108508958B (en) Pseudo-digital low dropout linear regulator and power management chip
US20170300077A1 (en) Power management circuit and associated power management method
CN109327211B (en) Load switch and switching method thereof
KR20150083550A (en) Power supply device and micro server having the same
CN106531059B (en) Display screen driving circuit and electronic equipment
CN211698675U (en) Sequential control circuit
CN103227466B (en) Power on-off control method of direct-current voltage-stabilized power supplies for spacecraft
US12248349B2 (en) Layered series-connected power supply circuit and data processing device for supplying power to computing chips connected in series from bottommost layer to highest layer
CN114063692B (en) Voltage Regulator
CN112256115B (en) Power supply circuits, chips and electronic equipment
US20170373505A1 (en) Switch control circuit and electronic device using the same
US20130124880A1 (en) Power supply device for central processing unit
CN112363558A (en) Voltage regulating circuit
CN218122537U (en) LDO circuit, power management system and main control chip
US8108701B2 (en) Power supply circuit
CN113054642B (en) Power supply method of TDICMOS imaging system
CN210348320U (en) Mainboard and computer equipment
CN209911860U (en) Voltage stabilizing circuit and electronic equipment
US10782717B1 (en) Jitter compensation in integrated circuit devices
WO2024135656A1 (en) Power supply device and power system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 201807 Shanghai City, north of the city of Jiading District Road No. 2258

Applicant after: Shanghai Lianying Medical Technology Co.,Ltd.

Address before: 201807 Shanghai City, north of the city of Jiading District Road No. 2258

Applicant before: SHANGHAI UNITED IMAGING HEALTHCARE Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant