CN111505802A - Optical imaging lens - Google Patents
Optical imaging lens Download PDFInfo
- Publication number
- CN111505802A CN111505802A CN202010468171.2A CN202010468171A CN111505802A CN 111505802 A CN111505802 A CN 111505802A CN 202010468171 A CN202010468171 A CN 202010468171A CN 111505802 A CN111505802 A CN 111505802A
- Authority
- CN
- China
- Prior art keywords
- lens
- optical imaging
- imaging lens
- object side
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
技术领域technical field
本申请涉及光学元件领域,具体地,涉及一种光学成像镜头。The present application relates to the field of optical elements, and in particular, to an optical imaging lens.
背景技术Background technique
很多摄影爱好者在拍摄大面积的景物,如高大的山景、宽阔的建筑、游行的广大队伍以及室内全部陈列品等时,经常会受到如镜头视场角等方面的限制,使得摄像镜头无法拍全大面积的景物。市场上大多数摄像镜头的视角不足以满足摄影爱好者拍摄大面积景物的需求。Many photographers are often limited by the angle of view of the lens when shooting large-scale scenery, such as tall mountain scenery, wide buildings, large parades, and all indoor exhibits, which makes the camera lens unable to Take pictures of large areas. The angle of view of most camera lenses on the market is not enough to meet the needs of photographers to capture large-scale scenes.
因此,为了满足更多摄影爱好者对拍摄大面积景物的需求,市场上亟需一种能够兼顾高成像质量以及大视场角的光学成像镜头。Therefore, in order to meet the needs of more photography enthusiasts for shooting large-area scenes, there is an urgent need in the market for an optical imaging lens that can take into account both high imaging quality and a large field of view.
发明内容SUMMARY OF THE INVENTION
本申请一方面提供了这样一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜,其物侧面为凹面;具有正光焦度的第二透镜;具有负光焦度的第三透镜,其物侧面为凸面;具有光焦度的第四透镜;以及具有光焦度的第五透镜,其物侧面为凹面。光学成像镜头的最大视场角的一半Semi-FOV可满足:Semi-FOV≥60°;以及光学成像镜头的成像面上有效像素区域的对角线长的一半ImgH、第二透镜的有效焦距f2以及第五透镜的有效焦距f5可满足:0<ImgH/(f2+f5)<5.0。One aspect of the present application provides such an optical imaging lens, the optical imaging lens sequentially includes from the object side to the image side along the optical axis: a first lens with optical power, the object side of which is concave; The second lens with negative power; the third lens with negative refractive power, whose object side is convex; the fourth lens with power; and the fifth lens with power, whose object side is concave. Semi-FOV which is half of the maximum field of view of the optical imaging lens can satisfy: Semi-FOV≥60°; and half the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens ImgH, the effective focal length of the second lens f2 And the effective focal length f5 of the fifth lens may satisfy: 0<ImgH/(f2+f5)<5.0.
在一个实施方式中,第一透镜的物侧面至第五透镜的像侧面中至少有一个非球面镜面。In one embodiment, there is at least one aspherical mirror surface from the object side of the first lens to the image side of the fifth lens.
在一个实施方式中,第五透镜的物侧面的曲率半径R9与第三透镜的有效焦距f3可满足:3.5<R9/f3<6.0。In one embodiment, the curvature radius R9 of the object side surface of the fifth lens and the effective focal length f3 of the third lens may satisfy: 3.5<R9/f3<6.0.
在一个实施方式中,第五透镜在光轴上的中心厚度CT5与第四透镜和第五透镜在光轴上的间隔距离T45可满足:1.0<CT5/T45<3.5。In one embodiment, the center thickness CT5 of the fifth lens on the optical axis and the separation distance T45 of the fourth lens and the fifth lens on the optical axis may satisfy: 1.0<CT5/T45<3.5.
在一个实施方式中,第四透镜的边缘厚度ET4与第四透镜在光轴上的中心厚度CT4可满足:0<ET4/CT4<0.5。In one embodiment, the edge thickness ET4 of the fourth lens and the center thickness CT4 of the fourth lens on the optical axis may satisfy: 0<ET4/CT4<0.5.
在一个实施方式中,第二透镜的像侧面的曲率半径R4与第四透镜的像侧面的曲率半径R8可满足:1.0<R4/R8<3.0。In one embodiment, the curvature radius R4 of the image side surface of the second lens and the curvature radius R8 of the image side surface of the fourth lens may satisfy: 1.0<R4/R8<3.0.
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜和第二透镜的组合焦距f12可满足:-4.5<R1/f12<-1.0。In one embodiment, the radius of curvature R1 of the object side surface of the first lens and the combined focal length f12 of the first lens and the second lens may satisfy: -4.5<R1/f12<-1.0.
在一个实施方式中,第一透镜、第二透镜和第三透镜的组合焦距f123与光学成像镜头的总有效焦距f可满足:1.5<f123/f<3.0。In one embodiment, the combined focal length f123 of the first lens, the second lens and the third lens and the total effective focal length f of the optical imaging lens may satisfy: 1.5<f123/f<3.0.
在一个实施方式中,第三透镜的像侧面和光轴的交点至第三透镜的像侧面的有效半径顶点在光轴上的距离SAG32与第四透镜的像侧面和光轴的交点至第四透镜的像侧面的有效半径顶点在光轴上的距离SAG42可满足:-9.5<SAG42/SAG32<-3.5。In one embodiment, the distance SAG32 from the intersection of the image side surface and the optical axis of the third lens to the vertex of the effective radius of the image side surface of the third lens on the optical axis and the intersection of the image side surface and the optical axis of the fourth lens to the fourth lens The distance SAG42 of the effective radius vertex of the image side on the optical axis can satisfy: -9.5<SAG42/SAG32<-3.5.
在一个实施方式中,第四透镜和第五透镜的组合焦距f45、第三透镜和第四透镜在光轴上的间隔距离T34以及第四透镜和第五透镜在光轴上的间隔距离T45可满足:4.0<f45/(T34+T45)<7.5。In one embodiment, the combined focal length f45 of the fourth lens and the fifth lens, the separation distance T34 between the third lens and the fourth lens on the optical axis, and the separation distance T45 between the fourth lens and the fifth lens on the optical axis may be Satisfaction: 4.0<f45/(T34+T45)<7.5.
本申请另一方面提供了一种光学成像镜头,该光学成像镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜,其物侧面为凹面;具有正光焦度的第二透镜;具有负光焦度的第三透镜,其物侧面为凸面;具有光焦度的第四透镜;以及具有光焦度的第五透镜,其物侧面为凹面。光学成像镜头的最大视场角的一半Semi-FOV可满足:Semi-FOV≥60°;以及第四透镜和第五透镜的组合焦距f45、第三透镜和第四透镜在光轴上的间隔距离T34以及第四透镜和第五透镜在光轴上的间隔距离T45可满足:4.0<f45/(T34+T45)<7.5。Another aspect of the present application provides an optical imaging lens, the optical imaging lens includes sequentially from an object side to an image side along an optical axis: a first lens with optical power, the object side of which is concave; The second lens with negative power; the third lens with negative refractive power, whose object side is convex; the fourth lens with power; and the fifth lens with power, whose object side is concave. Semi-FOV, which is half of the maximum field of view of the optical imaging lens, can satisfy: Semi-FOV≥60°; and the combined focal length of the fourth lens and the fifth lens f45, and the separation distance between the third lens and the fourth lens on the optical axis T34 and the separation distance T45 of the fourth lens and the fifth lens on the optical axis may satisfy: 4.0<f45/(T34+T45)<7.5.
本申请通过合理的分配光焦度以及优化光学参数,提供了一种可适用于轻便型电子产品,具有大视场角、小型化、高分辨率以及良好的成像质量中至少之一的光学成像镜头。The present application provides an optical imaging that can be applied to portable electronic products and has at least one of large field of view, miniaturization, high resolution and good imaging quality by reasonably allocating optical power and optimizing optical parameters. lens.
附图说明Description of drawings
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present application will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;FIG. 1 shows a schematic structural diagram of an optical imaging lens according to
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;2A to 2D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;3 shows a schematic structural diagram of an optical imaging lens according to
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;4A to 4D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;6A to 6D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of Embodiment 3;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;7 shows a schematic structural diagram of an optical imaging lens according to
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;8A to 8D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;FIG. 9 shows a schematic structural diagram of an optical imaging lens according to
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;10A to 10D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens of
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;以及FIG. 11 shows a schematic structural diagram of an optical imaging lens according to
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。12A to 12D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens of
具体实施方式Detailed ways
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。For a better understanding of the present application, various aspects of the present application will be described in more detail with reference to the accompanying drawings. It should be understood that these detailed descriptions are merely illustrative of exemplary embodiments of the present application and are not intended to limit the scope of the present application in any way. Throughout the specification, the same reference numerals refer to the same elements. The expression "and/or" includes any and all combinations of one or more of the associated listed items.
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。It should be noted that in this specification, the expressions first, second, third etc. are only used to distinguish one feature from another feature and do not imply any limitation on the feature. Accordingly, the first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。In the drawings, the thickness, size and shape of the lenses have been slightly exaggerated for convenience of explanation. In particular, the spherical or aspherical shapes shown in the figures are shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings. The drawings are examples only and are not drawn strictly to scale.
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。Herein, the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。It will also be understood that the terms "comprising", "comprising", "having", "comprising" and/or "comprising" when used in this specification mean that the stated features, elements and/or components are present , but does not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. Furthermore, when an expression such as "at least one of" appears after a list of listed features, it modifies the entire listed feature and not the individual elements of the list. Furthermore, when describing embodiments of the present application, the use of "may" means "one or more embodiments of the present application." Also, the term "exemplary" is intended to refer to an example or illustration.
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. It should also be understood that terms (such as those defined in commonly used dictionaries) should be interpreted to have meanings consistent with their meanings in the context of the related art, and will not be interpreted in an idealized or overly formal sense unless It is expressly so limited herein.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict. The present application will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
以下对本申请的特征、原理和其他方面进行详细描述。The features, principles, and other aspects of the present application are described in detail below.
根据本申请示例性实施方式的光学成像镜头可包括五片具有光焦度的透镜,分别是第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。这五片透镜沿着光轴从物侧至像侧依序排列。第一透镜至第五透镜中的任意相邻两透镜之间均可具有间隔距离。The optical imaging lens according to the exemplary embodiment of the present application may include five lenses having optical power, which are a first lens, a second lens, a third lens, a fourth lens, and a fifth lens, respectively. The five lenses are arranged in sequence from the object side to the image side along the optical axis. Any two adjacent lenses among the first lens to the fifth lens may have a separation distance.
在示例性实施方式中,第一透镜可具有正光焦度或负光焦度,其物侧面可为凹面;第二透镜可具有正光焦度;第三透镜可具有负光焦度,其物侧面可为凸面;第四透镜可具有正光焦度或负光焦度;以及第五透镜可具有正光焦度或负光焦度,其物侧面可为凹面。In exemplary embodiments, the first lens may have positive power or negative power, and its object side may be concave; the second lens may have positive power; and the third lens may have negative power, and its object side The fourth lens may have positive or negative power; and the fifth lens may have positive or negative power, and its object side may be concave.
在示例性实施方式中,根据本申请的光学成像镜头可满足:Semi-FOV≥60°,其中,Semi-FOV是光学成像镜头的最大视场角的一半。满足Semi-FOV≥60°,可以使视野宽阔,有利于实现较大的清晰范围。In an exemplary embodiment, the optical imaging lens according to the present application may satisfy: Semi-FOV≧60°, where Semi-FOV is half of the maximum field angle of the optical imaging lens. Satisfying the Semi-FOV≥60° can make the field of view wide, which is beneficial to achieve a larger clear range.
在示例性实施方式中,根据本申请的光学成像镜头可满足:0<ImgH/(f2+f5)<5.0,其中,ImgH是光学成像镜头的成像面上有效像素区域的对角线长的一半,f2是第二透镜的有效焦距,f5是第五透镜的有效焦距。更具体地,ImgH、f2和f5进一步可满足:0<ImgH/(f2+f5)<4.8。满足0<ImgH/(f2+f5)<5.0,可以有效改善系统的像差。In an exemplary embodiment, the optical imaging lens according to the present application may satisfy: 0<ImgH/(f2+f5)<5.0, where ImgH is half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens , f2 is the effective focal length of the second lens, and f5 is the effective focal length of the fifth lens. More specifically, ImgH, f2 and f5 may further satisfy: 0<ImgH/(f2+f5)<4.8. Satisfying 0<ImgH/(f2+f5)<5.0, the aberration of the system can be effectively improved.
在示例性实施方式中,根据本申请的光学成像镜头可满足:3.5<R9/f3<6.0,其中,R9是第五透镜的物侧面的曲率半径,f3是第三透镜的有效焦距。更具体地,R9和f3进一步可满足:3.9<R9/f3<6.0。满足3.5<R9/f3<6.0,可以有效改善系统的像差。In an exemplary embodiment, the optical imaging lens according to the present application may satisfy: 3.5<R9/f3<6.0, where R9 is the curvature radius of the object side surface of the fifth lens, and f3 is the effective focal length of the third lens. More specifically, R9 and f3 may further satisfy: 3.9<R9/f3<6.0. Satisfying 3.5<R9/f3<6.0, the aberration of the system can be effectively improved.
在示例性实施方式中,根据本申请的光学成像镜头可满足:1.0<CT5/T45<3.5,其中,CT5是第五透镜在光轴上的中心厚度,T45是第四透镜和第五透镜在光轴上的间隔距离。更具体地,CT5和T45进一步可满足:1.2<CT5/T45<3.5。满足1.0<CT5/T45<3.5,可以降低加工难度,同时可以使光学成像镜头具备较好的平衡色差和畸变的能力。In an exemplary embodiment, the optical imaging lens according to the present application may satisfy: 1.0<CT5/T45<3.5, wherein CT5 is the central thickness of the fifth lens on the optical axis, and T45 is the thickness of the fourth lens and the fifth lens in the The separation distance on the optical axis. More specifically, CT5 and T45 may further satisfy: 1.2<CT5/T45<3.5. Satisfying 1.0<CT5/T45<3.5 can reduce the processing difficulty and at the same time make the optical imaging lens have a better ability to balance chromatic aberration and distortion.
在示例性实施方式中,根据本申请的光学成像镜头可满足:0<ET4/CT4<0.5,其中,ET4是第四透镜的边缘厚度,CT4是第四透镜在光轴上的中心厚度。更具体地,ET4和CT4进一步可满足:0.1<ET4/CT4<0.3。满足0<ET4/CT4<0.5,可以降低加工难度,同时可以使光学成像镜头组装具有更高的稳定性。In an exemplary embodiment, the optical imaging lens according to the present application may satisfy: 0<ET4/CT4<0.5, where ET4 is the edge thickness of the fourth lens, and CT4 is the center thickness of the fourth lens on the optical axis. More specifically, ET4 and CT4 may further satisfy: 0.1<ET4/CT4<0.3. Satisfying 0<ET4/CT4<0.5 can reduce the difficulty of processing and at the same time make the optical imaging lens assembly have higher stability.
在示例性实施方式中,根据本申请的光学成像镜头可满足:1.0<R4/R8<3.0,其中,R4是第二透镜的像侧面的曲率半径,R8是第四透镜的像侧面的曲率半径。更具体地,R4和R8进一步可满足:1.2<R4/R8<2.8。满足1.0<R4/R8<3.0,可以有效地平衡光学成像镜头产生的轴上像差。In an exemplary embodiment, the optical imaging lens according to the present application may satisfy: 1.0<R4/R8<3.0, wherein R4 is the radius of curvature of the image side of the second lens, and R8 is the radius of curvature of the image side of the fourth lens . More specifically, R4 and R8 may further satisfy: 1.2<R4/R8<2.8. Satisfying 1.0<R4/R8<3.0 can effectively balance the axial aberration generated by the optical imaging lens.
在示例性实施方式中,根据本申请的光学成像镜头可满足:-4.5<R1/f12<-1.0,其中,R1是第一透镜的物侧面的曲率半径,f12是第一透镜和第二透镜的组合焦距。更具体地,R1和f12进一步可满足:-4.4<R1/f12<-1.1。满足-4.5<R1/f12<-1.0,有利于光学成像镜头更好地平衡像差,同时有利于提高系统的解像力。In an exemplary embodiment, the optical imaging lens according to the present application may satisfy: -4.5<R1/f12<-1.0, wherein R1 is the curvature radius of the object side of the first lens, and f12 is the first lens and the second lens combined focal length. More specifically, R1 and f12 may further satisfy: -4.4<R1/f12<-1.1. Satisfying -4.5<R1/f12<-1.0 is beneficial to the optical imaging lens to better balance the aberrations and at the same time to improve the resolution of the system.
在示例性实施方式中,根据本申请的光学成像镜头可满足:1.5<f123/f<3.0,其中,f123是第一透镜、第二透镜和第三透镜的组合焦距,f是光学成像镜头的总有效焦距。更具体地,f123和f进一步可满足:1.6<f123/f<2.8。满足1.5<f123/f<3.0,有利于提高光学成像镜头的视场角。In an exemplary embodiment, the optical imaging lens according to the present application may satisfy: 1.5<f123/f<3.0, where f123 is the combined focal length of the first lens, the second lens and the third lens, and f is the focal length of the optical imaging lens total effective focal length. More specifically, f123 and f may further satisfy: 1.6<f123/f<2.8. Satisfying 1.5<f123/f<3.0 is beneficial to improve the field of view of the optical imaging lens.
在示例性实施方式中,根据本申请的光学成像镜头可满足:-9.5<SAG42/SAG32<-3.5,其中,SAG32是第三透镜的像侧面和光轴的交点至第三透镜的像侧面的有效半径顶点在光轴上的距离,SAG42是第四透镜的像侧面和光轴的交点至第四透镜的像侧面的有效半径顶点在光轴上的距离。更具体地,SAG42和SAG32进一步可满足:-9.5<SAG42/SAG32<-3.8。满足-9.5<SAG42/SAG32<-3.5,可以合理控制主光线偏转角度,提高与芯片的匹配程度,有利于调整光学成像镜头的结构。In an exemplary embodiment, the optical imaging lens according to the present application may satisfy: -9.5<SAG42/SAG32<-3.5, wherein SAG32 is the effective point of intersection of the image side surface and the optical axis of the third lens to the image side surface of the third lens The distance of the radius vertex on the optical axis, SAG42 is the distance from the intersection of the image side surface of the fourth lens and the optical axis to the effective radius vertex of the image side surface of the fourth lens on the optical axis. More specifically, SAG42 and SAG32 may further satisfy: -9.5<SAG42/SAG32<-3.8. Satisfying -9.5<SAG42/SAG32<-3.5, the deflection angle of the chief ray can be reasonably controlled, the matching degree with the chip can be improved, and the structure of the optical imaging lens can be adjusted.
在示例性实施方式中,根据本申请的光学成像镜头可满足:4.0<f45/(T34+T45)<7.5,其中,f45是第四透镜和第五透镜的组合焦距,T34是第三透镜和第四透镜在光轴上的间隔距离,T45是第四透镜和第五透镜在光轴上的间隔距离。更具体地,f45、T34和T45进一步可满足:4.0<f45/(T34+T45)<7.3。满足4.0<f45/(T34+T45)<7.5,可以保证光学成像镜头具有良好的可加工特性。In an exemplary embodiment, the optical imaging lens according to the present application may satisfy: 4.0<f45/(T34+T45)<7.5, where f45 is the combined focal length of the fourth lens and the fifth lens, T34 is the third lens and The spacing distance of the fourth lens on the optical axis, T45 is the spacing distance between the fourth lens and the fifth lens on the optical axis. More specifically, f45, T34 and T45 may further satisfy: 4.0<f45/(T34+T45)<7.3. Satisfying 4.0<f45/(T34+T45)<7.5 can ensure that the optical imaging lens has good processability.
在示例性实施方式中,根据本申请的光学成像镜头还包括设置在第一透镜与第二透镜之间的光阑。可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。本申请提出了一种具有小型化、超广角、以及高成像质量等特性的光学成像镜头。可选地,本申请提出的光学成像镜头可以是广角镜头,其焦距可小于标准镜头、视角可大于标准镜头;并且焦距可大于鱼眼镜头、视角可小于鱼眼镜头。根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文的五片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地汇聚入射光线、降低成像镜头的光学总长并提高成像镜头的可加工性,使得光学成像镜头更有利于生产加工。In an exemplary embodiment, the optical imaging lens according to the present application further includes a diaphragm disposed between the first lens and the second lens. Optionally, the above-mentioned optical imaging lens may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element located on the imaging surface. The present application proposes an optical imaging lens with characteristics such as miniaturization, ultra-wide angle, and high imaging quality. Optionally, the optical imaging lens proposed in the present application can be a wide-angle lens, and its focal length can be smaller than a standard lens, and its angle of view can be larger than that of the standard lens; The optical imaging lens according to the above-mentioned embodiments of the present application may employ multiple lenses, such as the above five lenses. By rationally distributing the focal power, surface shape, central thickness of each lens, and on-axis distance between each lens, etc., the incident light can be effectively converged, the overall optical length of the imaging lens can be reduced, and the machinability of the imaging lens can be improved. , making the optical imaging lens more conducive to production and processing.
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜的物侧面至第五透镜的像侧面中的至少一个镜面为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。可选地,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜中的每个透镜的物侧面和像侧面均为非球面镜面。In the embodiments of the present application, at least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, at least one mirror surface from the object side of the first lens to the image side of the fifth lens is an aspheric mirror surface. The characteristic of aspheric lenses is that the curvature changes continuously from the center of the lens to the periphery of the lens. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatism. After the aspherical lens is used, the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality. Optionally, at least one of the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens and the fifth lens is an aspherical mirror surface. Optionally, the object side and the image side of each of the first lens, the second lens, the third lens, the fourth lens and the fifth lens are aspherical mirror surfaces.
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以五个透镜为例进行了描述,但是该光学成像镜头不限于包括五个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。However, those skilled in the art should understand that, without departing from the technical solutions claimed in the present application, the number of lenses constituting the optical imaging lens can be changed to obtain various results and advantages described in this specification. For example, although five lenses are described as an example in the embodiment, the optical imaging lens is not limited to include five lenses. If desired, the optical imaging lens may also include other numbers of lenses.
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。Specific examples of the optical imaging lens applicable to the above embodiments are further described below with reference to the accompanying drawings.
实施例1Example 1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。The following describes the optical imaging lens according to
如图1所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。As shown in FIG. 1, the optical imaging lens sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a filter Sheet E6 and imaging plane S13.
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。The first lens E1 has negative refractive power, the object side S1 is concave, and the image side S2 is concave. The second lens E2 has positive refractive power, the object side S3 is convex, and the image side S4 is convex. The third lens E3 has negative refractive power, the object side S5 is convex, and the image side S6 is concave. The fourth lens E4 has positive refractive power, the object side S7 is concave, and the image side S8 is convex. The fifth lens E5 has negative refractive power, the object side S9 is concave, and the image side S10 is concave. The filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
表1示出了实施例1的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。Table 1 shows the basic parameter table of the optical imaging lens of Example 1, wherein the units of curvature radius, thickness/distance and focal length are all millimeters (mm).
表1Table 1
在本示例中,光学成像镜头的总有效焦距f为2.12mm,光学成像镜头的总长度TTL(即,从第一透镜E1的物侧面S1至光学成像镜头的成像面S13在光轴上的距离)为5.85mm,光学成像镜头的成像面S13上有效像素区域的对角线长的一半ImgH为3.63mm,光学成像镜头的最大视场角的一半Semi-FOV为63.5°,光学成像镜头的光圈值Fno为2.27。In this example, the total effective focal length f of the optical imaging lens is 2.12mm, and the total length of the optical imaging lens TTL (that is, the distance from the object side S1 of the first lens E1 to the imaging surface S13 of the optical imaging lens on the optical axis ) is 5.85mm, half of the diagonal length of the effective pixel area on the imaging surface S13 of the optical imaging lens ImgH is 3.63mm, half of the maximum field of view of the optical imaging lens Semi-FOV is 63.5°, the aperture of the optical imaging lens The value Fno is 2.27.
在实施例1中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:In
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2-1和2-2给出了可用于实施例1中各非球面镜面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18、A20、A22、A24、A26、A28和A30。Among them, x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis; c is the paraxial curvature of the aspheric surface, c=1/R (that is, the paraxial curvature c is the above table 1 is the reciprocal of the radius of curvature R); k is the conic coefficient; Ai is the correction coefficient of the i-th order of the aspheric surface. Tables 2-1 and 2-2 below show the higher order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 that can be used for each of the aspheric mirror surfaces S1 to S10 in Example 1 , A 18 , A 20 , A 22 , A 24 , A 26 , A 28 and A 30 .
表2-1table 2-1
表2-2Table 2-2
图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。FIG. 2A shows the on-axis chromatic aberration curve of the optical imaging lens of
实施例2Example 2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。The following describes the optical imaging lens according to
如图3所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。As shown in FIG. 3 , the optical imaging lens sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a filter Sheet E6 and imaging plane S13.
第一透镜E1具有正光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。The first lens E1 has positive refractive power, the object side S1 is concave, and the image side S2 is convex. The second lens E2 has positive refractive power, the object side S3 is convex, and the image side S4 is convex. The third lens E3 has negative refractive power, the object side S5 is convex, and the image side S6 is concave. The fourth lens E4 has positive refractive power, the object side S7 is concave, and the image side S8 is convex. The fifth lens E5 has negative refractive power, the object side S9 is concave, and the image side S10 is concave. The filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
在本示例中,光学成像镜头的总有效焦距f为2.15mm,光学成像镜头的总长度TTL为5.30mm,光学成像镜头的成像面S13上有效像素区域的对角线长的一半ImgH为3.63mm,光学成像镜头的最大视场角的一半Semi-FOV为61.1°,光学成像镜头的光圈值Fno为2.27。In this example, the total effective focal length f of the optical imaging lens is 2.15mm, the total length TTL of the optical imaging lens is 5.30mm, and the half of the diagonal length ImgH of the effective pixel area on the imaging surface S13 of the optical imaging lens is 3.63mm , the Semi-FOV of half the maximum field of view of the optical imaging lens is 61.1°, and the aperture value Fno of the optical imaging lens is 2.27.
表3示出了实施例2的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表4-1、4-2示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。Table 3 shows the basic parameter table of the optical imaging lens of Example 2, wherein the units of curvature radius, thickness/distance and focal length are all millimeters (mm). Tables 4-1 and 4-2 show the coefficients of higher-order terms that can be used for each aspherical mirror surface in
表3table 3
表4-1Table 4-1
表4-2Table 4-2
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。FIG. 4A shows the on-axis chromatic aberration curve of the optical imaging lens of
实施例3Example 3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。The optical imaging lens according to Embodiment 3 of the present application is described below with reference to FIGS. 5 to 6D . FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
如图5所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。As shown in FIG. 5 , the optical imaging lens sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a filter Sheet E6 and imaging plane S13.
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。The first lens E1 has negative refractive power, the object side S1 is concave, and the image side S2 is concave. The second lens E2 has positive refractive power, the object side S3 is convex, and the image side S4 is convex. The third lens E3 has negative refractive power, the object side S5 is convex, and the image side S6 is concave. The fourth lens E4 has positive refractive power, the object side S7 is concave, and the image side S8 is convex. The fifth lens E5 has positive refractive power, the object side S9 is concave, and the image side S10 is convex. The filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
在本示例中,光学成像镜头的总有效焦距f为1.84mm,光学成像镜头的总长度TTL为5.85mm,光学成像镜头的成像面S13上有效像素区域的对角线长的一半ImgH为3.63mm,光学成像镜头的最大视场角的一半Semi-FOV为62.2°,光学成像镜头的光圈值Fno为2.28。In this example, the total effective focal length f of the optical imaging lens is 1.84mm, the total length TTL of the optical imaging lens is 5.85mm, and the half of the diagonal length of the effective pixel area on the imaging surface S13 of the optical imaging lens ImgH is 3.63mm , the Semi-FOV of the half of the maximum field of view of the optical imaging lens is 62.2°, and the aperture value Fno of the optical imaging lens is 2.28.
表5示出了实施例3的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表6-1、6-2示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。Table 5 shows the basic parameter table of the optical imaging lens of Example 3, wherein the units of curvature radius, thickness/distance and focal length are all millimeters (mm). Tables 6-1 and 6-2 show the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 3, wherein each aspherical surface type can be defined by the formula (1) given in Example 1 above.
表5table 5
表6-1Table 6-1
表6-2Table 6-2
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。FIG. 6A shows the on-axis chromatic aberration curve of the optical imaging lens of Embodiment 3, which represents the deviation of the converging point of light of different wavelengths after passing through the lens. FIG. 6B shows astigmatism curves of the optical imaging lens of Embodiment 3, which represent the meridional curvature of the image plane and the sagittal image plane curvature. FIG. 6C shows the distortion curve of the optical imaging lens of Example 3, which represents the distortion magnitude values corresponding to different image heights. FIG. 6D shows the magnification chromatic aberration curve of the optical imaging lens of Example 3, which represents the deviation of different image heights on the imaging plane after light passes through the lens. It can be seen from FIGS. 6A to 6D that the optical imaging lens provided in Embodiment 3 can achieve good imaging quality.
实施例4Example 4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。The optical imaging lens according to
如图7所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。As shown in FIG. 7 , the optical imaging lens sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a filter Sheet E6 and imaging plane S13.
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。The first lens E1 has negative refractive power, the object side S1 is concave, and the image side S2 is convex. The second lens E2 has positive refractive power, the object side S3 is convex, and the image side S4 is convex. The third lens E3 has negative refractive power, the object side S5 is convex, and the image side S6 is concave. The fourth lens E4 has positive refractive power, the object side S7 is concave, and the image side S8 is convex. The fifth lens E5 has negative refractive power, the object side S9 is concave, and the image side S10 is concave. The filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
在本示例中,光学成像镜头的总有效焦距f为2.02mm,光学成像镜头的总长度TTL为5.69mm,光学成像镜头的成像面S13上有效像素区域的对角线长的一半ImgH为3.63mm,光学成像镜头的最大视场角的一半Semi-FOV为64.6°,光学成像镜头的光圈值Fno为2.27。In this example, the total effective focal length f of the optical imaging lens is 2.02mm, the total length TTL of the optical imaging lens is 5.69mm, and the half of the diagonal length of the effective pixel area on the imaging surface S13 of the optical imaging lens ImgH is 3.63mm , the Semi-FOV of the half of the maximum field of view of the optical imaging lens is 64.6°, and the aperture value Fno of the optical imaging lens is 2.27.
表7示出了实施例4的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表8-1、8-2示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。Table 7 shows the basic parameter table of the optical imaging lens of Example 4, wherein the units of curvature radius, thickness/distance and focal length are all millimeters (mm). Tables 8-1 and 8-2 show the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 4, wherein each aspherical surface type can be defined by the formula (1) given in Example 1 above.
表7Table 7
表8-1Table 8-1
表8-2Table 8-2
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。FIG. 8A shows the on-axis chromatic aberration curve of the optical imaging lens of
实施例5Example 5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。The optical imaging lens according to
如图9所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。As shown in FIG. 9 , the optical imaging lens sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a filter Sheet E6 and imaging plane S13.
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凹面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。The first lens E1 has negative refractive power, the object side S1 is concave, and the image side S2 is concave. The second lens E2 has positive refractive power, the object side S3 is concave, and the image side S4 is convex. The third lens E3 has negative refractive power, the object side S5 is convex, and the image side S6 is concave. The fourth lens E4 has positive refractive power, the object side S7 is concave, and the image side S8 is convex. The fifth lens E5 has negative refractive power, the object side S9 is concave, and the image side S10 is concave. The filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
在本示例中,光学成像镜头的总有效焦距f为1.87mm,光学成像镜头的总长度TTL为5.60mm,光学成像镜头的成像面S13上有效像素区域的对角线长的一半ImgH为3.63mm,光学成像镜头的最大视场角的一半Semi-FOV为63.9°,光学成像镜头的光圈值Fno为2.27。In this example, the total effective focal length f of the optical imaging lens is 1.87mm, the total length TTL of the optical imaging lens is 5.60mm, and the half of the diagonal length ImgH of the effective pixel area on the imaging surface S13 of the optical imaging lens is 3.63mm , the Semi-FOV of half the maximum field of view of the optical imaging lens is 63.9°, and the aperture value Fno of the optical imaging lens is 2.27.
表9示出了实施例5的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表10-1、10-2示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。Table 9 shows the basic parameter table of the optical imaging lens of Example 5, wherein the units of curvature radius, thickness/distance and focal length are all millimeters (mm). Tables 10-1 and 10-2 show the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 5, wherein each aspherical surface type can be defined by the formula (1) given in Example 1 above.
表9Table 9
表10-1Table 10-1
表10-2Table 10-2
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。FIG. 10A shows the on-axis chromatic aberration curve of the optical imaging lens of Example 5, which represents the deviation of the converging point of light of different wavelengths after passing through the lens. FIG. 10B shows astigmatism curves of the optical imaging lens of Example 5, which represent the meridional curvature of the image plane and the sagittal curvature of the image plane. FIG. 10C shows the distortion curve of the optical imaging lens of Example 5, which represents the distortion magnitude values corresponding to different image heights. FIG. 10D shows the magnification chromatic aberration curve of the optical imaging lens of Example 5, which represents the deviation of different image heights on the imaging plane after light passes through the lens. It can be seen from FIG. 10A to FIG. 10D that the optical imaging lens provided in
实施例6Example 6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。The optical imaging lens according to
如图11所示,光学成像镜头由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、滤光片E6和成像面S13。As shown in FIG. 11 , the optical imaging lens sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a filter Sheet E6 and imaging plane S13.
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。滤光片E6具有物侧面S11和像侧面S12。来自物体的光依序穿过各表面S1至S12并最终成像在成像面S13上。The first lens E1 has negative refractive power, the object side S1 is concave, and the image side S2 is concave. The second lens E2 has positive refractive power, the object side S3 is convex, and the image side S4 is convex. The third lens E3 has negative refractive power, the object side S5 is convex, and the image side S6 is concave. The fourth lens E4 has positive refractive power, the object side S7 is convex, and the image side S8 is convex. The fifth lens E5 has negative refractive power, the object side S9 is concave, and the image side S10 is concave. The filter E6 has an object side S11 and an image side S12. The light from the object sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
在本示例中,光学成像镜头的总有效焦距f为2.07mm,光学成像镜头的总长度TTL为5.91mm,光学成像镜头的成像面S13上有效像素区域的对角线长的一半ImgH为3.63mm,光学成像镜头的最大视场角的一半Semi-FOV为64.1°,光学成像镜头的光圈值Fno为2.27。In this example, the total effective focal length f of the optical imaging lens is 2.07mm, the total length TTL of the optical imaging lens is 5.91mm, and the half of the diagonal length ImgH of the effective pixel area on the imaging surface S13 of the optical imaging lens is 3.63mm , the Semi-FOV of half the maximum field of view of the optical imaging lens is 64.1°, and the aperture value Fno of the optical imaging lens is 2.27.
表11示出了实施例6的光学成像镜头的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表12-1、12-2示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。Table 11 shows the basic parameter table of the optical imaging lens of Example 6, wherein the units of curvature radius, thickness/distance, and focal length are all millimeters (mm). Tables 12-1 and 12-2 show the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 6, wherein each aspherical surface type can be defined by the formula (1) given in Example 1 above.
表11Table 11
表12-1Table 12-1
表12-2Table 12-2
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同像高对应的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。FIG. 12A shows the on-axis chromatic aberration curve of the optical imaging lens of Example 6, which represents the deviation of the confocal point of light of different wavelengths after passing through the lens. FIG. 12B shows astigmatism curves of the optical imaging lens of Example 6, which represent the meridional curvature of the image plane and the sagittal image plane curvature. FIG. 12C shows the distortion curve of the optical imaging lens of Example 6, which represents the distortion magnitude values corresponding to different image heights. FIG. 12D shows the magnification chromatic aberration curve of the optical imaging lens of Example 6, which represents the deviation of different image heights on the imaging plane after light passes through the lens. It can be seen from FIGS. 12A to 12D that the optical imaging lens provided in
综上,实施例1至实施例6分别满足表13中所示的关系。In conclusion, Examples 1 to 6 satisfy the relationships shown in Table 13, respectively.
表13Table 13
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。The present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS). The imaging device may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone. The imaging device is equipped with the optical imaging lens described above.
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present application and an illustration of the applied technical principles. Those skilled in the art should understand that the scope of the invention involved in this application is not limited to the technical solution formed by the specific combination of the above-mentioned technical features, and should also cover, without departing from the inventive concept, the above-mentioned technical features or their Other technical solutions formed by any combination of equivalent features. For example, a technical solution is formed by replacing the above-mentioned features with the technical features disclosed in this application (but not limited to) with similar functions.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010468171.2A CN111505802B (en) | 2020-05-28 | 2020-05-28 | Optical imaging lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010468171.2A CN111505802B (en) | 2020-05-28 | 2020-05-28 | Optical imaging lens |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111505802A true CN111505802A (en) | 2020-08-07 |
CN111505802B CN111505802B (en) | 2025-07-11 |
Family
ID=71868504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010468171.2A Active CN111505802B (en) | 2020-05-28 | 2020-05-28 | Optical imaging lens |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111505802B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111505803A (en) * | 2020-05-28 | 2020-08-07 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN114114629A (en) * | 2021-12-03 | 2022-03-01 | 浙江舜宇光学有限公司 | Camera lens |
CN114326054A (en) * | 2022-03-04 | 2022-04-12 | 江西联益光学有限公司 | Optical lens |
EP4261589A4 (en) * | 2020-12-10 | 2024-06-05 | LG Innotek Co., Ltd. | OPTICAL SYSTEM AND CAMERA MODULE |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209624889U (en) * | 2019-03-21 | 2019-11-12 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN110542998A (en) * | 2019-10-18 | 2019-12-06 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN110596865A (en) * | 2019-10-28 | 2019-12-20 | 浙江舜宇光学有限公司 | Image pickup lens assembly |
CN210323548U (en) * | 2019-08-26 | 2020-04-14 | 南昌欧菲精密光学制品有限公司 | Optical systems, lens modules and electronics |
CN111175947A (en) * | 2020-03-03 | 2020-05-19 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN212364694U (en) * | 2020-05-28 | 2021-01-15 | 浙江舜宇光学有限公司 | Optical imaging lens |
-
2020
- 2020-05-28 CN CN202010468171.2A patent/CN111505802B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209624889U (en) * | 2019-03-21 | 2019-11-12 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN210323548U (en) * | 2019-08-26 | 2020-04-14 | 南昌欧菲精密光学制品有限公司 | Optical systems, lens modules and electronics |
CN110542998A (en) * | 2019-10-18 | 2019-12-06 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN110596865A (en) * | 2019-10-28 | 2019-12-20 | 浙江舜宇光学有限公司 | Image pickup lens assembly |
CN111175947A (en) * | 2020-03-03 | 2020-05-19 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN212364694U (en) * | 2020-05-28 | 2021-01-15 | 浙江舜宇光学有限公司 | Optical imaging lens |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111505803A (en) * | 2020-05-28 | 2020-08-07 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN111505803B (en) * | 2020-05-28 | 2024-12-20 | 浙江舜宇光学有限公司 | Optical imaging lens |
EP4261589A4 (en) * | 2020-12-10 | 2024-06-05 | LG Innotek Co., Ltd. | OPTICAL SYSTEM AND CAMERA MODULE |
CN114114629A (en) * | 2021-12-03 | 2022-03-01 | 浙江舜宇光学有限公司 | Camera lens |
CN114114629B (en) * | 2021-12-03 | 2024-08-30 | 浙江舜宇光学有限公司 | Image pickup lens |
CN114326054A (en) * | 2022-03-04 | 2022-04-12 | 江西联益光学有限公司 | Optical lens |
CN114326054B (en) * | 2022-03-04 | 2022-08-12 | 江西联益光学有限公司 | Optical lens |
Also Published As
Publication number | Publication date |
---|---|
CN111505802B (en) | 2025-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020151251A1 (en) | Optical lens assembly | |
WO2020164236A1 (en) | Optical imaging lens | |
WO2020186759A1 (en) | Optical imaging lens | |
WO2019223263A1 (en) | Camera lens | |
WO2020024635A1 (en) | Optical imaging lens | |
CN110596865B (en) | Image pickup lens group | |
WO2020134130A1 (en) | Optical imaging lens | |
WO2020007068A1 (en) | Optical imaging system | |
WO2019218628A1 (en) | Optical imaging lens | |
CN111679409A (en) | Optical imaging lens | |
CN110658611A (en) | Optical imaging lens | |
WO2019233142A1 (en) | Optical imaging lens | |
WO2019233149A1 (en) | Camera lens | |
CN110456485B (en) | Camera lens set | |
WO2019233143A1 (en) | Optical imaging lens set | |
WO2021057228A1 (en) | Optical imaging lens | |
WO2020034788A1 (en) | Camera lens | |
CN111505802B (en) | Optical imaging lens | |
CN110727083A (en) | Image pickup lens assembly | |
CN111399185A (en) | camera lens | |
WO2020107934A1 (en) | Optical lens group | |
WO2020107937A1 (en) | Optical imaging system | |
CN115598803A (en) | Optical imaging lens | |
CN111399184A (en) | Optical imaging lens | |
CN111352210A (en) | Imaging lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |