CN111485203A - 一种用于提高光学薄膜光学性能的制备方法 - Google Patents
一种用于提高光学薄膜光学性能的制备方法 Download PDFInfo
- Publication number
- CN111485203A CN111485203A CN202010422924.6A CN202010422924A CN111485203A CN 111485203 A CN111485203 A CN 111485203A CN 202010422924 A CN202010422924 A CN 202010422924A CN 111485203 A CN111485203 A CN 111485203A
- Authority
- CN
- China
- Prior art keywords
- film
- optical
- optical film
- thin film
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种用于提高光学薄膜光学性能的制备方法,属于真空镀膜技术领域,主要针对光学薄膜制备过程中,光学薄膜表面粗糙度随膜层增加而增加,影响光学薄膜的反射率以及透过率光谱;以及光学薄膜膜层材料的化学计量比失衡,引起光学薄膜吸收损耗增加。基于高能离子束刻蚀技术,通过优化光学薄膜制备工艺参数,并在每层薄膜材料制备后,采用优化的离子束刻蚀参数对刚制备的光学薄膜进行在线处理,实现对光学薄膜结构致密性、表面粗糙度和化学计量比的优化,最终实现高性能光学薄膜的制备目的。本发明具有针对性强、品质高、简单易行的特点。
Description
技术领域
本发明涉及真空镀膜技术领域,特别涉及一种用于提高光学薄膜光学性能的制备方法。
背景技术
全介质光学薄膜元件在航天/航空遥感和相机、量子/相干激光通信、激光陀螺仪以及地基/天基望远镜系统等众多方面都有着广泛的应用前景。面形是表征全介质光学薄膜元件品质和决定光学系统光束传输及成像质量的重要参数之一。应力则是导致全介质光学薄膜元件面形变差的主要因素,它主要产生于全介质光学薄膜的制备过程中,还与光学元件材质以及初始应力状态有关。应力的存在不仅影响光学元件面形,而且对全介质光学薄膜的牢固度构成威胁,进而使得全介质光学薄膜元件的环境适应性变差。因此,基于全介质光学薄膜应力控制技术,实现光学薄膜元件面形优化至关重要。
随着真空镀膜技术以及加工处理能力的提高,研究人员在全介质光学薄膜应力优化方面开展了大量的科学研究。J.B.Oliver报道了使用修正挡板技术实现光学元件镀膜面非均匀氧化硅膜层制备,通过制备的氧化硅膜层在光学元件中间薄、边缘厚,使得光学薄膜制备前,光学元件镀膜面呈现为对称的凹形面形,然后继续镀制均匀的全介质光学薄膜,只要初始加工的氧化硅非均匀层凹形面形与镀制全介质光学薄膜凸形面形匹配合理,就能使得最终制备的全介质光学薄膜元件具有极为理想的面形(J.B.Oliver,J.Spaulding,andB.Charles,"Stress compensation by deposition of a nonuniform correctivecoating,"Optical Interference Coating,WC.2(2019))。相比于镀膜前处理技术,全介质光学薄膜镀制后,通过在光学元件背面镀制均匀的氧化硅薄膜来匹配前镀膜面光学薄膜应力引起的面形变化的技术更为简便易于操作(S.Gensemer,and M.Gross,"Figuring largeoptics at the sub-nanometer level:compensation for coatings and gravitydistortions,"Opt.Exp.23:31171-31180(2015))。此外,高温退火后处理技术也被用来优化光学薄膜应力,并获得了较为理想的光学薄膜元件面形(S.U.andS.Melnikas,"Post deposition annealing of IBS mixture coatings forcompensation of film induced stress,"Opt.Mater.Exp.6:2236-2243(2016).)。当前,镀膜前光学元件镀膜面面形预处理和镀膜后光学元件背面拉面形技术存在如下问题,都需要对光学薄膜应力引起的面形量进行预估,操作流程环节过多,执行难度较大;对于非对称、非玻璃材质和背面蜂窝状或者其它轻量化处理的光学元件,两种技术途径都将不在适用。对于高温退火后处理技术,往往使用的温度极高,不仅使光学薄膜应力和面形发生改变,而且对膜层晶相结构、表面粗糙度和光学损耗等特性造成不利的影响,因此很难得到广泛的应用。综上所述,为优化全介质光学薄膜元件应力和面形需要更为简便、普适的真空镀膜技术。
发明内容
本发明要解决的技术问题:克服现有技术的不足,提供一种用于提高光学薄膜光学性能的制备方法,该方法具有针对性强、品质高、简单易行的特点。
本发明解决上述技术问题采用的技术方案是,一种用于提高光学薄膜光学性能的制备方法,具体步骤如下:
步骤(1)、将光学元件清洗干净,然后放入真空镀膜机;
步骤(2)、封闭真空室门,开始抽真空;控制镀膜机内真空室的本底真空度小于1×10-3Pa;
步骤(3)、将光学元件加热至设定温度,并恒温足够长时间;
步骤(4)、采用物理气相沉积技术制备膜层材料,直至膜层厚度达到设定值;
步骤(5)、采用高能离子束刻蚀技术对刚制备膜层进行在线处理,离子源工作偏压60-130V,工作气体流量10-30sccm,刻蚀时间60-400s;
步骤(6)、重复步骤(4)和步骤(5)直至光学薄膜制备完成;
步骤(7)、待真空室冷却至室温后取出镀制好的光学薄膜元件。
进一步地,所述的光学元件基底材料可以是常用的石英、微晶、K9和ULE玻璃,也可以是半导体和晶体材料。
进一步地,所述的光学元件加温温度和恒温时长与光学元件材质、尺寸、薄膜材料以及真空镀膜技术选择有关。
进一步地,所述的光学薄膜膜层材料是氧化物或者氟化物,可选单质和两种或者多种单质的混合膜层材料。
进一步地,所述的高能粒子束刻蚀过程中工作气体种类与膜层材料有关,当膜层材料为氧化物,则工作气体选用氧气;当膜层材料为氟化物,则工作气体选用含氟的气氛介质,如氟气、氟化硫、氟化氮或氟化碳。
进一步地,所述的离子源可以是考夫曼(Kaufman)离子源、霍尔(Hall)离子源或者先进等离子体源(APS)。
本发明与现有技术相比具有如下优点:
(1)本发明与传统的真空镀膜技术相比,减少光学薄膜表面粗糙度和化学计量比失衡,进而提高光学薄膜的光学性能;
(2)本发明与传统的真空镀膜技术相比,有利于提高膜层结构致密性,减少光学薄膜缺陷密度,进而全面提升光学薄膜品质。
附图说明
图1为本发明用于提高光学薄膜光学性能的制备方法原理示意图。
具体实施方式
通过具体实施例对本发明作进一步详细说明。
以JGS1石英玻璃为例,首先将其清洗干净,然后放入镀膜机中的工件架上;封闭真空室门,开始抽真空;当镀膜机内真空室的本底真空度小于1×10-3Pa时,将光学元件加热至180度,并恒温120分钟;随后采用等离子体辅助电子束热蒸发Ta2O5和SiO2,Ta2O5的沉积速率为0.3nm/s,SiO2的沉积速率为0.8nm/s,两种膜层材料沉积时等离子体辅助偏压为110V,充氧气量分别为20和10sccm。每层膜料镀制完成后,使用高能离子源对刚沉积的膜层进行离子束刻蚀处理,离子源的偏压为110V,氧气流量为10sccm,离子束刻蚀时长为300秒。膜系结构为:S|(1H 1A 1L 1A)^15 1H 1A|Air,其中,S代表JGS1石英玻璃基底,H和L代表1/4波长厚度的Ta2O5和SiO2,A代表设定参数条件下的离子束刻蚀环节,膜系设计参考波长1064nm,15代表膜层交替的周期数,Air代表入射介质--空气。光学薄膜制备完成后,样品在真空室内自然冷却至室温,然后开门取出光学薄膜样品。
与传统方法制备的Ta2O5/SiO2高反膜性能进行对比研究发现,本发明制备的光学薄膜反射率由99.9633%提高到99.9785%,吸收损耗由5.6ppm下降到4.4ppm,表面均方根粗糙度由0.51nm下降到0.26nm。显然,采用本发明方法制备的光学薄膜能很好地改善光学薄膜的光学性能。
本发明未详细阐述部分属于本领域公知技术。
Claims (6)
1.一种用于提高光学薄膜光学性能的制备方法,其特征在于,具体步骤如下:
步骤(1)、将光学元件清洗干净,然后放入真空镀膜机;
步骤(2)、封闭真空室门,开始抽真空;控制镀膜机内真空室的本底真空度小于1×10- 3Pa;
步骤(3)、将光学元件加热至设定温度,并恒温足够长时间;
步骤(4)、采用物理气相沉积技术制备膜层材料,直至膜层厚度达到设定值;
步骤(5)、采用高能离子束刻蚀技术对刚制备膜层进行在线处理,离子源工作偏压60-130V,工作气体流量10-30sccm,刻蚀时间60-400s;
步骤(6)、重复步骤(4)和步骤(5)直至光学薄膜制备完成;
步骤(7)、待真空室冷却至室温后取出镀制好的光学薄膜元件。
2.根据权利要求1所述的一种用于提高光学薄膜光学性能的制备方法,其特征在于:所述的光学元件基底材料可以是常用的石英、微晶、K9和ULE玻璃,也可以是半导体和晶体材料。
3.根据权利要求1所述的一种用于提高光学薄膜光学性能的制备方法,其特征在于:所述的光学元件加温温度和恒温时长与光学元件材质、尺寸、薄膜材料以及真空镀膜技术选择有关。
4.根据权利要求1所述的一种用于提高光学薄膜光学性能的制备方法,其特征在于:所述的光学薄膜膜层材料是氧化物或者氟化物,可选单质和两种或者多种单质的混合膜层材料。
5.根据权利要求1所述的一种用于提高光学薄膜光学性能的制备方法,其特征在于:所述的高能粒子束刻蚀过程中工作气体种类与膜层材料有关,当膜层材料为氧化物,则工作气体选用氧气;当膜层材料为氟化物,则工作气体选用含氟的气氛介质,包括氟气、氟化硫、氟化氮或氟化碳。
6.根据权利要求1所述的一种用于提高光学薄膜光学性能的制备方法,其特征在于:所述的离子源可以是考夫曼(Kaufman)离子源、霍尔(Hall)离子源或者先进等离子体源(APS)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010422924.6A CN111485203A (zh) | 2020-05-19 | 2020-05-19 | 一种用于提高光学薄膜光学性能的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010422924.6A CN111485203A (zh) | 2020-05-19 | 2020-05-19 | 一种用于提高光学薄膜光学性能的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111485203A true CN111485203A (zh) | 2020-08-04 |
Family
ID=71813251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010422924.6A Pending CN111485203A (zh) | 2020-05-19 | 2020-05-19 | 一种用于提高光学薄膜光学性能的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111485203A (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101713061A (zh) * | 2008-10-07 | 2010-05-26 | 四川欧瑞特光电科技有限公司 | 电子束制备HfO2/SiO2多层反射膜的方法 |
CN102681041A (zh) * | 2012-05-10 | 2012-09-19 | 中国科学院长春光学精密机械与物理研究所 | 环境稳定性深紫外光学薄膜及其制备方法 |
CN102747328A (zh) * | 2012-06-27 | 2012-10-24 | 同济大学 | 一种提高高反射薄膜激光损伤阈值的镀制方法 |
CN103018798A (zh) * | 2012-12-11 | 2013-04-03 | 中国科学院长春光学精密机械与物理研究所 | 低损耗深紫外多层膜的制备方法 |
CN103215540A (zh) * | 2013-03-28 | 2013-07-24 | 同济大学 | 一种提高偏振膜激光损伤阈值的制备方法 |
CN103235353A (zh) * | 2013-04-18 | 2013-08-07 | 中国科学院长春光学精密机械与物理研究所 | 一种使深紫外光学薄膜具有光学稳定性的处理方法 |
CN109136840A (zh) * | 2018-08-06 | 2019-01-04 | 中国科学院光电技术研究所 | 一种真空紫外铝反射镜的制备方法 |
CN110484869A (zh) * | 2019-07-11 | 2019-11-22 | 湖北久之洋红外系统股份有限公司 | 一种防霉防潮光学薄膜及其制备方法 |
-
2020
- 2020-05-19 CN CN202010422924.6A patent/CN111485203A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101713061A (zh) * | 2008-10-07 | 2010-05-26 | 四川欧瑞特光电科技有限公司 | 电子束制备HfO2/SiO2多层反射膜的方法 |
CN102681041A (zh) * | 2012-05-10 | 2012-09-19 | 中国科学院长春光学精密机械与物理研究所 | 环境稳定性深紫外光学薄膜及其制备方法 |
CN102747328A (zh) * | 2012-06-27 | 2012-10-24 | 同济大学 | 一种提高高反射薄膜激光损伤阈值的镀制方法 |
CN103018798A (zh) * | 2012-12-11 | 2013-04-03 | 中国科学院长春光学精密机械与物理研究所 | 低损耗深紫外多层膜的制备方法 |
CN103215540A (zh) * | 2013-03-28 | 2013-07-24 | 同济大学 | 一种提高偏振膜激光损伤阈值的制备方法 |
CN103235353A (zh) * | 2013-04-18 | 2013-08-07 | 中国科学院长春光学精密机械与物理研究所 | 一种使深紫外光学薄膜具有光学稳定性的处理方法 |
CN109136840A (zh) * | 2018-08-06 | 2019-01-04 | 中国科学院光电技术研究所 | 一种真空紫外铝反射镜的制备方法 |
CN110484869A (zh) * | 2019-07-11 | 2019-11-22 | 湖北久之洋红外系统股份有限公司 | 一种防霉防潮光学薄膜及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI397949B (zh) | 製造光滑密實光學薄膜之方法 | |
JP3808917B2 (ja) | 薄膜の製造方法及び薄膜 | |
CN101620280B (zh) | 一种红外双波段减反射膜膜系及其镀制方法 | |
Sertel et al. | Influences of annealing temperature on anti-reflective performance of amorphous Ta2O5 thin films | |
CN110441844A (zh) | 一种10 kW半导体激光器用高反膜及其制备方法 | |
CN113832430B (zh) | 一种金刚石基非晶碳-氧化钇梯度复合增透膜的制备方法 | |
CN113862616B (zh) | 一种增透抗uv车载显示面板的一次镀膜成型方法 | |
JP4713462B2 (ja) | ルチル構造を有する透明チタン酸化物被膜の製造方法 | |
CN109628894B (zh) | 一种远紫外高反射镜的制备方法 | |
CN111500985B (zh) | 一种用于低应力全介质光学薄膜的制备方法 | |
CN111286700B (zh) | 基于混合物单层膜的光学镀膜元件面形补偿方法 | |
CN111485203A (zh) | 一种用于提高光学薄膜光学性能的制备方法 | |
CN108220897B (zh) | 磁控溅射低温制备二氧化钒薄膜的方法 | |
CN113151783A (zh) | 一种组合型反射膜及其制备方法 | |
CN108227048B (zh) | 硅晶圆上的一种低发射率红外增透膜 | |
JP4793011B2 (ja) | 反射防止膜形成方法 | |
JP2002148407A (ja) | 赤外線レーザ用光学部品とその製造方法 | |
CN113881926B (zh) | 一种提升光学薄膜沉积精度的方法 | |
Ai et al. | Characterization of hafnia thin films made with different deposition technologies | |
CN113502451A (zh) | 一种基于磁控溅射的GaAs太阳能电池用减反射膜及其制备方法与应用 | |
CN112981353A (zh) | 一种薄膜应力的消除方法 | |
Kozyrev et al. | Effect of the amount of argon in an oxygen ion beam on the optical characteristics of titanium dioxide films obtained via ion-assisted electron beam evaporation | |
CN115261813B (zh) | 一种介电常数可调控的多晶银薄膜及其制备方法 | |
CN103035783A (zh) | 一种氧化铝太阳电池减反膜的制备方法 | |
Kou et al. | Effect of vacuum annealing on properties of HfO2/SiO2 reflective films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200804 |
|
WD01 | Invention patent application deemed withdrawn after publication |