CN111489963B - Preparation method of SiC-MOSFET gate with thick gate oxide layer at corner of trench - Google Patents
Preparation method of SiC-MOSFET gate with thick gate oxide layer at corner of trench Download PDFInfo
- Publication number
- CN111489963B CN111489963B CN202010307604.6A CN202010307604A CN111489963B CN 111489963 B CN111489963 B CN 111489963B CN 202010307604 A CN202010307604 A CN 202010307604A CN 111489963 B CN111489963 B CN 111489963B
- Authority
- CN
- China
- Prior art keywords
- trench
- layer
- sic
- polysilicon
- amorphous silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 47
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 46
- 229920005591 polysilicon Polymers 0.000 claims abstract description 45
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 34
- 230000003647 oxidation Effects 0.000 claims abstract description 31
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 30
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 21
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 21
- 238000005530 etching Methods 0.000 claims abstract description 19
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 17
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 17
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 17
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims description 12
- 238000001312 dry etching Methods 0.000 claims description 11
- 230000000717 retained effect Effects 0.000 claims description 11
- 238000000059 patterning Methods 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 238000001039 wet etching Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 238000000206 photolithography Methods 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 abstract description 37
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 37
- 230000005684 electric field Effects 0.000 abstract description 11
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 5
- 230000008719 thickening Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000033999 Device damage Diseases 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/025—Manufacture or treatment forming recessed gates, e.g. by using local oxidation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/0475—Changing the shape of the semiconductor body, e.g. forming recesses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/048—Making electrodes
- H01L21/049—Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
一种沟槽转角处具有厚栅氧化层的SiC‑MOSFET栅的制备方法,步骤为:1在外延层上表面刻蚀形成沟槽;2在外延层上表面和沟槽内壁生长多晶硅或非晶硅;3沉积完全覆盖外延层上表面并填充满沟槽的SiO2层;4对外延层上表面平坦化处理,使得SiO2层上表面与外延层上表面齐平;5刻蚀SiO2层,保留沟槽底部的氧化层;6刻蚀SiO2层上表面水平面以上的多晶硅或非晶硅;7刻蚀沟槽底部全部的SiO2层;8高温氧化沟槽侧壁裸露的碳化硅和多晶硅或非晶硅,使其形成氧化层。采用本发明的制备方法,利用SiO2代替光刻胶作为掩膜层,氧化沟槽底部的多晶硅或非晶硅,起到了加厚沟槽转角处氧化层的作用,其增加了沟槽转角处反向电场强度承受力。
A method for preparing a SiC-MOSFET gate with a thick gate oxide layer at the corner of the trench. The steps are: 1. Etching the upper surface of the epitaxial layer to form a trench; 2. Growing polysilicon or amorphous silicon on the upper surface of the epitaxial layer and the inner wall of the trench. Silicon; 3 Deposit the SiO 2 layer that completely covers the upper surface of the epitaxial layer and fills the groove; 4 Planarize the upper surface of the epitaxial layer so that the upper surface of the SiO 2 layer is flush with the upper surface of the epitaxial layer; 5 Etch the SiO 2 layer , keep the oxide layer at the bottom of the trench; 6 etch the polysilicon or amorphous silicon above the upper surface level of the SiO 2 layer; 7 etch the entire SiO 2 layer at the bottom of the trench; 8 high-temperature oxidation of the exposed silicon carbide and Polysilicon or amorphous silicon, so that it forms an oxide layer. Adopt the preparation method of the present invention, utilize SiO2 instead of photoresist as mask layer, oxidize polysilicon or amorphous silicon at the bottom of the trench, play the effect of thickening the oxide layer at the corner of the trench, which increases the thickness of the oxide layer at the corner of the trench. Reverse electric field strength withstand capacity.
Description
技术领域technical field
本发明涉及半导体技术领域,特别涉及一种沟槽转角处具有厚栅氧化层的SiC-MOSFET栅的制备方法。The invention relates to the technical field of semiconductors, in particular to a method for preparing a SiC-MOSFET gate with a thick gate oxide layer at the corner of a trench.
背景技术Background technique
现代电子技术对半导体材料提出了高压、高频、高功率、高温以及抗辐射等新要求,而宽带隙第三代半导体材料SiC拥有宽禁带、高临界击穿电场、高饱和电子迁移率、高熔点和高热导率等优点,是制备功率电子器件的理想材料。在SiC开关器件中,SiC-MOSFET具有开关速度快、耐高压和功耗低等优点,SiC-MOSFET主要分为平面型和沟槽型,由于沟槽型器件采用的竖直沟道,电子迁移率更高且没有JFET效应,与平面型SiC-MOSFET相比,沟槽型SiC-MOSFET可以实现更低的导通电阻,因此沟槽型SiC-MOSFET具有更加广阔的发展前景。Modern electronic technology puts forward new requirements for semiconductor materials such as high voltage, high frequency, high power, high temperature and radiation resistance, and the third-generation semiconductor material SiC with wide bandgap has wide bandgap, high critical breakdown electric field, high saturation electron mobility, With the advantages of high melting point and high thermal conductivity, it is an ideal material for the preparation of power electronic devices. Among SiC switching devices, SiC-MOSFET has the advantages of fast switching speed, high voltage resistance and low power consumption. SiC-MOSFET is mainly divided into planar type and trench type. Due to the vertical channel used in trench type devices, electron migration The efficiency is higher and there is no JFET effect. Compared with the planar SiC-MOSFET, the trench SiC-MOSFET can achieve lower on-resistance, so the trench SiC-MOSFET has a broader development prospect.
沟槽型SiC-MOSFET采用源极与漏极分别在晶片上方与下方的垂直结构.但是,由于碳化硅的临界击穿电场强度较高,沟槽型SiC-MOSFET沟槽转角处的栅氧化层电场强度往往很高,当超过氧化层所能承受的范围时,容易导致器件破坏性失效。Trench-type SiC-MOSFET adopts a vertical structure in which the source and drain are above and below the wafer, respectively. However, due to the high critical breakdown electric field strength of silicon carbide, the electric field strength of the gate oxide layer at the corner of the trench SiC-MOSFET trench is often very high. When it exceeds the range that the oxide layer can withstand, it is easy to cause device damage. fail.
在沟槽型SiC-MOSFET中,由于使用的半导体碳化硅晶圆通常为(0001)晶向,使得器件沟槽底部(0001)晶面的氧化速率显著低于沟槽侧壁的氧化速率,而沟槽侧壁的氧化层厚度受阈值电压的影响,不能加厚,这就造成沟槽侧壁和底部在同时氧化时,沟槽底部包括其转角处的氧化层厚度偏薄,进一步暴露了沟槽型SiC-MOSFET沟槽转角处的栅氧化层电场强度高的缺陷,使上述状况更加恶化。In the trench type SiC-MOSFET, since the semiconductor silicon carbide wafer used is usually (0001) crystal orientation, the oxidation rate of the (0001) crystal plane at the bottom of the device trench is significantly lower than the oxidation rate of the sidewall of the trench, while The thickness of the oxide layer on the side wall of the trench is affected by the threshold voltage and cannot be thickened. This results in that when the side wall and bottom of the trench are oxidized at the same time, the thickness of the oxide layer at the bottom of the trench including its corners is thinner, which further exposes the trench. The above-mentioned situation is further exacerbated by defects of high electric field strength in the gate oxide layer at the trench corner of the trench SiC-MOSFET.
面对上述缺陷,现有技术的解决方案主要如下:1.产品的设计者在器件性能上做出某种妥协和牺牲;2.采用特殊的晶体结构;3.通过改变沟槽底部掺杂浓度的方式减弱局部电场;4.通过离子注入的方式,增加沟槽底部碳化硅材料的氧化速率。这些改进方法都会显著提高工艺的复杂性和工艺成本,对设计带来很大的限制。In the face of the above defects, the solutions of the prior art are mainly as follows: 1. The designer of the product makes some kind of compromise and sacrifice in terms of device performance; 2. Adopts a special crystal structure; 3. By changing the doping concentration at the bottom of the
发明内容Contents of the invention
本发明的目的是提出一种沟槽转角处具有厚栅氧化层的SiC-MOSFET栅的制备方法。The purpose of the invention is to provide a method for preparing a SiC-MOSFET gate with a thick gate oxide layer at the corner of the trench.
为实现上述目的,本发明采取的技术方案如下:In order to achieve the above object, the technical scheme that the present invention takes is as follows:
沟槽转角处具有厚栅氧化层的SiC-MOSFET栅的制备方法,包括如下步骤:A method for preparing a SiC-MOSFET gate with a thick gate oxide layer at the corner of the trench, comprising the following steps:
步骤S1:对SiC外延层进行图形化处理,使得在SiC外延层上表面刻蚀形成沟槽,并且沟槽深度范围为0.3-100um,开口宽度范围为0.3-5um;Step S1: patterning the SiC epitaxial layer so that grooves are etched on the upper surface of the SiC epitaxial layer, and the groove depth ranges from 0.3-100um, and the opening width ranges from 0.3-5um;
步骤S2:在SiC外延层上表面和经过图形化处理形成的沟槽内壁各向同性地生长一层多晶硅或非晶硅,其厚度为2-800nm;Step S2: Isotropically growing a layer of polysilicon or amorphous silicon on the upper surface of the SiC epitaxial layer and the inner wall of the trench formed by patterning, the thickness of which is 2-800nm;
步骤S3:沉积SiO2层,使其完全覆盖SiC外延层上表面并填充满经过图形化处理形成的沟槽;Step S3: Depositing a SiO 2 layer so that it completely covers the upper surface of the SiC epitaxial layer and fills the grooves formed by patterning;
步骤S4:对SiC外延层上表面通过CMP或者干法刻蚀等半导体加工工艺进行平坦化处理,保留沟槽内的非晶硅多晶硅或非晶硅以及SiO2层,使得保留的SiO2层上表面与SiC外延层上表面齐平;Step S4: Planarize the upper surface of the SiC epitaxial layer by semiconductor processing techniques such as CMP or dry etching, and retain the amorphous silicon polysilicon or amorphous silicon and SiO2 layer in the trench, so that the remaining SiO2 layer The surface is flush with the upper surface of the SiC epitaxial layer;
步骤S5:采用高SiO2/Si选择比干法刻蚀工艺进行SiO2刻蚀,刻蚀步骤S4中保留的部分SiO2层,保留覆盖沟槽中一定深度以下的SiO2层;Step S5: performing SiO 2 etching using a high SiO 2 /Si selective ratio dry etching process, etching part of the SiO 2 layer retained in step S4, and retaining the SiO 2 layer below a certain depth in the covering trench;
步骤S6:刻蚀SiC外延层上表面全部的多晶硅或非晶硅以及沟槽侧壁部分未被保留的二氧化硅层覆盖的多晶硅或非晶硅,刻蚀完成后沟槽底部和沟槽侧壁保留的多晶硅或非晶硅构成“凹”形结构;Step S6: Etching all the polysilicon or amorphous silicon on the upper surface of the SiC epitaxial layer and the polysilicon or amorphous silicon not covered by the remaining silicon dioxide layer on the side wall of the trench, after the etching is completed, the bottom of the trench and the side of the trench The polysilicon or amorphous silicon retained by the wall constitutes a "concave" structure;
步骤S7:采用高选择比的SiO2/Si的干法刻蚀或者湿法刻蚀步骤S5中保留的沟槽底部全部的SiO2层,保留步骤S6中沟槽底部和沟槽侧壁构成的呈“凹”形结构的多晶硅或非晶硅;Step S7: using high selectivity SiO 2 /Si dry etching or wet etching all the SiO 2 layer at the bottom of the trench retained in step S5, retaining the bottom of the trench and the side walls of the trench in step S6 Polysilicon or amorphous silicon with a "concave"structure;
步骤S8:同时高温氧化沟槽侧壁裸露的SiC和步骤S7中保留的多晶硅或非晶硅,氧化完成后,多晶硅或非晶硅氧化形成的SiO2层厚度大于沟槽侧壁SiC氧化形成的SiO2层厚度,并且沟槽侧壁SiC氧化形成的SiO2层厚度为30-100nm。Step S8: Simultaneously high-temperature oxidation of the exposed SiC on the sidewall of the trench and the polysilicon or amorphous silicon retained in step S7, after the oxidation is completed, the thickness of the SiO2 layer formed by the oxidation of polysilicon or amorphous silicon is greater than that formed by the oxidation of SiC on the sidewall of the trench The thickness of the SiO 2 layer, and the thickness of the SiO 2 layer formed by SiC oxidation on the sidewall of the trench is 30-100nm.
在本发明的制备方法中,首先利用SiO2代替光刻胶作为掩膜层,弥补了光刻胶在腐蚀时产生的浮胶现象,同时也避免了器件在后续刻蚀过程中受到损伤;然后去掉多余的多晶硅和非晶硅;最后把保留的多晶硅或者非晶硅和碳化硅一起氧化。保留的多晶硅和非晶硅的氧化产物,起到了加厚沟槽转角处氧化层的作用,并不是作为栅氧本身,其增加了沟槽转角处反向电场强度承受力,解决了现有技术中沟槽型SiC-MOSFET栅沟槽侧壁和沟槽底部交角处栅氧承受反向电场强度过大的问题。In the preparation method of the present invention, firstly, SiO is used instead of the photoresist as a mask layer, which compensates for the floating glue phenomenon produced by the photoresist during corrosion, and also avoids the damage of the device in the subsequent etching process; then Remove excess polysilicon and amorphous silicon; finally oxidize the remaining polysilicon or amorphous silicon and silicon carbide together. The remaining oxidation products of polysilicon and amorphous silicon play the role of thickening the oxide layer at the corner of the trench, not as the gate oxide itself, which increases the strength of the reverse electric field at the corner of the trench and solves the problem of the existing technology. The problem that the gate oxide at the intersection of the side wall of the gate trench of the middle trench type SiC-MOSFET and the bottom of the trench is too strong against the reverse electric field.
附图说明Description of drawings
图1为步骤S3完成后的一种结构示意图。FIG. 1 is a schematic structural diagram after step S3 is completed.
图2为步骤S4完成后的一种结构示意图。FIG. 2 is a schematic structural diagram after step S4 is completed.
图3为步骤S5完成后的一种结构示意图。FIG. 3 is a schematic structural diagram after step S5 is completed.
图4为步骤S6制备过程的一种结构示意图。Fig. 4 is a schematic structural diagram of the preparation process in step S6.
图5为步骤S7完成后的一种结构示意图。FIG. 5 is a schematic structural diagram after step S7 is completed.
图6为步骤S8完成后的一种结构示意图。FIG. 6 is a schematic structural diagram after step S8 is completed.
图7为步骤S5中沟槽型SiC-MOSFET栅的一种结构示意图。FIG. 7 is a schematic structural diagram of a trench SiC-MOSFET gate in step S5.
图8为步骤S8中沟槽型SiC-MOSFET栅的一种结构示意图。FIG. 8 is a schematic structural diagram of a trench SiC-MOSFET gate in step S8.
1.SiC外延层;2.多晶硅或非晶硅;3.沉积的SiO2层;4.多晶硅或非晶硅氧化形成的SiO2层;5.SiC氧化形成的SiO2层;6.源区。1. SiC epitaxial layer; 2. Polysilicon or amorphous silicon; 3. Deposited SiO2 layer; 4. SiO2 layer formed by oxidation of polysilicon or amorphous silicon; 5. SiO2 layer formed by oxidation of SiC; 6. Source region .
具体实施方式Detailed ways
以下结合附图及具体实施方式,对依据本发明提出的提高沟槽转角处栅氧化层反向电场强度承受力的沟槽型碳化硅MOSFET栅的制备方法进行详细说明。The following describes in detail the preparation method of a trench silicon carbide MOSFET gate according to the present invention to improve the reverse electric field strength of the gate oxide layer at the corner of the trench with reference to the accompanying drawings and specific embodiments.
一种沟槽转角处具有厚栅氧化层的SiC-MOSFET栅的制备方法,包括如下步骤:A method for preparing a SiC-MOSFET gate with a thick gate oxide layer at a trench corner, comprising the steps of:
步骤S1:对SiC外延层1进行图形化处理,使得在SiC外延层1上表面刻蚀形成沟槽,并且沟槽深度范围为0.3-100um,开口宽度范围为0.3-5um;Step S1: patterning the SiC
其中,沟槽深度的优选范围为0.5-90um;更好范围为5-70um;最好范围为10-40um;Among them, the preferred range of groove depth is 0.5-90um; the better range is 5-70um; the best range is 10-40um;
其中,开口宽度的优选范围为0.5-4um;更好范围为1-3um;最好范围为1.5-2um;Among them, the preferred range of opening width is 0.5-4um; the better range is 1-3um; the best range is 1.5-2um;
沟槽深度和开口宽度都会对器件的导通电阻、漏电流、阈值电压和击穿电压等电学性能都有影响,且最终影响器件的质量,为获得更高性能的器件,本发明对沟槽深度和开口宽度分别提供三种范围,按照优选范围、更好范围和最好范围,器件性能依次提高,且在最好范围内器件性能达到最佳。Both the depth of the groove and the width of the opening have an impact on the electrical properties of the device, such as on-resistance, leakage current, threshold voltage and breakdown voltage, and ultimately affect the quality of the device. Three ranges are provided for the depth and the opening width respectively. According to the preferred range, the better range and the best range, the performance of the device is improved sequentially, and the performance of the device reaches the best within the best range.
步骤S2:在SiC外延层1上表面和经过图形化处理形成的沟槽内壁生长一层多晶硅或非晶硅2,其厚度为2-800nm;Step S2: growing a layer of polysilicon or
步骤S3:沉积SiO2层3,使其完全覆盖SiC外延层1上表面并填充满经过图形化处理形成的沟槽,具体如图1所示;Step S3: Depositing a SiO 2 layer 3 so that it completely covers the upper surface of the SiC
步骤S4:对SiC外延层1上表面进行平坦化处理,保留沟槽内的多晶硅或非晶硅2以及SiO2层3,使得保留的SiO2层3上表面与SiC外延层1上表面齐平,具体如图2所示;Step S4: planarizing the upper surface of the SiC
步骤S5:采用高SiO2/Si选择比干法刻蚀工艺进行SiO2刻蚀,刻蚀步骤S4中保留的部分SiO2层3,保留覆盖沟槽中一定深度以下的SiO2层3,具体如图3所示;Step S5:
步骤S6:刻蚀SiC外延层1上表面全部的多晶硅或非晶硅2以及沟槽侧壁部分未被保留的二氧化硅层覆盖的多晶硅或非晶硅2,刻蚀完成后沟槽底部和沟槽侧壁保留的多晶硅或非晶硅2呈“凹”形结构,具体如图4所示;Step S6: Etching all the polysilicon or
步骤S7:采用高选择比的SiO2/Si的干法刻蚀或者湿法刻蚀步骤S5中保留的沟槽底部全部的SiO2层3,保留步骤S6中沟槽底部和沟槽侧壁构成的呈“凹”形结构的多晶硅或非晶硅2,具体如图5所示;Step S7: using high selectivity SiO 2 /Si dry etching or wet etching all the SiO 2 layer 3 at the bottom of the trench retained in step S5, retaining the composition of the trench bottom and trench sidewalls in step S6 Polysilicon or
步骤S8:同时高温氧化沟槽侧壁裸露的SiC和步骤S7中保留的多晶硅或非晶硅2,氧化完成后,多晶硅或非晶硅2氧化形成的SiO2层4厚度大于沟槽侧壁SiC氧化形成的SiO2层5厚度,并且沟槽侧壁SiC氧化形成的SiO2层5厚度为30-100nm,优选范围为35-90nm;更好范围为40-75nm;最好范围为45-60nm,具体如图6所示。Step S8: Simultaneously high-temperature oxidation of the SiC exposed on the sidewall of the trench and the polysilicon or
进一步地,在步骤S1中,刻蚀形成沟槽的方式采用光刻工艺,其刻蚀形成沟槽时采用等离子体干法刻蚀,沟槽角度为70-90o。Further, in step S1, the groove is formed by etching using a photolithography process, and the groove is formed by plasma dry etching, and the groove angle is 70-90 ° .
进一步地,在步骤S2中,沟槽内壁生多晶硅或非晶硅2的方式为化学汽相沉积法各向同性地生长。Further, in step S2, polysilicon or
进一步地,在步骤S4中,对SiC外延层1上表面进行平坦化处理采用的方法为CMP工艺或者各向异性的干法刻蚀的回刻;在平坦化处理中或/和处理后还可以使用终点检测。Further, in step S4, the method used for planarizing the upper surface of the
进一步地,在步骤S8中,多晶硅或非晶硅2氧化形成的SiO2层3厚度为30-1500nm,优选范围为75-1000nm;更好范围为150-800nm;最好范围为200-500nm,在本发明的制备方法中,最后的步骤是把剩下的多晶硅或非晶硅和碳化硅一起氧化,剩下的多晶硅和非晶硅的氧化产物起到了加厚沟槽转角处氧化层的作用,增加了沟槽转角处反向电场强度承受力为获得更高性能的器件,本发明提供以上三种范围的底部SiO2层3厚度,按照优选范围、更好范围和最好范围,器件性能依次提高,且在最好范围内器件性能达到最佳。Further, in step S8, the
进一步地,在步骤S8中,进行高温氧化的温度为600-2000℃,将多晶硅或非晶硅2全部氧化为SiO2层3的氧化气体为干氧、湿氧、NO、N2O或NO2中的一种或一种以上。Further, in step S8, the temperature for high-temperature oxidation is 600-2000°C, and the oxidizing gas used to oxidize polysilicon or
进一步地,在完成步骤S8后,全部残余多晶硅或非晶硅2被氧化,在沟槽底部转角处形成厚氧化膜之后,还可以采用湿法腐蚀工艺腐蚀掉沟槽侧壁SiC氧化形成的SiO2层5,底部转角处氧化膜厚度相应减薄,但是仍然保留。然后重新进行SiC栅氧化工艺,生长MOSFET沟道所需的栅氧化膜厚度。Further, after step S8 is completed, all residual polysilicon or
进一步地,如图7所示的沟槽型SiC-MOSFET栅的一种结构,在步骤S5中,在上述结构中,源区6与SiC外延层1掺杂类型相反,一定深度是指SiC外延层1上表面与源区6下表面之间的垂直深度H,即刻蚀后保留的SiO2层3的上表面在源区6下表面以下。Further, as shown in FIG. 7 for a structure of a trench type SiC-MOSFET gate, in step S5, in the above structure, the doping type of the source region 6 is opposite to that of the
进一步地,如图8所示的沟槽型SiC-MOSFET栅的一种结构,在步骤S8中,在上述结构中,氧化完成后,多晶硅或非晶硅2氧化形成的SiO2层4在一定深度H以下,即在垂直方向上,多晶硅或非晶硅2氧化形成的SiO2层4上表面在源区6下表面以下。Further, as shown in FIG. 8, a structure of a trench type SiC-MOSFET gate, in step S8, in the above structure, after the oxidation is completed, the SiO 2 layer 4 formed by oxidation of polysilicon or
在本发明的制备方法中,首先利用SiO2代替光刻胶作为掩膜层,弥补了光刻胶在腐蚀时产生的浮胶现象,同时也避免了器件在后续刻蚀过程中受到损伤;然后去掉多余的多晶硅和非晶硅;最后把保留的多晶硅或非晶硅和碳化硅一起氧化。保留的多晶硅和非晶硅的氧化产物,起到了加厚沟槽转角处氧化层的作用,并不是作为栅氧本身,其增加了沟槽转角处反向电场强度承受力,解决了现有技术中沟槽型SiC-MOSFET栅沟槽侧壁和沟槽底部交角处栅氧承受反向电场强度过大的问题。In the preparation method of the present invention, firstly, SiO is used instead of the photoresist as a mask layer, which compensates for the floating glue phenomenon produced by the photoresist during corrosion, and also avoids the damage of the device in the subsequent etching process; then Remove excess polysilicon and amorphous silicon; finally oxidize the remaining polysilicon or amorphous silicon and silicon carbide together. The remaining oxidation products of polysilicon and amorphous silicon play the role of thickening the oxide layer at the corner of the trench, not as the gate oxide itself, which increases the strength of the reverse electric field at the corner of the trench and solves the problem of the existing technology. The problem that the gate oxide at the intersection of the side wall of the gate trench of the middle trench type SiC-MOSFET and the bottom of the trench is too strong against the reverse electric field.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步地的详细说明,所应理解的是,以上所述仅为本发明的具体实施方法而已,并不用于限制本发明,凡是在本发明的主旨之内,所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The specific implementation manners described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific implementation methods of the present invention and are not intended to limit the present invention. Inventions, any modifications, equivalent replacements and improvements made within the gist of the present invention shall be included within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010307604.6A CN111489963B (en) | 2020-04-17 | 2020-04-17 | Preparation method of SiC-MOSFET gate with thick gate oxide layer at corner of trench |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010307604.6A CN111489963B (en) | 2020-04-17 | 2020-04-17 | Preparation method of SiC-MOSFET gate with thick gate oxide layer at corner of trench |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111489963A CN111489963A (en) | 2020-08-04 |
CN111489963B true CN111489963B (en) | 2023-04-18 |
Family
ID=71812813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010307604.6A Active CN111489963B (en) | 2020-04-17 | 2020-04-17 | Preparation method of SiC-MOSFET gate with thick gate oxide layer at corner of trench |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111489963B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113506826B (en) * | 2021-06-17 | 2023-07-07 | 重庆伟特森电子科技有限公司 | A trench type silicon carbide transistor and its preparation method |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07326755A (en) * | 1994-04-06 | 1995-12-12 | Nippondenso Co Ltd | Semiconductor device and manufacturing method thereof |
CN1360735A (en) * | 1999-05-25 | 2002-07-24 | 理查德·K·威廉斯 | Trench type semiconductor device with multi-thickness gate oxide layer and manufacturing method thereof |
CN1447986A (en) * | 2000-08-16 | 2003-10-08 | 费查尔德半导体有限公司 | Thick oxide layer on botton of trench structure in silicon |
CN1591798A (en) * | 2003-07-10 | 2005-03-09 | 国际整流器公司 | Process for forming thick oxides on si or sic for semiconductor devices |
JP2006228901A (en) * | 2005-02-16 | 2006-08-31 | Fuji Electric Holdings Co Ltd | Method for manufacturing silicon carbide semiconductor element |
CN1893111A (en) * | 2005-05-12 | 2007-01-10 | 谢福渊 | Elimination of gate oxide weak spot in deep trench |
JP2007242943A (en) * | 2006-03-09 | 2007-09-20 | Fuji Electric Device Technology Co Ltd | Method for manufacturing MOS type semiconductor device |
CN102396070A (en) * | 2009-04-13 | 2012-03-28 | 罗姆股份有限公司 | Semiconductor device and method for manufacturing semiconductor device |
CN104508828A (en) * | 2012-09-12 | 2015-04-08 | 住友电气工业株式会社 | Method for manufacturing silicon carbide semiconductor device |
CN106876449A (en) * | 2017-04-12 | 2017-06-20 | 上海格瑞宝电子有限公司 | A kind of trench metal-oxide semiconductor and preparation method thereof |
CN108847384A (en) * | 2018-06-11 | 2018-11-20 | 重庆伟特森电子科技有限公司 | A method of in silicon carbide-based on piece growth of oxygen layer |
CN109411546A (en) * | 2018-10-31 | 2019-03-01 | 秦皇岛京河科学技术研究院有限公司 | SiC groove MOS device and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6709930B2 (en) * | 2002-06-21 | 2004-03-23 | Siliconix Incorporated | Thicker oxide formation at the trench bottom by selective oxide deposition |
KR101339271B1 (en) * | 2012-12-18 | 2013-12-09 | 현대자동차 주식회사 | Method manufacturing for semiconductor device |
-
2020
- 2020-04-17 CN CN202010307604.6A patent/CN111489963B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07326755A (en) * | 1994-04-06 | 1995-12-12 | Nippondenso Co Ltd | Semiconductor device and manufacturing method thereof |
CN1360735A (en) * | 1999-05-25 | 2002-07-24 | 理查德·K·威廉斯 | Trench type semiconductor device with multi-thickness gate oxide layer and manufacturing method thereof |
CN1447986A (en) * | 2000-08-16 | 2003-10-08 | 费查尔德半导体有限公司 | Thick oxide layer on botton of trench structure in silicon |
CN1591798A (en) * | 2003-07-10 | 2005-03-09 | 国际整流器公司 | Process for forming thick oxides on si or sic for semiconductor devices |
JP2006228901A (en) * | 2005-02-16 | 2006-08-31 | Fuji Electric Holdings Co Ltd | Method for manufacturing silicon carbide semiconductor element |
CN1893111A (en) * | 2005-05-12 | 2007-01-10 | 谢福渊 | Elimination of gate oxide weak spot in deep trench |
JP2007242943A (en) * | 2006-03-09 | 2007-09-20 | Fuji Electric Device Technology Co Ltd | Method for manufacturing MOS type semiconductor device |
CN102396070A (en) * | 2009-04-13 | 2012-03-28 | 罗姆股份有限公司 | Semiconductor device and method for manufacturing semiconductor device |
CN104508828A (en) * | 2012-09-12 | 2015-04-08 | 住友电气工业株式会社 | Method for manufacturing silicon carbide semiconductor device |
CN106876449A (en) * | 2017-04-12 | 2017-06-20 | 上海格瑞宝电子有限公司 | A kind of trench metal-oxide semiconductor and preparation method thereof |
CN108847384A (en) * | 2018-06-11 | 2018-11-20 | 重庆伟特森电子科技有限公司 | A method of in silicon carbide-based on piece growth of oxygen layer |
CN109411546A (en) * | 2018-10-31 | 2019-03-01 | 秦皇岛京河科学技术研究院有限公司 | SiC groove MOS device and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111489963A (en) | 2020-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4750342B2 (en) | MOS-FET, manufacturing method thereof, and semiconductor device | |
CN106449757B (en) | A kind of SiC base trench FET and preparation method thereof | |
TWI739653B (en) | Method for increasing an oxide thickness at trench corner of an u-metal-oxide-semiconductor field-effect transistor | |
CN111668312A (en) | A trench silicon carbide power device with low on-resistance and its manufacturing process | |
JP5999687B2 (en) | SiC epitaxial wafer and SiC semiconductor device using the same | |
CN111477679B (en) | Preparation method of asymmetric groove type SiC-MOSFET gate | |
JPH0870124A (en) | Fabrication of silicon carbide semiconductor device | |
CN106024902A (en) | Manufacturing method of SiC-based punch-through trench MOSFET (Metal Oxide Semiconductor Field Effect Transistor) with high blocking property | |
WO2023159837A1 (en) | Silicon carbide trench etching method and silicon carbide device preparation method | |
CN114927559A (en) | Novel silicon carbide-based super-junction trench MOSFET and preparation method thereof | |
US11127840B2 (en) | Method for manufacturing isolation structure for LDMOS | |
CN106783607A (en) | A kind of trench gate IGBT device and preparation method thereof | |
CN111489963B (en) | Preparation method of SiC-MOSFET gate with thick gate oxide layer at corner of trench | |
CN111180316A (en) | A kind of silicon carbide thick bottom oxide trench MOS preparation method | |
CN109545855B (en) | Preparation method of active region of silicon carbide double-groove MOSFET device | |
US11315824B2 (en) | Trench isolation structure and manufacturing method therefor | |
CN114744044A (en) | A trench type silicon carbide MOSFET with triple protection gate oxide layer and preparation method thereof | |
CN114496789A (en) | Preparation method of enhancement type transistor and enhancement type transistor | |
CN111435678B (en) | Manufacturing method of gate-all-around transistor | |
CN103811338B (en) | A kind of semiconductor device and preparation method thereof | |
CN116387361A (en) | SiO2 Barrier Layer Ga2O3 Vertical UMOS Transistor and Its Fabrication Method | |
JP2005116896A (en) | Semiconductor device and its manufacturing method | |
CN115188674A (en) | A kind of preparation method of high-density self-aligned silicon carbide MOS device | |
CN111128676B (en) | A kind of nano wire and its manufacturing method | |
CN111489961A (en) | Preparation method of SiC-MOSFET gate with gate oxide at corner of trench and high field strength bearing capacity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |