[go: up one dir, main page]

CN111489404B - Image reconstruction method, image processing device and device with storage function - Google Patents

Image reconstruction method, image processing device and device with storage function Download PDF

Info

Publication number
CN111489404B
CN111489404B CN202010203143.8A CN202010203143A CN111489404B CN 111489404 B CN111489404 B CN 111489404B CN 202010203143 A CN202010203143 A CN 202010203143A CN 111489404 B CN111489404 B CN 111489404B
Authority
CN
China
Prior art keywords
image
data
image data
layer
loss function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010203143.8A
Other languages
Chinese (zh)
Other versions
CN111489404A (en
Inventor
胡战利
杨永峰
薛恒志
郑海荣
梁栋
刘新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN202010203143.8A priority Critical patent/CN111489404B/en
Publication of CN111489404A publication Critical patent/CN111489404A/en
Application granted granted Critical
Publication of CN111489404B publication Critical patent/CN111489404B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10104Positron emission tomography [PET]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Processing (AREA)

Abstract

The application discloses an image reconstruction method, an image processing device and a device with a storage function, wherein the image reconstruction method comprises the steps of obtaining an original image; obtaining input image data according to an original image; performing a first mapping operation on the input image data according to a first mapping function in the generator network to obtain output image data; a reconstructed image is formed from the output image data. According to the application, the first mapping operation is carried out on the input image data of the original image according to the first mapping function in the generator network to obtain the output image data, so that the image reconstruction is directly realized, the clear presentation of the image of the low-dose radioactive tracer can be realized, and the clinical diagnosis of doctors is facilitated; because the data volume that the mapping mode gathered is less for image reconstruction speed is faster, is favorable to improving work efficiency, and its required scanning time is also shorter, can avoid appearing the artifact, thereby improve image quality.

Description

一种图像重建方法、图像处理装置及具有存储功能的装置Image reconstruction method, image processing device and device with storage function

技术领域technical field

本发明涉及图像处理技术领域,特别涉及一种图像重建方法、图像处理装置及具有存储功能的装置。The invention relates to the technical field of image processing, in particular to an image reconstruction method, an image processing device and a device with a storage function.

背景技术Background technique

核医学领域的临床检查影像技术能够应用于各个医疗临床检查领域,例如PET(Positron Emission Computed Tomography,正电子发射型计算机断层显像)技术等,通过对病人注射放射性示踪剂以实现成像,帮助医生更加准确地对病人的病情进行诊断。Clinical examination imaging technology in the field of nuclear medicine can be applied to various medical clinical examination fields, such as PET (Positron Emission Computed Tomography, positron emission computed tomography) technology, etc., through injecting radioactive tracers to patients to achieve imaging, help Doctors can more accurately diagnose patients' conditions.

本申请的发明人在长期的研发中发现,由于放射性示踪剂的放射性辐射对人体存在潜在危害,因此注射放射性示踪剂的剂量越来越受到人们的重视。大剂量的放射性示踪剂不仅存在安全问题,其成像需采集的数据量也较大,会导致图像重建速度较慢,并且由于所需的扫描时间也较长,会导致病人出现不可避免的生理运动,进而造成伪影的出现。而降低放射性示踪剂的剂量虽然能够减少对病人的辐射,但是会影响到影像的成像效果,不利于医生的临床诊断。The inventors of the present application have found in long-term research and development that since the radioactive radiation of the radioactive tracer is potentially harmful to the human body, people pay more and more attention to the dose of the injected radioactive tracer. Large doses of radiotracers not only have safety issues, but also require a large amount of data to be collected for imaging, resulting in slower image reconstruction and, due to the longer scan time required, unavoidable physiological problems in patients. movement, causing artifacts to appear. Although reducing the dose of the radiotracer can reduce the radiation to the patient, it will affect the imaging effect of the image, which is not conducive to the doctor's clinical diagnosis.

发明内容Contents of the invention

本发明提供一种图像重建方法、图像处理装置及具有存储功能的装置,以解决现有技术中低剂量示踪剂影响影像的成像效果的技术问题。The invention provides an image reconstruction method, an image processing device and a device with a storage function to solve the technical problem in the prior art that low-dose tracers affect the imaging effect of images.

为解决上述技术问题,本发明采用的一个技术方案是提供一种图像重建方法,包括:In order to solve the above technical problems, a technical solution adopted by the present invention is to provide an image reconstruction method, including:

获取原始图像;get the original image;

根据所述原始图像得到输入图像数据,所述输入图像数据为正弦数据;Obtaining input image data according to the original image, the input image data is sinusoidal data;

在生成器网络根据第一映射函数对所述输入图像数据进行第一映射运算,以得到输出图像数据;performing a first mapping operation on the input image data according to a first mapping function in the generator network to obtain output image data;

根据所述输出图像数据形成重建图像。A reconstructed image is formed from the output image data.

在一具体实施例中,所述第一映射运算包括编码、转换以及解码,所述编码的方法包括:In a specific embodiment, the first mapping operation includes encoding, conversion, and decoding, and the encoding method includes:

对所述输入图像数据依次进行第一次卷积运算,以得到第一特征图像数据;sequentially performing the first convolution operation on the input image data to obtain the first characteristic image data;

所述第一次卷积运算中卷积层的层数为14,其中10层卷积层的步长为1,4层卷积层的步长为2。The number of convolutional layers in the first convolution operation is 14, wherein the step size of the 10-layer convolutional layer is 1, and the step size of the 4-layer convolutional layer is 2.

在一具体实施例中,所述转换的方法包括:In a specific embodiment, the conversion method includes:

对所述第一特征图像数据进行第二次卷积运算,以得到第二特征图像数据;performing a second convolution operation on the first characteristic image data to obtain second characteristic image data;

所述第二次卷积运算中卷积层的层数为11,其中6层卷积层的特征数为512,5层卷积层的特征数为1024。The number of convolutional layers in the second convolution operation is 11, wherein the feature number of the 6-layer convolutional layer is 512, and the feature number of the 5-layer convolutional layer is 1024.

在一具体实施例中,所述解码的方法包括:In a specific embodiment, the decoding method includes:

依次对所述第二特征图像数据进行上采样运算和第三次卷积运算,以得到输出图像数据;performing an upsampling operation and a third convolution operation on the second feature image data in sequence to obtain output image data;

其中,第三次卷积运算中最后一层卷积层的卷积核个数为1。Wherein, the number of convolution kernels of the last convolution layer in the third convolution operation is 1.

在一具体实施例中,在所述第一次卷积运算、所述第二次卷积运算以及所述第三次卷积运算中每一层卷积层的运算后进行批量归一化运算及激活运算。In a specific embodiment, a batch normalization operation is performed after the operation of each convolutional layer in the first convolution operation, the second convolution operation, and the third convolution operation and activation operations.

在一具体实施例中,所述得到所述输出图像数据之后进一步包括:In a specific embodiment, after obtaining the output image data, it further includes:

通过鉴别器网络对所述输出图像数据进行处理,以得到生成对抗损失数据;Processing the output image data through a discriminator network to obtain generated adversarial loss data;

根据所述生成对抗损失数据鉴别所述重建图像是否符合标准。Identifying whether the reconstructed image meets a standard based on the generated adversarial loss data.

在一具体实施例中,所述通过鉴别器网络对所述输出图像数据进行处理的方法包括:In a specific embodiment, the method for processing the output image data through a discriminator network includes:

对所述输出图像数据进行第四次卷积运算,以得到第三特征图像;performing a fourth convolution operation on the output image data to obtain a third feature image;

对所述第三特征图像进行全连接层处理,以得到所述生成对抗损失数据;performing fully-connected layer processing on the third feature image to obtain the generated adversarial loss data;

其中,所述第四次卷积运算中卷积层的层数为8,偶数层卷积层的步长为2,奇数层卷积层的步长为1,所述全连接层的层数为2。Wherein, the number of layers of the convolutional layer in the fourth convolution operation is 8, the step size of the even-numbered layer convolutional layer is 2, the step size of the odd-numbered layer convolutional layer is 1, and the number of layers of the fully connected layer for 2.

在一具体实施例中,在所述第四次卷积运算及全连接层处理中,每一层卷积层的运算后及第一层全连接层处理后进行激活运算。In a specific embodiment, in the fourth convolution operation and the fully connected layer processing, the activation operation is performed after the operation of each convolution layer and after the processing of the first fully connected layer.

在一具体实施例中,所述得到所述输出图像数据之后进一步包括:In a specific embodiment, after obtaining the output image data, it further includes:

根据所述输出图像数据获取第一数据集,根据目标图像数据获取第二数据集;obtaining a first data set according to the output image data, and obtaining a second data set according to the target image data;

根据所述第一数据集和所述第二数据集得到所述均方误差损失函数及感知损失函数;Obtaining the mean square error loss function and the perceptual loss function according to the first data set and the second data set;

根据所述均方误差损失函数及感知损失函数判断所述重建图像是否符合标准。Judging whether the reconstructed image meets a standard according to the mean square error loss function and the perceptual loss function.

在一具体实施例中,所述得到所述均方误差损失函数及感知损失函数之后进一步包括:In a specific embodiment, after obtaining the mean square error loss function and the perceptual loss function, it further includes:

对所述均方误差损失函数及所述感知损失函数进行优化计算;performing optimization calculations on the mean square error loss function and the perceptual loss function;

根据优化计算后的所述均方误差损失函数及感知损失函数判断所述重建图像是否符合标准。According to the optimized calculated mean square error loss function and perceptual loss function, it is judged whether the reconstructed image meets the standard.

在一具体实施例中,所述得到所述输出图像数据之后包括:In a specific embodiment, after the obtaining the output image data includes:

根据所述输入图像数据获取第三数据集;obtaining a third data set according to the input image data;

从所述第三数据集、所述第一数据集和所述第二数据集中提取对应的数据分别作为输入数据、输出数据和网络标签;Extract corresponding data from the third data set, the first data set and the second data set as input data, output data and network labels respectively;

根据所述输入数据、所述输出数据、所述网络标签、所述生成对抗损失数据、所述均方误差损失函数以及所述感知损失函数对所述第一映射函数进行训练,以得到第二映射函数。The first mapping function is trained according to the input data, the output data, the network label, the generated adversarial loss data, the mean square error loss function and the perceptual loss function to obtain the second mapping function.

为解决上述技术问题,本发明采用的另一个技术方案是提供一种图像处理装置,包括:In order to solve the above technical problems, another technical solution adopted by the present invention is to provide an image processing device, including:

接收器,用于获取原始图像;Receiver, used to obtain the original image;

处理器,与所述接收器连接,用于根据所述原始图像得到输入图像数据;在生成器网络根据第一映射函数对所述输入图像数据进行第一映射运算,以得到输出图像数据;其中,所述输入图像数据为正弦数据;A processor, connected to the receiver, for obtaining input image data according to the original image; performing a first mapping operation on the input image data according to a first mapping function in the generator network to obtain output image data; wherein , the input image data is sinusoidal data;

显示器,与所述处理器连接,用于接收所述输出图像数据,并根据所述输出图像数据形成重建图像。a display, connected to the processor, for receiving the output image data, and forming a reconstructed image according to the output image data.

为解决上述技术问题,本发明采用的另一个技术方案是提供一种具有存储功能的装置,存储有程序数据,所述程序数据能够被执行以实现如上述的方法。In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a device with storage function, which stores program data, and the program data can be executed to implement the above method.

本发明通过在生成器网络根据第一映射函数对原始图像输入图像数据进行第一映射运算,以得到输出图像数据,从而直接实现图像重建,能够实现低剂量放射性示踪剂的影像的清晰呈现,有利于医生的临床诊断;由于映射方式采集的数据量较小,使得图像重建速度较快,有利于提高工作效率,并且其所需的扫描时间也较短,能够避免伪影的出现,从而提高影像质量。In the present invention, the first mapping operation is performed on the input image data of the original image according to the first mapping function in the generator network to obtain the output image data, thereby directly realizing image reconstruction and realizing the clear presentation of images of low-dose radioactive tracers, It is beneficial to the doctor's clinical diagnosis; due to the small amount of data collected by the mapping method, the image reconstruction speed is faster, which is conducive to improving work efficiency, and the required scanning time is also shorter, which can avoid the appearance of artifacts, thereby improving image quality.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without creative work, in which:

图1是本发明图像重建方法一实施例的流程示意图;Fig. 1 is a schematic flow chart of an embodiment of the image reconstruction method of the present invention;

图2是本发明图像重建方法另一实施例的流程示意图;Fig. 2 is a schematic flow chart of another embodiment of the image reconstruction method of the present invention;

图3是本发明图像重建方法另一实施例的流程示意图;Fig. 3 is a schematic flow chart of another embodiment of the image reconstruction method of the present invention;

图4是本发明图像重建方法另一实施例中第一映射运算的流程示意图;4 is a schematic flow chart of the first mapping operation in another embodiment of the image reconstruction method of the present invention;

图5是本发明图像重建方法另一实施例中鉴别器网络处理的流程示意图;Fig. 5 is a schematic flow chart of discriminator network processing in another embodiment of the image reconstruction method of the present invention;

图6是本发明图像处理装置实施例的结构示意图;6 is a schematic structural diagram of an embodiment of an image processing device of the present invention;

图7是本发明具有存储功能的装置实施例的结构示意图。Fig. 7 is a schematic structural diagram of an embodiment of a device with a storage function according to the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

本申请中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。而术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。The terms "first" and "second" in this application are only used for descriptive purposes, and should not be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. In the description of the present application, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined. Furthermore, the terms "include" and "have", as well as any variations thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes unlisted steps or units, or optionally further includes For other steps or units inherent in these processes, methods, products or apparatuses. The term "and/or" is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone These three situations. In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.

参见图1,本发明图像重建方法一实施例包括:Referring to Fig. 1, an embodiment of the image reconstruction method of the present invention includes:

S110、获取原始图像。S110. Acquire an original image.

在本实施例中,原始图像为病人注射低剂量的示踪剂后进行显像而直接采集的图像。In this embodiment, the original image is an image directly collected after imaging of the patient injected with a low dose of tracer.

S120、根据原始图像得到输入图像数据。S120. Obtain input image data according to the original image.

在本实施例中,输入图像数据为正弦数据,以实现映射。In this embodiment, the input image data is sinusoidal data to realize the mapping.

S130、在生成器网络根据第一映射函数对输入图像数据进行第一映射运算,以得到输出图像数据。S130. Perform a first mapping operation on the input image data according to the first mapping function in the generator network to obtain output image data.

在本实施例中,第一映射函数为预先设定的映射函数。In this embodiment, the first mapping function is a preset mapping function.

S140、根据输出图像数据形成重建图像。S140. Form a reconstructed image according to the output image data.

本发明实施例通过在生成器网络根据第一映射函数对原始图像输入图像数据进行第一映射运算,以得到输出图像数据,从而直接实现图像重建,能够实现低剂量放射性示踪剂的影像的清晰呈现,有利于医生的临床诊断;由于映射方式采集的数据量较小,使得图像重建速度较快,有利于提高工作效率,并且其所需的扫描时间也较短,能够避免伪影的出现,从而提高影像质量。In the embodiment of the present invention, the first mapping operation is performed on the input image data of the original image according to the first mapping function in the generator network to obtain the output image data, thereby directly realizing image reconstruction, and realizing the clarity of images of low-dose radioactive tracers Presentation is beneficial to doctors' clinical diagnosis; due to the small amount of data collected by the mapping method, the image reconstruction speed is faster, which is conducive to improving work efficiency, and the required scanning time is also shorter, which can avoid the appearance of artifacts. Thereby improving image quality.

本实施例中的图像重建方法可以应用于PET(Positron Emission ComputedTomography,正电子发射型计算机断层显像)的图像重建,也可根据实际情况调整后应用于CT(Computed Tomography,电子计算机断层扫描)或SPECT(Single-Photon EmissionComputed Tomography,单光子发射计算机断层成像术)等技术领域的图像重建,在此不做限制。The image reconstruction method in this embodiment can be applied to PET (Positron Emission Computed Tomography, positron emission computed tomography) image reconstruction, and can also be applied to CT (Computed Tomography, electronic computer tomography) or CT after being adjusted according to actual conditions. Image reconstruction in technical fields such as SPECT (Single-Photon Emission Computed Tomography, Single-Photon Emission Computed Tomography) is not limited here.

参见图2,本发明图像重建方法另一实施例包括:Referring to Fig. 2, another embodiment of the image reconstruction method of the present invention includes:

S210、获取原始图像。S210. Acquire an original image.

S220、根据原始图像得到输入图像数据。S220. Obtain input image data according to the original image.

在本实施例中,输入图像数据为288×269的正弦数据。In this embodiment, the input image data is 288×269 sinusoidal data.

S230、在生成器网络根据第一映射函数对输入图像数据进行第一映射运算,以得到输出图像数据。S230. Perform a first mapping operation on the input image data according to the first mapping function in the generator network to obtain output image data.

一并参见图3和图4,第一映射运算包括编码、转换以及解码,具体包括:Referring to Figure 3 and Figure 4 together, the first mapping operation includes encoding, conversion, and decoding, specifically including:

编码:S231、对输入图像数据依次进行第一次卷积运算,以得到第一特征图像数。Encoding: S231. Perform the first convolution operation on the input image data in order to obtain the first feature image number.

在本实施例中,第一次卷积运算中卷积层的层数为14,其中10层卷积层的步长为1,4层卷积层的步长为2。具体的,第一次卷积运算包括依次排列的1组第一卷积层组310及4组第二卷积层组320,第一卷积层组310包括两层第一卷积层311,第一卷积层311的步长为1,卷积核的大小为5*5,第二卷积层组320包括1层第二卷积层321以及两层第三卷积层322,第二卷积层321的步长为2,卷积核的大小为3*3,第三卷积层322的步长为1,卷积核的大小为3*3。In this embodiment, the number of convolutional layers in the first convolution operation is 14, wherein the step size of the 10-layer convolutional layer is 1, and the step size of the 4-layer convolutional layer is 2. Specifically, the first convolution operation includes one set of first convolutional layer groups 310 and four sets of second convolutional layer groups 320 arranged in sequence, the first convolutional layer group 310 includes two layers of first convolutional layer 311, The step size of the first convolutional layer 311 is 1, and the size of the convolution kernel is 5*5. The second convolutional layer group 320 includes one layer of the second convolutional layer 321 and two layers of the third convolutional layer 322. The second The step size of the convolution layer 321 is 2, the size of the convolution kernel is 3*3, the step size of the third convolution layer 322 is 1, and the size of the convolution kernel is 3*3.

在本实施例中,卷积层的运算公式为:In this embodiment, the calculation formula of the convolutional layer is:

Fout1=(Fin1down)↓p (1)F out1 =(F in1down )↓ p (1)

其中,Fin1为卷积层的输入数据,Fout1为卷积层的输出数据,αdown为卷积运算,p为缩小的倍数。其中,当卷积层的步长为1时p为1,表示输入数据和输出数据的大小不变,当卷积层的步长为1时p为2,表示输出数据是输入数据的大小的一半。Among them, F in1 is the input data of the convolutional layer, F out1 is the output data of the convolutional layer, α down is the convolution operation, and p is the reduction multiple. Among them, when the step size of the convolutional layer is 1, p is 1, which means that the size of the input data and output data remains unchanged; when the step size of the convolutional layer is 1, p is 2, which means that the output data is the size of the input data half.

转换:S232、对第一特征图像数据进行第二次卷积运算,以得到第二特征图像数据。Transformation: S232. Perform a second convolution operation on the first feature image data to obtain second feature image data.

在本实施例中,第二次卷积运算中卷积层的层数为11,其中6层卷积层的特征数为512,5层卷积层的特征数为1024。具体的,第二次卷积运算包括依次排列的11组第三卷积层组410,每组第三卷积层组410包括1层第四卷积层411,第四卷积层411的步长为1,卷积核的大小为3*3,且前3层第四卷积层411的特征数为512,中间4层第四卷积层411的特征数为1024,后3层第四卷积层411的特征数为512。In this embodiment, the number of convolutional layers in the second convolution operation is 11, wherein the feature number of the 6-layer convolutional layer is 512, and the feature number of the 5-layer convolutional layer is 1024. Specifically, the second convolution operation includes 11 groups of third convolutional layer groups 410 arranged in sequence, each group of third convolutional layer groups 410 includes one layer of fourth convolutional layer 411, and the steps of the fourth convolutional layer 411 The length is 1, the size of the convolution kernel is 3*3, and the feature number of the fourth convolution layer 411 of the first 3 layers is 512, the feature number of the fourth convolution layer 411 of the middle 4 layers is 1024, and the fourth layer of the last 3 layers The number of features of the convolutional layer 411 is 512.

解码:S233、依次对第二特征图像数据进行上采样运算和第三次卷积运算,以得到输出图像数据。Decoding: S233. Perform an upsampling operation and a third convolution operation on the second feature image data in sequence to obtain output image data.

在本实施例中,第三次卷积运算包括依次排列的多组第四卷积层组510及第五卷积层520。具体的,第四卷积层组510包括1层上采样层511以及3层第六卷积层512,第六卷积层512的步长为1,卷积核的大小为3*3。第五卷积层520,即第三次卷积运算中最后一层卷积层的卷积核个数为1。In this embodiment, the third convolution operation includes a plurality of fourth convolutional layer groups 510 and fifth convolutional layer groups 520 arranged in sequence. Specifically, the fourth convolutional layer group 510 includes 1 layer of upsampling layer 511 and 3 layers of sixth convolutional layer 512, the step size of the sixth convolutional layer 512 is 1, and the size of the convolution kernel is 3*3. The fifth convolution layer 520 , that is, the number of convolution kernels of the last convolution layer in the third convolution operation is 1.

在本实施例中,上采样层的运算公式为:In this embodiment, the calculation formula of the upsampling layer is:

Fout2=(Fin2up)↑q (2)F out2 =(F in2up )↑ q (2)

其中,Fin2为上采样层的输入数据,Fout2为上采样层的输出数据,αup为卷积运算,q为放大的倍数,且倍数设置为2,表示将输入的特征图扩大为原来的两倍。Among them, F in2 is the input data of the up-sampling layer, F out2 is the output data of the up-sampling layer, α up is the convolution operation, q is the magnification multiple, and the multiple is set to 2, indicating that the input feature map is enlarged to the original twice as much.

在本实施例中,在第一次卷积运算、第二次卷积运算以及第三次卷积运算中每一层卷积层的运算后依次设置有批量归一化层312及激活层313,用于进行批量归一化运算及激活运算。其中,激活运算可以通过ReLU(Rectified Linear Unit,线性整流函数)函数实现。In this embodiment, a batch normalization layer 312 and an activation layer 313 are arranged sequentially after the operation of each convolution layer in the first convolution operation, the second convolution operation, and the third convolution operation , used for batch normalization and activation operations. Wherein, the activation operation may be realized by a ReLU (Rectified Linear Unit, linear rectification function) function.

S240、通过鉴别器网络对输出图像数据进行处理,以得到生成对抗损失数据。S240. Process the output image data through the discriminator network to obtain generation adversarial loss data.

一并参见图5,在本实施例中,通过鉴别器网络对输出图像数据进行处理的方法包括:Referring to FIG. 5 together, in this embodiment, the method for processing the output image data through the discriminator network includes:

S241、对输出图像数据进行第四次卷积运算,以得到第三特征图像。S241. Perform a fourth convolution operation on the output image data to obtain a third feature image.

在本实施例中,第四次卷积运算包括8层卷积层,其中4层为第七卷积层610,另外4层为第八卷积层620,且第七卷积层610与第八卷积层620依次交替排列。In this embodiment, the fourth convolution operation includes 8 convolutional layers, of which 4 layers are the seventh convolutional layer 610, and the other 4 layers are the eighth convolutional layer 620, and the seventh convolutional layer 610 and the first convolutional layer The eight convolutional layers 620 are arranged alternately in sequence.

在本实施例中,第七卷积层610,即奇数层卷积层的步长为1。第八卷积层620,即偶数层卷积层的步长为2,以减小输入的特征图像的尺寸,并且使得卷积核的个数变为原来的两倍。In this embodiment, the step size of the seventh convolutional layer 610 , that is, the odd-numbered convolutional layer is 1. The eighth convolutional layer 620 , that is, the step size of the even-numbered convolutional layer is 2 to reduce the size of the input feature image and double the number of convolution kernels.

在本实施例中,第四次卷积运算中的8层卷积层的卷积核的个数依次为32,32,64,64,128,128,256,256。In this embodiment, the number of convolution kernels of the 8 convolution layers in the fourth convolution operation is 32, 32, 64, 64, 128, 128, 256, and 256 in sequence.

S242、对第三特征图像进行全连接层处理,以得到生成对抗损失数据。S242. Perform fully-connected layer processing on the third feature image to obtain generation adversarial loss data.

在本实施例中,第四次卷积运算后设置有2层全连接层710。In this embodiment, two fully connected layers 710 are provided after the fourth convolution operation.

在本实施例中,在第四次卷积运算及全连接层处理中,每一层卷积层的运算后及第一层全连接层710处理后设置有激活层630,用于进行激活运算。其中,激活运算可以通过Leaky ReLU(LeakyRectified Linear Unit,带泄露修正线性单元)函数实现。In this embodiment, in the fourth convolution operation and fully connected layer processing, an activation layer 630 is provided after the operation of each convolutional layer and after the processing of the first fully connected layer 710 for performing activation operations. . Among them, the activation operation can be realized by the Leaky ReLU (LeakyRectified Linear Unit, with leaky rectified linear unit) function.

在本实施例中,可以根据生成对抗损失数据鉴别重建图像是否符合标准。In this embodiment, it can be identified whether the reconstructed image meets the standard according to the generated adversarial loss data.

S251、根据输出图像数据获取第一数据集,根据目标图像数据获取第二数据集。S251. Acquire a first data set according to the output image data, and obtain a second data set according to the target image data.

在本实施例中,目标图像数据为预设设置的对应原始图像的标准图像的图像数据,用于对第一映射函数进行训练。In this embodiment, the target image data is preset image data of a standard image corresponding to the original image, and is used for training the first mapping function.

S252、根据第一数据集和第二数据集得到均方误差损失函数及感知损失函数。S252. Obtain a mean square error loss function and a perceptual loss function according to the first data set and the second data set.

在本实施例中,均方误差损失函数的运算方法如下:In this embodiment, the calculation method of the mean square error loss function is as follows:

其中,Lmse为均方误差损失函数,xi为第一数据集的元素,yi为第二数据集的元素,m为重建后的图像的总像素的个数。Among them, L mse is the mean square error loss function, xi is the element of the first data set, y i is the element of the second data set, and m is the total number of pixels of the reconstructed image.

在本实施例中,感知损失函数的运算方法如下:In this embodiment, the calculation method of the perceptual loss function is as follows:

其中,Lvgg为感知损失函数,VGG(x)i为重建图像经过VGG网络(Visual GeometryGroup Network,视觉几何组网络)后的特征图,VGG(G(Y))i为目标图像经过VGG网络后的特征图,n为重建图像经过VGG网络后的特征图的像素总数,d为重建图像经过VGG网络后的特征图的个数。Among them, L vgg is the perceptual loss function, VGG(x) i is the feature map of the reconstructed image after passing through the VGG network (Visual GeometryGroup Network, Visual Geometry Group Network), VGG(G(Y)) i is the target image after passing through the VGG network n is the total number of pixels in the feature map of the reconstructed image after passing through the VGG network, and d is the number of feature maps of the reconstructed image after passing through the VGG network.

在本实施例中,可以根据均方误差损失函数及感知损失函数判断重建图像是否符合标准。In this embodiment, whether the reconstructed image meets the standard can be judged according to the mean square error loss function and the perceptual loss function.

S260、对均方误差损失函数及所述感知损失函数进行优化计算。S260. Perform optimization calculation on the mean square error loss function and the perceptual loss function.

在本实施例中,可以采用Adam(Adaptive Moment Estimation,适应性矩估计)算法对均方误差损失函数及所述感知损失函数进行优化计算。In this embodiment, an Adam (Adaptive Moment Estimation, adaptive moment estimation) algorithm may be used to optimize and calculate the mean square error loss function and the perceptual loss function.

在本实施例中,可以根据优化计算后的所述均方误差损失函数及感知损失函数判断所述重建图像是否符合标准。In this embodiment, it may be judged whether the reconstructed image meets the standard according to the optimized calculated mean square error loss function and perceptual loss function.

S271、根据输入图像数据获取第三数据集。S271. Acquire a third data set according to the input image data.

S272、从第三数据集、第一数据集和第二数据集中提取对应的数据分别作为输入数据、输出数据和网络标签;S272. Extract corresponding data from the third data set, the first data set, and the second data set as input data, output data, and network labels, respectively;

S280、根据所输入数据、输出数据、网络标签、生成对抗损失数据、均方误差损失函数以及感知损失函数对第一映射函数进行训练,以得到第二映射函数。S280. Train the first mapping function according to the input data, output data, network label, generated adversarial loss data, mean square error loss function, and perceptual loss function, so as to obtain a second mapping function.

本实施例通过生成对抗损失数据、均方误差损失函数以及感知损失函数进行组合以对第一映射函数进行训练,可以有效解决重建图像中容易出现的过于光滑、细节信息丢失的问题,能够保留图像细节,使得图像中的结构更加清晰。In this embodiment, the first mapping function is trained by generating adversarial loss data, a mean square error loss function, and a perceptual loss function, which can effectively solve the problems of being too smooth and losing detailed information in the reconstructed image, and can preserve the image. Details, making the structure in the image clearer.

参见图6,本发明图像处理装置包括接收器810、处理器820以及显示器830,接收器810用于获取原始图像;处理器820与接收器810连接,用于根据原始图像得到输入图像数据;在生成器网络根据第一映射函数对输入图像数据进行第一映射运算,以得到输出图像数据;其中,输入图像数据为正弦数据;显示器830与处理器820连接,用于接收输出图像数据,并根据输出图像数据形成重建图像。Referring to Fig. 6, the image processing device of the present invention includes a receiver 810, a processor 820 and a display 830, the receiver 810 is used to obtain the original image; the processor 820 is connected to the receiver 810, and is used to obtain input image data according to the original image; The generator network performs a first mapping operation on the input image data according to a first mapping function to obtain output image data; wherein, the input image data is sinusoidal data; the display 830 is connected to the processor 820 for receiving the output image data, and according to The output image data forms a reconstructed image.

其中,处理器820对输入图像数据进行处理的方法参见上述图像重建方法实施例,在此不再赘述。For the method for the processor 820 to process the input image data, refer to the above-mentioned embodiment of the image reconstruction method, which will not be repeated here.

本发明实施例通过在生成器网络根据第一映射函数对原始图像输入图像数据进行第一映射运算,以得到输出图像数据,从而直接实现图像重建,能够实现低剂量放射性示踪剂的影像的清晰呈现,有利于医生的临床诊断;由于映射方式采集的数据量较小,使得图像重建速度较快,有利于提高工作效率,并且其所需的扫描时间也较短,能够避免伪影的出现,从而提高影像质量。In the embodiment of the present invention, the first mapping operation is performed on the input image data of the original image according to the first mapping function in the generator network to obtain the output image data, thereby directly realizing image reconstruction, and realizing the clarity of images of low-dose radioactive tracers Presentation is beneficial to doctors' clinical diagnosis; due to the small amount of data collected by the mapping method, the image reconstruction speed is faster, which is conducive to improving work efficiency, and the required scanning time is also shorter, which can avoid the appearance of artifacts. Thereby improving image quality.

参见图7,本发明具有存储功能的装置90实施例存储有程序数据910,程序数据910能够被执行以实现的图像重建方法。Referring to FIG. 7 , an embodiment of a device 90 with a storage function in the present invention stores program data 910 , and the program data 910 can be executed to implement an image reconstruction method.

其中,图像重建方法参见上述图像重建方法实施例,在此不再赘述。For the image reconstruction method, refer to the above-mentioned embodiment of the image reconstruction method, which will not be repeated here.

本发明实施例通过在生成器网络根据第一映射函数对原始图像输入图像数据进行第一映射运算,以得到输出图像数据,从而直接实现图像重建,能够实现低剂量放射性示踪剂的影像的清晰呈现,有利于医生的临床诊断;由于映射方式采集的数据量较小,使得图像重建速度较快,有利于提高工作效率,并且其所需的扫描时间也较短,能够避免伪影的出现,从而提高影像质量。In the embodiment of the present invention, the first mapping operation is performed on the input image data of the original image according to the first mapping function in the generator network to obtain the output image data, thereby directly realizing image reconstruction, and realizing the clarity of images of low-dose radioactive tracers Presentation is beneficial to doctors' clinical diagnosis; due to the small amount of data collected by the mapping method, the image reconstruction speed is faster, which is conducive to improving work efficiency, and the required scanning time is also shorter, which can avoid the appearance of artifacts. Thereby improving image quality.

以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only the embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process conversion made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technologies fields, are all included in the scope of patent protection of the present invention in the same way.

Claims (10)

1.一种图像重建方法,其特征在于,包括:1. An image reconstruction method, characterized in that, comprising: 获取原始图像;其中,所述原始图像为注射低剂量的示踪剂后进行显像而直接采集的图像;Acquiring an original image; wherein, the original image is an image directly collected by imaging after injecting a low dose of tracer; 根据所述原始图像得到输入图像数据,所述输入图像数据为正弦数据;Obtaining input image data according to the original image, the input image data is sinusoidal data; 在生成器网络根据第一映射函数对所述输入图像数据进行第一映射运算,以得到输出图像数据;其中,所述第一映射运算包括编码、转换以及解码;Performing a first mapping operation on the input image data according to a first mapping function in the generator network to obtain output image data; wherein, the first mapping operation includes encoding, conversion, and decoding; 根据所述输出图像数据形成重建图像;forming a reconstructed image from said output image data; 其中,通过鉴别器网络对所述输出图像数据进行处理,以得到生成对抗损失数据;根据所述输出图像数据获取第一数据集,根据目标图像数据获取第二数据集;所述目标图像数据为预设设置的对应原始图像的标准图像的图像数据;根据所述第一数据集和所述第二数据集得到均方误差损失函数及感知损失函数;Wherein, the output image data is processed by a discriminator network to obtain generated anti-loss data; the first data set is obtained according to the output image data, and the second data set is obtained according to the target image data; the target image data is Preset image data corresponding to a standard image of an original image; obtaining a mean square error loss function and a perceptual loss function according to the first data set and the second data set; 均方误差损失函数为:The mean square error loss function is: 其中,为均方误差损失函数,/>为第一数据集的元素,/>为第二数据集的元素,/>为重建后的图像的总像素的个数;in, is the mean square error loss function, /> is the element of the first data set, /> is the element of the second data set, /> is the number of total pixels of the reconstructed image; 感知损失函数为:The perceptual loss function is: 其中,为感知损失函数,/>为重建图像经过VGG网络后的特征图,/>为目标图像经过VGG网络后的特征图,/>为重建图像经过VGG网络后的特征图的像素总数,/>为重建图像经过VGG网络后的特征图的个数;in, is the perceptual loss function, /> To reconstruct the feature map of the image after passing through the VGG network, /> is the feature map of the target image after passing through the VGG network, /> is the total number of pixels in the feature map of the reconstructed image after the VGG network, /> is the number of feature maps after the reconstructed image passes through the VGG network; 根据所述均方误差损失函数及感知损失函数判断所述重建图像是否符合标准;以及根据所述输入图像数据获取第三数据集;从所述第三数据集、所述第一数据集和所述第二数据集中提取对应的数据分别作为输入数据、输出数据和网络标签;根据所述输入数据、所述输出数据、所述网络标签、生成对抗损失数据、所述均方误差损失函数以及所述感知损失函数对所述第一映射函数进行训练,以得到第二映射函数。Judging whether the reconstructed image meets the standard according to the mean square error loss function and the perceptual loss function; and obtaining a third data set according to the input image data; from the third data set, the first data set and the Extract corresponding data from the second data set as input data, output data, and network label respectively; according to the input data, the output data, the network label, generate the adversarial loss data, the mean square error loss function and the The perceptual loss function is used to train the first mapping function to obtain a second mapping function. 2.根据权利要求1所述的图像重建方法,其特征在于,所述第一映射运算包括编码、转换以及解码,所述编码的方法包括:2. The image reconstruction method according to claim 1, wherein the first mapping operation comprises encoding, conversion and decoding, and the encoding method comprises: 对所述输入图像数据依次进行第一次卷积运算,以得到第一特征图像数据;sequentially performing the first convolution operation on the input image data to obtain the first characteristic image data; 所述第一次卷积运算中卷积层的层数为14,其中10层卷积层的步长为1,4层卷积层的步长为2。The number of convolutional layers in the first convolution operation is 14, wherein the step size of the 10-layer convolutional layer is 1, and the step size of the 4-layer convolutional layer is 2. 3.根据权利要求2所述的图像重建方法,其特征在于,所述转换的方法包括:3. The image reconstruction method according to claim 2, wherein the method for converting comprises: 对所述第一特征图像数据进行第二次卷积运算,以得到第二特征图像数据;performing a second convolution operation on the first characteristic image data to obtain second characteristic image data; 所述第二次卷积运算中卷积层的层数为11,其中6层卷积层的特征数为512,5层卷积层的特征数为1024。The number of convolutional layers in the second convolution operation is 11, wherein the feature number of the 6-layer convolutional layer is 512, and the feature number of the 5-layer convolutional layer is 1024. 4.根据权利要求3所述的图像重建方法,其特征在于,所述解码的方法包括:4. The image reconstruction method according to claim 3, wherein the decoding method comprises: 依次对所述第二特征图像数据进行上采样运算和第三次卷积运算,以得到输出图像数据;performing an upsampling operation and a third convolution operation on the second feature image data in sequence to obtain output image data; 其中,第三次卷积运算中最后一层卷积层的卷积核个数为1。Wherein, the number of convolution kernels of the last convolution layer in the third convolution operation is 1. 5.根据权利要求4所述的图像重建方法,其特征在于,在所述第一次卷积运算、所述第二次卷积运算以及所述第三次卷积运算中每一层卷积层的运算后进行批量归一化运算及激活运算。5. The image reconstruction method according to claim 4, wherein, in the first convolution operation, the second convolution operation and the third convolution operation, each layer of convolution After the operation of the layer, batch normalization operation and activation operation are performed. 6.根据权利要求1所述的图像重建方法,其特征在于,所述得到所述输出图像数据之后进一步包括:6. The image reconstruction method according to claim 1, wherein said obtaining said output image data further comprises: 根据所述生成对抗损失数据鉴别所述重建图像是否符合标准。Identifying whether the reconstructed image meets a standard based on the generated adversarial loss data. 7.根据权利要求1述的图像重建方法,其特征在于,所述通过鉴别器网络对所述输出图像数据进行处理的方法包括:7. The image reconstruction method according to claim 1, wherein the method for processing the output image data through the discriminator network comprises: 对所述输出图像数据进行第四次卷积运算,以得到第三特征图像;performing a fourth convolution operation on the output image data to obtain a third feature image; 对所述第三特征图像进行全连接层处理,以得到所述生成对抗损失数据;performing fully-connected layer processing on the third feature image to obtain the generated adversarial loss data; 其中,所述第四次卷积运算中卷积层的层数为8,偶数层卷积层的步长为2,奇数层卷积层的步长为1,所述全连接层的层数为2。Wherein, the number of layers of the convolutional layer in the fourth convolution operation is 8, the step size of the even-numbered layer convolutional layer is 2, the step size of the odd-numbered layer convolutional layer is 1, and the number of layers of the fully connected layer for 2. 8.根据权利要求7所述的图像重建方法,其特征在于,在所述第四次卷积运算及全连接层处理中,每一层卷积层的运算后及第一层全连接层处理后进行激活运算。8. The image reconstruction method according to claim 7, characterized in that, in the fourth convolution operation and fully connected layer processing, after the operation of each layer of convolution layer and the first layer of fully connected layer processing Afterwards, the activation operation is performed. 9.根据权利要求7所述的图像重建方法,其特征在于,所述得到所述均方误差损失函数及感知损失函数之后进一步包括:9. The image reconstruction method according to claim 7, characterized in that, after obtaining the mean square error loss function and the perceptual loss function, further comprising: 对所述均方误差损失函数及所述感知损失函数进行优化计算;performing optimization calculations on the mean square error loss function and the perceptual loss function; 根据优化计算后的所述均方误差损失函数及感知损失函数判断所述重建图像是否符合标准。According to the optimized calculated mean square error loss function and perceptual loss function, it is judged whether the reconstructed image meets the standard. 10.一种图像处理装置,用于实现权利要求1-9任一项所述的图像重建方法,其特征在于,包括:10. An image processing device for realizing the image reconstruction method according to any one of claims 1-9, characterized in that it comprises: 接收器,用于获取原始图像;Receiver, used to obtain the original image; 处理器,与所述接收器连接,用于根据所述原始图像得到输入图像数据;在生成器网络根据第一映射函数对所述输入图像数据进行第一映射运算,以得到输出图像数据;其中,所述输入图像数据为正弦数据;A processor, connected to the receiver, for obtaining input image data according to the original image; performing a first mapping operation on the input image data according to a first mapping function in the generator network to obtain output image data; wherein , the input image data is sinusoidal data; 显示器,与所述处理器连接,用于接收所述输出图像数据,并根据所述输出图像数据形成重建图像。a display, connected to the processor, for receiving the output image data, and forming a reconstructed image according to the output image data.
CN202010203143.8A 2020-03-20 2020-03-20 Image reconstruction method, image processing device and device with storage function Active CN111489404B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010203143.8A CN111489404B (en) 2020-03-20 2020-03-20 Image reconstruction method, image processing device and device with storage function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010203143.8A CN111489404B (en) 2020-03-20 2020-03-20 Image reconstruction method, image processing device and device with storage function

Publications (2)

Publication Number Publication Date
CN111489404A CN111489404A (en) 2020-08-04
CN111489404B true CN111489404B (en) 2023-09-05

Family

ID=71810726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010203143.8A Active CN111489404B (en) 2020-03-20 2020-03-20 Image reconstruction method, image processing device and device with storage function

Country Status (1)

Country Link
CN (1) CN111489404B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109903356A (en) * 2019-05-13 2019-06-18 南京邮电大学 Estimation method of missing CT projection data based on deep multiple parsing network
CN110074813A (en) * 2019-04-26 2019-08-02 深圳大学 Ultrasonic image reconstruction method and system
CN110211050A (en) * 2018-02-28 2019-09-06 通用电气公司 System and method for sparse image reconstruction
CN110288671A (en) * 2019-06-25 2019-09-27 南京邮电大学 A low-dose CBCT image reconstruction method based on 3D adversarial generative network
CN110298804A (en) * 2019-07-01 2019-10-01 东北大学 One kind is based on generation confrontation network and the decoded medical image denoising method of 3D residual coding
CN110322403A (en) * 2019-06-19 2019-10-11 怀光智能科技(武汉)有限公司 A kind of more supervision Image Super-resolution Reconstruction methods based on generation confrontation network
CN110559009A (en) * 2019-09-04 2019-12-13 中山大学 Method, system and medium for converting multi-modal low-dose CT into high-dose CT based on GAN
CN110648376A (en) * 2019-08-20 2020-01-03 南京邮电大学 Limited angle CT reconstruction artifact removing method based on generation countermeasure network
CN110728727A (en) * 2019-09-03 2020-01-24 天津大学 A recovery method of low-dose spectral CT projection data

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105931179B (en) * 2016-04-08 2018-10-26 武汉大学 A kind of image super-resolution method and system of joint sparse expression and deep learning

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110211050A (en) * 2018-02-28 2019-09-06 通用电气公司 System and method for sparse image reconstruction
CN110074813A (en) * 2019-04-26 2019-08-02 深圳大学 Ultrasonic image reconstruction method and system
CN109903356A (en) * 2019-05-13 2019-06-18 南京邮电大学 Estimation method of missing CT projection data based on deep multiple parsing network
CN110322403A (en) * 2019-06-19 2019-10-11 怀光智能科技(武汉)有限公司 A kind of more supervision Image Super-resolution Reconstruction methods based on generation confrontation network
CN110288671A (en) * 2019-06-25 2019-09-27 南京邮电大学 A low-dose CBCT image reconstruction method based on 3D adversarial generative network
CN110298804A (en) * 2019-07-01 2019-10-01 东北大学 One kind is based on generation confrontation network and the decoded medical image denoising method of 3D residual coding
CN110648376A (en) * 2019-08-20 2020-01-03 南京邮电大学 Limited angle CT reconstruction artifact removing method based on generation countermeasure network
CN110728727A (en) * 2019-09-03 2020-01-24 天津大学 A recovery method of low-dose spectral CT projection data
CN110559009A (en) * 2019-09-04 2019-12-13 中山大学 Method, system and medium for converting multi-modal low-dose CT into high-dose CT based on GAN

Also Published As

Publication number Publication date
CN111489404A (en) 2020-08-04

Similar Documents

Publication Publication Date Title
Whiteley et al. FastPET: near real-time reconstruction of PET histo-image data using a neural network
Yuan et al. SIPID: A deep learning framework for sinogram interpolation and image denoising in low-dose CT reconstruction
Zhou et al. DuDoUFNet: Dual-domain under-to-fully-complete progressive restoration network for simultaneous metal artifact reduction and low-dose CT reconstruction
US10867375B2 (en) Forecasting images for image processing
Zhang et al. DREAM-Net: Deep residual error iterative minimization network for sparse-view CT reconstruction
CN103020928A (en) Metal artifact correcting method of cone-beam CT (computed tomography) system
CN112419173A (en) Deep learning framework and method for generating CT image from PET image
CN112819914B (en) A PET image processing method
CN111436958B (en) A CT image generation method for PET image attenuation correction
CN110728727A (en) A recovery method of low-dose spectral CT projection data
Wang et al. IGNFusion: an unsupervised information gate network for multimodal medical image fusion
US20240242398A1 (en) Systems and methods for positron emission computed tomography image reconstruction
Vey et al. The role of generative adversarial networks in radiation reduction and artifact correction in medical imaging
CN117897733A (en) Medical imaging system and method
Li et al. Quad-Net: Quad-domain network for CT metal artifact reduction
Tan et al. Semi-XctNet: Volumetric images reconstruction network from a single projection image via semi-supervised learning
US20250069289A1 (en) Systems and methods for positron emission tomography imaging
CN114358285B (en) A method for attenuation correction of PET system based on flow model
CN111626964A (en) Optimization method and optimization device for scanning image and medical scanning system
Huang et al. Automatic segmentation of median nerve in ultrasound image by a combined use of u-net and vgg16
CN118537567B (en) Multi-mode medical image segmentation method and system based on SAM model
CN113902912B (en) CBCT image processing method, neural network system creation method and device
CN111489404B (en) Image reconstruction method, image processing device and device with storage function
Whiteley et al. FastPET: Near real-time PET reconstruction from histo-images using a neural network
CN118644570A (en) A reconstruction method for ultra-sparse angular CT images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant