[go: up one dir, main page]

CN111484478A - Linear C2 symmetry compound, lanthanide polynuclear complex and preparation method and application thereof - Google Patents

Linear C2 symmetry compound, lanthanide polynuclear complex and preparation method and application thereof Download PDF

Info

Publication number
CN111484478A
CN111484478A CN201910993963.9A CN201910993963A CN111484478A CN 111484478 A CN111484478 A CN 111484478A CN 201910993963 A CN201910993963 A CN 201910993963A CN 111484478 A CN111484478 A CN 111484478A
Authority
CN
China
Prior art keywords
lanthanide
compound
linear
symmetry
polynuclear complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910993963.9A
Other languages
Chinese (zh)
Other versions
CN111484478B (en
Inventor
孙庆福
郭小青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Publication of CN111484478A publication Critical patent/CN111484478A/en
Application granted granted Critical
Publication of CN111484478B publication Critical patent/CN111484478B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请公开了一种线性C2对称性化合物、镧系多核配合物及其制备方法和应用,属于光化学超分子领域。所述线性C2对称性化合物结构式如下:

Figure DDA0002239172210000011
其通过将叠氮化合物和炔烃化合物在50~70℃下进行三氮唑关环反应得到。所述镧系多核配合物具有通式Ln2nL3n,其中Ln选自镧系元素,L为选自所述线性C2对称性化合物的有机配体,n选自1或2;其制备方法包括将镧系元素Ln前驱体和有机配体L在30~50℃下反应。根据本申请的线性C2对称性化合物包含三氮唑‑吡啶‑酰胺螯合基团,其可提高配体中间发色团到稀土中心能量传递的效率,并改善镧系高核数配合物的构筑,由此得到的配合物具有强的发光性能,且包括高核数的镧系有机多面体笼。The present application discloses a linear C2 symmetry compound, a lanthanide series multinuclear complex and a preparation method and application thereof, belonging to the field of photochemical supramolecules. The linear C2 symmetry compound structural formula is as follows:
Figure DDA0002239172210000011
It is obtained by subjecting an azide compound and an alkyne compound to a triazole ring-closure reaction at 50-70°C. The lanthanide polynuclear complex has the general formula Ln 2n L 3n , wherein Ln is selected from lanthanide elements, L is an organic ligand selected from the linear C2 symmetry compound, and n is selected from 1 or 2; the preparation method thereof includes: The lanthanide Ln precursor and the organic ligand L are reacted at 30-50°C. The linear C2 symmetry compound according to the present application contains a triazole-pyridine-amide chelating group, which can improve the efficiency of energy transfer from the intermediate chromophore of the ligand to the rare earth center and improve the construction of lanthanide high nuclear number complexes , the resulting complexes have strong luminescence properties and include lanthanide organic polyhedral cages with high nuclear numbers.

Description

线性C2对称性化合物、镧系多核配合物及其制备方法和应用Linear C2 symmetry compound, lanthanide polynuclear complex and preparation method and application thereof

技术领域technical field

本申请涉及一种线性C2对称性化合物、镧系多核配合物以及它们的制备方法和应用,属于光化学超分子领域。The present application relates to a linear C2 symmetry compound, a lanthanide polynuclear complex, a preparation method and application thereof, and belongs to the field of photochemical supramolecules.

背景技术Background technique

配位驱动自组装已经逐渐成为了一门成熟的构筑功能超分子结构的技术。然而,对比于受到广泛研究的过渡金属离子,以三价镧系金属离子为节点构筑超分子组装体的研究鲜有报道。尽管镧系元素具有丰富的光、电和磁学性质,其高核数组装体的合成目前仍受限于自身配位能力弱、配位数易变以及立体选择性差的问题。另外,目前多核稀土配合物的荧光量子产率难以超过6%,极大限制了多核稀土配合物在光学领域的应用研究。因此,开展研究以设计和构筑结构精细、功能复杂的镧系有机配合物具有重要的意义。Coordination-driven self-assembly has gradually become a mature technology for constructing functional supramolecular structures. However, compared with the widely studied transition metal ions, studies on the construction of supramolecular assemblies with trivalent lanthanide metal ions as nodes are rarely reported. Despite the rich optical, electrical and magnetic properties of lanthanides, the synthesis of their high nuclear number assemblies is still limited by their weak coordination ability, variable coordination number, and poor stereoselectivity. In addition, the current fluorescence quantum yield of multinuclear rare earth complexes is difficult to exceed 6%, which greatly limits the application research of polynuclear rare earth complexes in the field of optics. Therefore, it is of great significance to carry out research to design and construct lanthanide organic complexes with fine structures and complex functions.

在三维金属超分子结构的构筑中,镧系元素的引入有望赋予独特的光学性质,例如锐利的线状光谱、较大的Stokes位移和长的荧光寿命等。然而到目前为止,多核镧系配合物的荧光量子产率依然十分有限。在多数情况下,镧系元素仅作为连接节点,这对于镧系有机配合物而言是一个很大的遗憾。因此,从提高发光强度的角度而言,合成新的有机配体以实现强发光的镧系多核配合物的合成是迫切需要的。In the construction of three-dimensional metal supramolecular structures, the introduction of lanthanides is expected to impart unique optical properties, such as sharp linear spectra, large Stokes shifts, and long fluorescence lifetimes. However, so far, the fluorescence quantum yield of multinuclear lanthanide complexes is still very limited. In most cases, lanthanides only serve as connecting nodes, which is a big pity for lanthanide organic complexes. Therefore, from the viewpoint of improving the luminescence intensity, it is urgent to synthesize new organic ligands to realize the synthesis of lanthanide multinuclear complexes with strong luminescence.

在镧系有机多面体配合物的合成方面,从对称性的角度考虑,多面体配合物的构筑应当在有机配体的合成中引入对称元素。例如,为了构造具有D3对称性的Ln2L3配合物,C2和C3对称轴应被引入到配体和镧系配位几何结构的设计中。对比于异位的C2对称性配体,线性配体的设计更有利于最大化笼的内部空腔和窗口尺寸。然而迄今为止,以苯或联苯桥连的线性配体与镧系元素组装得到的几乎都是Ln2L3三股螺旋体。因此,基于线性C2对称性配体合成高核数的镧系有机多面体依然是亟待解决的问题。In the synthesis of lanthanide organic polyhedral complexes, from the perspective of symmetry, the construction of polyhedral complexes should introduce symmetry elements in the synthesis of organic ligands. For example, to construct Ln2L3 complexes with D3 symmetry, C2 and C3 symmetry axes should be introduced into the design of ligand and lanthanide coordination geometries. Compared with ectopic C2 - symmetric ligands, the design of linear ligands is more favorable to maximize the internal cavity and window size of the cage. However, so far, almost all Ln 2 L 3 triple helixes have been assembled by linear ligands bridged by benzene or biphenyl and lanthanides. Therefore, the synthesis of high-nucleus lanthanide organic polyhedra based on linear C symmetric ligands is still an urgent problem to be solved.

发明内容SUMMARY OF THE INVENTION

根据本申请的一个方面,提供一种线性C2对称性化合物,该线性C2对称性化合物包含三氮唑-吡啶-酰胺(tpa)螯合基团,其不仅可通过提高线性C2配体的螯合角度而改善镧系高核数配合物的构筑,而且可通过克服内部酰胺键震动对能量的耗散而提高配体中间发色团到稀土中心能量传递的效率。According to one aspect of the present application, there is provided a linear C2 symmetric compound comprising a triazole-pyridine-amide (tpa) chelating group, which can not only improve the chelation of linear C2 ligands by It can improve the construction of lanthanide complexes with high nuclear number, and can improve the efficiency of energy transfer from the intermediate chromophore of the ligand to the rare earth center by overcoming the energy dissipation caused by the vibration of the internal amide bond.

所述线性C2对称性化合物,其特征在于,具有式I所示的结构式:The linear C2 symmetry compound is characterized in that it has the structural formula shown in formula I:

Figure BDA0002239172190000021
Figure BDA0002239172190000021

其中,R选自C3~C12的烷基、C8~C12的芳烷基和

Figure BDA0002239172190000022
中的一种,k=1~6;wherein, R is selected from C 3 -C 12 alkyl, C 8 -C 12 aralkyl and
Figure BDA0002239172190000022
One of them, k=1~6;

Figure BDA0002239172190000023
选自以下基团中的一种:
Figure BDA0002239172190000023
One of the following groups:

Figure BDA0002239172190000031
Figure BDA0002239172190000031

说明性地,上述基团中,虚线表示其相应位置处可形成键连接,例如共价键连接。下文中,类似情况下绘制的虚线具有与此处相同的含义。Illustratively, in the above groups, the dashed lines indicate that a bond, such as a covalent bond, can be formed at the corresponding position. Hereinafter, dashed lines drawn in similar cases have the same meaning as here.

可选地,式I中,R选自以下基团中的一种:Alternatively, in formula I, R is selected from one of the following groups:

Figure BDA0002239172190000032
Figure BDA0002239172190000032

可选地,式I中,

Figure BDA0002239172190000033
选自具有式I-1所示结构式的基团中的一种:Optionally, in formula I,
Figure BDA0002239172190000033
One of the groups selected from the group having the structural formula shown in formula I-1:

Figure BDA0002239172190000034
Figure BDA0002239172190000034

其中,m=1、2或3。where m=1, 2 or 3.

在一个实施方案中,

Figure BDA0002239172190000035
选自
Figure BDA0002239172190000036
中的一种。In one embodiment,
Figure BDA0002239172190000035
selected from
Figure BDA0002239172190000036
one of the.

根据本申请的另一个方面,提供了所述线性C2对称性化合物的制备方法,该方法可将三氮唑-吡啶-酰胺(tpa)螯合基团修饰在线性C2对称性配体上。According to another aspect of the present application, there is provided a preparation method of the linear C2-symmetrical compound, which can modify a triazole-pyridine-amide (tpa) chelating group on a linear C2 - symmetrical ligand.

所述线性C2对称性化合物的制备方法,其特征在于,包括:The preparation method of the linear C2 symmetry compound is characterized in that, comprising:

将含有叠氮化合物和炔烃化合物的混合物在50~70℃下反应,得到所述线性C2对称性化合物;reacting the mixture containing the azide compound and the alkyne compound at 50-70° C. to obtain the linear C2 symmetry compound;

其中,所述反应为三氮唑关环反应;Wherein, the reaction is a triazole ring-closing reaction;

所述叠氮化合物选自具有式II所示结构式的化合物中的至少一种:The azide compound is selected from at least one of the compounds having the structural formula shown in formula II:

Figure BDA0002239172190000041
Figure BDA0002239172190000041

所述炔烃化合物选自具有式III所示结构式的化合物中的至少一种:The alkyne compound is selected from at least one of the compounds having the structural formula shown in formula III:

Figure BDA0002239172190000042
Figure BDA0002239172190000042

所述叠氮化合物可使用合适的原料,借鉴已知的方法制备,例如通过本申请实施例中记载的方法获得。The azide compound can be prepared by using suitable raw materials by referring to known methods, for example, by the method described in the examples of the present application.

所述炔烃化合物可使用合适的原料,借鉴已知的方法制备,例如通过本申请实施例中记载的方法获得。The alkyne compound can be prepared by using suitable raw materials by referring to known methods, for example, by the methods described in the examples of the present application.

可选地,所述反应的温度的上限选自70℃、68℃、66℃、64℃、62℃、60℃、58℃、56℃、54℃、52℃,下限选自50℃、52℃、54℃、56℃、58℃、60℃、62℃、64℃、66℃、68℃。Optionally, the upper limit of the temperature of the reaction is selected from 70°C, 68°C, 66°C, 64°C, 62°C, 60°C, 58°C, 56°C, 54°C, 52°C, and the lower limit is selected from 50°C, 52°C °C, 54 °C, 56 °C, 58 °C, 60 °C, 62 °C, 64 °C, 66 °C, 68 °C.

优选地,所述反应的温度为60℃。Preferably, the temperature of the reaction is 60°C.

可选地,所述反应的时间为12~36小时。Optionally, the reaction time is 12-36 hours.

可选地,所述反应的时间的上限选自36小时、32小时、28小时、24小时、20小时、16小时,下限选自12小时、16小时、20小时、24小时、28小时、32小时。Optionally, the upper limit of the reaction time is selected from 36 hours, 32 hours, 28 hours, 24 hours, 20 hours, 16 hours, and the lower limit is selected from 12 hours, 16 hours, 20 hours, 24 hours, 28 hours, 32 hours. Hour.

优选地,所述反应的时间为24小时。Preferably, the reaction time is 24 hours.

可选地,所述叠氮化合物与所述炔烃化合物的摩尔比为1:2~1:4。Optionally, the molar ratio of the azide compound to the alkyne compound is 1:2˜1:4.

可选地,所述叠氮化合物与所述炔烃化合物的摩尔比的上限选自1:4、1:3.75、1:3.5、1:3.25、1:3、1:2.75、1:2.5、1:2.25,下限选自1:2、1:2.25、1:2.5、1:2.75、1:3、1:3.25、1:3.5、1:3.75。Optionally, the upper limit of the molar ratio of the azide compound to the alkyne compound is selected from 1:4, 1:3.75, 1:3.5, 1:3.25, 1:3, 1:2.75, 1:2.5, 1:2.25, the lower limit is selected from 1:2, 1:2.25, 1:2.5, 1:2.75, 1:3, 1:3.25, 1:3.5, 1:3.75.

优选地,所述叠氮化合物与所述炔烃化合物的摩尔比为1:2.5~1:3。Preferably, the molar ratio of the azide compound to the alkyne compound is 1:2.5˜1:3.

可选地,所述混合物还包含硫酸酮和抗坏血酸钠。Optionally, the mixture further comprises ketone sulfate and sodium ascorbate.

可选地,所述硫酸酮与所述叠氮化合物的摩尔比为0.8:1~1:1。Optionally, the molar ratio of the ketone sulfate to the azide compound is 0.8:1 to 1:1.

可选地,所述硫酸酮与所述叠氮化合物的摩尔比上限选自1:1、0.99:1、0.98:1、0.97:1、0.96:1、0.95:1、0.94:1、0.93:1、0.92:1、0.91:1、0.9:1,下限选自0.8:1、0.81:1、0.82:1、0.83:1、0.84:1、0.85:1、0.86:1、0.87:1、0.88:1、0.89:1、0.9:1、0.91:1。Optionally, the upper limit of the molar ratio of the sulfate ketone to the azide compound is selected from 1:1, 0.99:1, 0.98:1, 0.97:1, 0.96:1, 0.95:1, 0.94:1, 0.93: 1, 0.92:1, 0.91:1, 0.9:1, the lower limit is selected from 0.8:1, 0.81:1, 0.82:1, 0.83:1, 0.84:1, 0.85:1, 0.86:1, 0.87:1, 0.88 :1, 0.89:1, 0.9:1, 0.91:1.

优选地,所述硫酸酮与所述叠氮化合物的摩尔比为0.9:1~0.91:1。Preferably, the molar ratio of the sulfate ketone to the azide compound is 0.9:1 to 0.91:1.

可选地,所述抗坏血酸钠与所述叠氮化合物的摩尔比为1.5:1~2.5:1。Optionally, the molar ratio of the sodium ascorbate to the azide compound is 1.5:1˜2.5:1.

可选地,所述抗坏血酸钠与所述叠氮化合物的摩尔比的上限选自2.5:1、2.4:1、2.3:1、2.2:1、2.1:1、2:1、1.9:1、1.8:1、1.7:1、1.6:1,下限选自1.5:1、1.6:1、1.7:1、1.8:1、1.9:1、2:1、2.1:1、2.2:1、2.3:1、2.4:1。Optionally, the upper limit of the molar ratio of the sodium ascorbate to the azide compound is selected from 2.5:1, 2.4:1, 2.3:1, 2.2:1, 2.1:1, 2:1, 1.9:1, 1.8 :1, 1.7:1, 1.6:1, the lower limit is selected from 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, 2:1, 2.1:1, 2.2:1, 2.3:1, 2.4:1.

优选地,所述抗坏血酸钠与所述叠氮化合物的摩尔比为2.1:1。Preferably, the molar ratio of the sodium ascorbate to the azide compound is 2.1:1.

可选地,所述混合物还包含溶剂。Optionally, the mixture further comprises a solvent.

可选地,所述溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜/甲醇中的至少一种。Optionally, the solvent is selected from at least one of N,N-dimethylformamide, N,N-dimethylacetamide, and dimethylsulfoxide/methanol.

优选地,所述溶剂为N,N-二甲基甲酰胺。Preferably, the solvent is N,N-dimethylformamide.

可选地,所述反应在搅拌下进行。Optionally, the reaction is carried out with stirring.

可选地,所述反应后,对所得物进行分离纯化。Optionally, after the reaction, the resultant is separated and purified.

在一个具体实施方案中,所述线性C2对称性化合物的制备方法包括:In a specific embodiment, the preparation method of the linear C2 symmetry compound comprises:

Figure BDA0002239172190000051
Figure BDA0002239172190000051

其中,HATU为2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯,DMF为N,N-二甲基甲酰胺,THF为四氢呋喃,TMSA为三甲基硅基乙炔,TEA为三乙胺,RT为室温,SA为抗坏血酸钠。Among them, HATU is 2-(7-azobenzotriazole)-N,N,N',N'-tetramethylurea hexafluorophosphate, DMF is N,N-dimethylformamide, THF is tetrahydrofuran, TMSA is trimethylsilylacetylene, TEA is triethylamine, RT is room temperature, and SA is sodium ascorbate.

根据本申请的又一个方面,提供了一种镧系多核配合物,该镧系多核配合物具有强的发光性能,并且包括高核数的镧系有机多面体笼(基于线性C2对称性配体)。According to yet another aspect of the present application, a lanthanide polynuclear complex is provided, the lanthanide polynuclear complex has strong luminescence properties, and includes a lanthanide organic polyhedral cage with a high nuclear number (based on linear C 2 symmetry ligands ).

所述镧系多核配合物,其特征在于,具有如式VI所示的通式:The lanthanide polynuclear complex is characterized in that it has the general formula shown in formula VI:

Ln2nL3n 式IV其中,Ln选自镧系元素中的一种;Ln 2n L 3n formula IV wherein, Ln is selected from a kind of lanthanide;

L为有机配体,其选自上述线性C2对称性化合物、根据上述方法制备得到的线性C2对称性化合物中的一种;L is an organic ligand, which is selected from one of the above-mentioned linear C2 symmetric compounds and the linear C2 symmetric compounds prepared according to the above method;

n选自1或2;n is selected from 1 or 2;

其中,L中的氮原子和氧原子与Ln配位。Among them, nitrogen atoms and oxygen atoms in L coordinate with Ln.

可选地,Ln选自Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm和Yb中的一种。Optionally, Ln is selected from one of Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb.

可选地,n=2,所述镧系多核配合物为镧系四面体笼。Optionally, n=2, and the lanthanide polynuclear complex is a lanthanide tetrahedral cage.

可选地,所述镧系四面体笼选自具有式V所示结构式的化合物中的至少一种:Optionally, the lanthanide tetrahedral cage is selected from at least one of compounds having the structural formula shown in formula V:

Figure BDA0002239172190000061
Figure BDA0002239172190000061

其中,

Figure BDA0002239172190000062
代表Ln;in,
Figure BDA0002239172190000062
represents Ln;

Figure BDA0002239172190000063
选自以下基团中的一种:
Figure BDA0002239172190000063
One of the following groups:

Figure BDA0002239172190000071
Figure BDA0002239172190000071

说明性地,式V中,O原子和N原子与镧系元素Ln之间的虚线表示形成配位键连接。下文中,类似情况下绘制的虚线具有与此处相同的含义。Illustratively, in Formula V, the dashed lines between the O and N atoms and the lanthanide Ln indicate the formation of coordinate bond linkages. Hereinafter, dashed lines drawn in similar cases have the same meaning as here.

可选地,n=1,所述镧系多核配合物具有三股螺旋体结构。Optionally, n=1, and the lanthanide polynuclear complex has a triple helix structure.

可选地,

Figure BDA0002239172190000072
选自以下基团中的一种:Optionally,
Figure BDA0002239172190000072
One of the following groups:

Figure BDA0002239172190000073
Figure BDA0002239172190000073

根据本申请的又一个方面,提供了所述镧系多核配合物的制备方法,该方法可定量、高效地合成具有强发光性能的镧系多核配合物,特别是基于线性C2对称性配体的高核数的镧系有机多面体笼。According to yet another aspect of the present application, there is provided a preparation method of the lanthanide polynuclear complexes, which can quantitatively and efficiently synthesize lanthanide polynuclear complexes with strong luminescence properties, especially based on linear C 2 symmetry ligands of lanthanide organic polyhedral cages with high nuclear numbers.

所述镧系多核配合物的制备方法,其特征在于,包括:The preparation method of the lanthanide polynuclear complex is characterized in that, comprising:

将含有镧系元素Ln前驱体和有机配体L的混合物在30~50℃下反应,得到所述镧系多核配合物。The lanthanide polynuclear complex is obtained by reacting the mixture containing the lanthanide Ln precursor and the organic ligand L at 30-50°C.

可选地,所述镧系元素Ln前驱体选自Eu(OTf)3、Sm(OTf)3、Eu(OTf)3、DyOTf)3中的至少一种。Optionally, the lanthanide Ln precursor is selected from at least one of Eu(OTf) 3 , Sm(OTf) 3 , Eu(OTf) 3 , DyOTf) 3 .

可选地,所述镧系元素Ln前驱体与所述有机配体L的摩尔比为1:1~1:2,其中镧系元素Ln前驱体的摩尔数以对应的镧系元素Ln的摩尔数计。Optionally, the molar ratio of the lanthanide Ln precursor to the organic ligand L is 1:1 to 1:2, wherein the mole number of the lanthanide Ln precursor is the corresponding mole of the lanthanide Ln. count.

可选地,所述镧系元素Ln前驱体与所述有机配体L的摩尔比的上限选自1:2、1:1.9、1:1.8、1:1.7、1:1.6、1:1.5、1:1.4、1:1.3、1:1.2、1:1.1,下限选自1:1、1:1.1、1:1.2、1:1.3、1:1.4、1:1.5、1:1.6、1:1.7、1:1.8、1:1.9,其中镧系元素Ln前驱体的摩尔数以对应的镧系元素Ln的摩尔数计。Optionally, the upper limit of the molar ratio of the lanthanide Ln precursor to the organic ligand L is selected from 1:2, 1:1.9, 1:1.8, 1:1.7, 1:1.6, 1:1.5, 1:1.4, 1:1.3, 1:1.2, 1:1.1, the lower limit is selected from 1:1, 1:1.1, 1:1.2, 1:1.3, 1:1.4, 1:1.5, 1:1.6, 1:1.7 , 1:1.8, 1:1.9, wherein the moles of lanthanide Ln precursors are calculated by the moles of the corresponding lanthanide Ln.

优选地,所述镧系元素Ln前驱体与所述有机配体L的摩尔比为1:1.5,其中镧系元素Ln前驱体的摩尔数以对应的镧系元素Ln的摩尔数计。Preferably, the molar ratio of the lanthanide Ln precursor to the organic ligand L is 1:1.5, wherein the moles of the lanthanide Ln precursor are counted as the moles of the corresponding lanthanide Ln.

可选地,所述反应的温度的上限选自50℃、48℃、46℃、44℃、42℃、40℃、38℃、36℃、34℃、32℃,下限选自30℃、32℃、34℃、36℃、38℃、40℃、42℃、44℃、46℃、48℃。Optionally, the upper limit of the temperature of the reaction is selected from 50°C, 48°C, 46°C, 44°C, 42°C, 40°C, 38°C, 36°C, 34°C, 32°C, and the lower limit is selected from 30°C, 32°C °C, 34 °C, 36 °C, 38 °C, 40 °C, 42 °C, 44 °C, 46 °C, 48 °C.

优选地,所述反应的温度为40℃。Preferably, the temperature of the reaction is 40°C.

可选地,所述反应的时间为0.5~1.5小时。Optionally, the reaction time is 0.5-1.5 hours.

可选地,所述反应的时间上限选自1.5小时、1.25小时、1小时、0.75小时,下限选自0.5小时、0.75小时、1小时、1.25小时。Optionally, the upper limit of the reaction time is selected from 1.5 hours, 1.25 hours, 1 hour, and 0.75 hours, and the lower limit is selected from 0.5 hours, 0.75 hours, 1 hour, and 1.25 hours.

优选地,所述反应的时间为1小时。Preferably, the reaction time is 1 hour.

可选地,所述混合物还包含溶剂。Optionally, the mixture further comprises a solvent.

可选地,所述溶剂选自乙腈、甲醇、硝基甲烷中的至少一种。Optionally, the solvent is selected from at least one of acetonitrile, methanol, and nitromethane.

优选地,所述溶剂为乙腈与甲醇的体积比4:1的混合物。Preferably, the solvent is a mixture of acetonitrile and methanol in a volume ratio of 4:1.

可选地,所述反应在搅拌下进行。Optionally, the reaction is carried out with stirring.

在一个实施方案中,所述镧系多核配合物的制备方法包括以下步骤:In one embodiment, the preparation method of the lanthanide polynuclear complex comprises the following steps:

分别称取有机配体和镧系金属盐(摩尔比为3:2),溶于一定体积的氘代乙腈/氘代甲醇(v/v=4:1)混合溶液中,并在40℃条件下搅拌约1小时,观察反应溶液由浑浊逐渐变澄清,核磁监测反应进程。反应结束后,减压蒸馏,即可得到产物。Weigh organic ligands and lanthanide metal salts (molar ratio of 3:2) respectively, dissolve them in a certain volume of deuterated acetonitrile/deuterated methanol (v/v=4:1) mixed solution, and heat them at 40 °C. After stirring for about 1 hour, the reaction solution was observed to gradually become clear from turbidity, and the reaction progress was monitored by nuclear magnetic resonance. After the reaction, the product can be obtained by distillation under reduced pressure.

在一个具体的实施方案中,所述镧系多核配合物为镧系四面体笼,其通过如下过程制备得到:In a specific embodiment, the lanthanide polynuclear complex is a lanthanide tetrahedral cage, which is prepared by the following process:

Figure BDA0002239172190000091
Figure BDA0002239172190000091

其中,

Figure BDA0002239172190000092
代表Ln3+;in,
Figure BDA0002239172190000092
represents Ln 3+ ;

Figure BDA0002239172190000093
选自以下基团中的一种:
Figure BDA0002239172190000093
One of the following groups:

Figure BDA0002239172190000094
Figure BDA0002239172190000094

根据本申请的又一个方面,提供了上述线性C2对称性化合物、根据上述方法制备得到的线性C2对称性化合物、上述镧系多核配合物、根据上述方法制备得到的镧系多核配合物中的至少一种在光化学超分子器件中的应用。According to yet another aspect of the present application, at least one of the above-mentioned linear C2-symmetric compound, the linear C2-symmetrical compound prepared according to the above-mentioned method, the above-mentioned lanthanide polynuclear complex, and the lanthanide series polynuclear complex prepared according to the above-mentioned method is provided An application in photochemical supramolecular devices.

在本申请的上下文中,表述“C3~C12”、“C8~C12”等表示化合物或基团中包含的碳原子数。In the context of the present application, the expressions "C 3 -C 12 ", "C 8 -C 12 ", etc. refer to the number of carbon atoms contained in the compound or group.

在本申请的上下文中,术语“烷基”意指烷烃化合物分子上失去任意一个氢原子所形成的基团,所述烷烃化合物包括直链烷烃、支链烷烃、环烷烃、带有支链的环烷烃。In the context of this application, the term "alkyl" means a group formed by the loss of any hydrogen atom on the molecule of an alkane compound, including straight chain alkanes, branched chain alkanes, cycloalkanes, branched Naphthenic.

在本申请的上下文中,术语“芳烷基”意指由烷基部分和芳基部分组成的基团,其通过所述烷基部分与分子主体连接。In the context of this application, the term "aralkyl" means a group consisting of an alkyl moiety and an aryl moiety through which the alkyl moiety is attached to the body of the molecule.

在本申请的上下文中,术语“OTf”意指CF3SO3—,即三氟甲磺酸失去一个氢原子所形成的基团。In the context of this application, the term "OTf" means CF3SO3- , a group formed by the loss of one hydrogen atom of trifluoromethanesulfonic acid.

在本申请的上下文中,符号“*”意指分子或基团中的手性中心。In the context of this application, the symbol "*" means a chiral center in a molecule or group.

在本申请中,针对如何提高镧系多核配合物的荧光性能以及如何高效构筑高核数镧系有机多面体的问题,本申请人通过付出创造性工作,现已发现:1)通过引入tpa作为螯合基团,可克服原有内部酰胺键的震动对能量的耗散,从而提高配体中间发色团到稀土中心能量传递的效率;2)以tpa作为螯合基团可有效提高线性C2配体的螯合角度,从而有利于高核数镧系配合物的构筑。In the present application, in view of the problems of how to improve the fluorescence properties of lanthanide polynuclear complexes and how to efficiently construct high-nucleus lanthanide organic polyhedra, the applicant has made creative work and has now found that: 1) By introducing tpa as a chelating agent group, which can overcome the energy dissipation caused by the vibration of the original internal amide bond, thereby improving the efficiency of energy transfer from the intermediate chromophore of the ligand to the rare earth center; 2) Using tpa as a chelating group can effectively improve the linear C 2 complex The chelation angle of the body is favorable for the construction of high nuclear number lanthanide complexes.

具体而言,本申请通过将三氮唑-吡啶-酰胺(tpa)螯合臂修饰在线性C2对称性配体上,不仅可有效地优化螯合角(配位向量和沿桥连单元方向的对称轴),构筑更高核数的镧系有机多面体,而且可极大地提高对镧系元素的敏化效率。不同于以联苯为连接子的C2对称性配体仅能得到Ln2L3三股螺旋体的相关技术,根据本申请,以tpa为螯合基团的有机配体更加倾向于形成Ln4L6的四面体结构,这主要归结于较大的螯合角度有效地抑制了三股螺旋体的形成。其中,螯合角可由常规的60°(以吡啶二酰胺为螯合基团的配体的情况下)增加到95.8°。由此可以预期,增加C2对称性配体上的螯合角度的方法为构筑更高核数的镧系配合物提供了一条新的途径。Specifically, in this application, by modifying the triazole-pyridine-amide (tpa) chelating arm on a linear C symmetric ligand, not only the chelation angle (coordination vector and direction along the bridging unit ) can be effectively optimized The symmetry axis of lanthanide), constructing lanthanide organic polyhedra with higher nuclear number, and can greatly improve the sensitization efficiency of lanthanide elements. Different from the related art in which the C 2 symmetrical ligand using biphenyl as the linker can only obtain Ln 2 L 3 triple helix, according to the present application, the organic ligand using tpa as the chelating group is more inclined to form Ln 4 L The tetrahedral structure of 6 is mainly attributed to the large chelation angle that effectively inhibits triple helix formation. Among them, the chelation angle can be increased from the conventional 60° (in the case of the ligand with pyridine diamide as the chelating group) to 95.8°. From this, it can be expected that the method of increasing the chelation angle on the C2 - symmetric ligands provides a new route for the construction of lanthanide complexes with higher nuclear numbers.

本申请能产生的有益效果包括:The beneficial effects that this application can produce include:

1)本申请所提供的线性C2对称性化合物,其所含tpa螯合基团不仅可提高配体中间发色团到稀土中心能量传递的效率,而且可改善镧系高核数配合物的构筑。1) The linear C2 symmetry compound provided by this application, the tpa chelating group contained in it can not only improve the efficiency of energy transfer from the intermediate chromophore of the ligand to the rare earth center, but also improve the construction of lanthanide high nuclear number complexes .

2)本申请所提供的线性C2对称性化合物,其通过配体设计能够实现激发窗口向可见光区延伸,从而为生物成像研究提供可能。2) The linear C2 symmetry compound provided by the present application can realize the extension of the excitation window to the visible light region through ligand design, thereby providing the possibility for biological imaging research.

3)本申请所提供的镧系多核配合物,其具有强的发光性能,并且包括基于线性C2对称性配体的高核数的镧系有机多面体笼。3) The lanthanide polynuclear complexes provided by the present application have strong luminescence properties and include lanthanide organic polyhedral cages with high nuclear numbers based on linear C 2 symmetric ligands.

4)本申请所提供的制备方法,其可定量合成目标产物,可通过引入合适的敏化基团合成具有强荧光性质的稀土多面体笼,并且可高效合成高核数的稀土多面体笼。4) The preparation method provided in this application can quantitatively synthesize target products, synthesize rare earth polyhedral cages with strong fluorescence properties by introducing suitable sensitizing groups, and can efficiently synthesize rare earth polyhedral cages with high nuclei.

附图说明Description of drawings

图1为本申请实施例1制备的有机配体L1 SS、L2 SS和L3 SS的紫外可见吸收光谱(溶剂为二氯甲烷,c=1×10-5M)。Fig. 1 is the ultraviolet-visible absorption spectra of the organic ligands L 1 SS , L 2 SS and L 3 SS prepared in Example 1 of the present application (the solvent is dichloromethane, c=1×10 -5 M).

图2为本申请实施例3-5制备的镧系多核配合物Eu4(L1 SS)6、Eu4(L2 SS)6和Eu2(L3 SS)3的紫外可见吸收光谱(溶剂为乙腈,c=1×10-5M)。Fig. 2 is the ultraviolet-visible absorption spectrum (solvent) of the lanthanide polynuclear complexes Eu 4 (L 1 SS ) 6 , Eu 4 (L 2 SS ) 6 and Eu 2 (L 3 SS ) 3 prepared in Examples 3-5 of the present application as acetonitrile, c=1 x 10-5 M).

图3为本申请实施例5制备的镧系多核配合物Eu2(L3 SS)3的激发光谱(λex=615nm)和发射光谱(λem=615nm,c=1.0×10-5M)。3 is the excitation spectrum (λ ex =615nm) and emission spectrum (λ em =615nm, c=1.0×10 −5 M) of the lanthanide polynuclear complex Eu 2 (L 3 SS ) 3 prepared in Example 5 of the present application .

具体实施方式Detailed ways

如前所述,在稀土多面体笼的研究领域,高核数笼的研究匮乏以及笼的发光性能差的问题亟待解决。在本申请中,通过设计合成一系列以三氮唑-吡啶-酰胺(tpa)为螯合基团的配体,不仅提高了配体的螯合角度,有效抑制了低核数组装体的形成,而且显著提高了多核稀土笼的荧光量子产率(可高达例如42.4%),实现了一系列强荧光的镧系多核配合物、特别是镧系多面体笼的高效制备。As mentioned above, in the research field of rare earth polyhedral cages, the lack of research on cages with high nuclear number and the poor luminescence properties of cages need to be solved urgently. In this application, a series of ligands with triazole-pyridine-amide (tpa) as the chelating group are designed and synthesized, which not only improves the chelation angle of the ligands, but also effectively inhibits the formation of low-nucleus-number assemblies. , and significantly improved the fluorescence quantum yield of multinuclear rare earth cages (for example, up to 42.4%), realizing the efficient preparation of a series of strong fluorescent lanthanide polynuclear complexes, especially lanthanide polyhedral cages.

下面结合实施例详述本申请,但本申请并不局限于这些实施例。The present application will be described in detail below with reference to the examples, but the present application is not limited to these examples.

如无特别说明,本申请的实施例中的原料和试剂均通过商业途径购买,且使用前未进一步纯化,其中氘代溶剂购买于阿达玛斯和百灵威科技有限公司,三乙胺采用氢化钙进行除水。Unless otherwise specified, the raw materials and reagents in the examples of this application were purchased through commercial channels, and were not further purified before use, wherein the deuterated solvent was purchased from Adamas and Bailingwei Technology Co., Ltd., and triethylamine was prepared with calcium hydride. In addition to water.

本申请的实施例中的分析方法如下:The analytical method in the embodiment of the present application is as follows:

一维和二维核磁谱通过德国布鲁克Biospin Avance III(400MHz)核磁分析仪进行测量。氢谱化学位移值的确定以氘代溶剂残余峰为准。高分辨质谱(ESI-TOF-MS)通过德国布鲁克Impact II UHR-TOF质谱仪进行测量。荧光激发和发射光谱通过英国爱丁堡FS5荧光光谱仪进行测量。荧光量子产率通过英国爱丁堡SC-30积分球进行测定。紫外-可见吸收光谱是在岛津UV-2700分光光度仪上进行测试。One-dimensional and two-dimensional NMR spectra were measured by Bruker Biospin Avance III (400MHz) NMR analyzer. The determination of the chemical shift value of the hydrogen spectrum is based on the residual peak of the deuterated solvent. High-resolution mass spectrometry (ESI-TOF-MS) was measured by Bruker Impact II UHR-TOF mass spectrometer, Germany. Fluorescence excitation and emission spectra were measured by a FS5 fluorescence spectrometer in Edinburgh, UK. Fluorescence quantum yields were measured with a SC-30 integrating sphere in Edinburgh, UK. UV-Vis absorption spectra were measured on a Shimadzu UV-2700 spectrophotometer.

实施例1:有机配体L1 SS、L2 SS和L3 SS的合成Example 1: Synthesis of organic ligands L 1 SS , L 2 SS and L 3 SS

本实施例中,分别以苯、联苯、三联苯为连接子,桥连外围为萘乙胺,对应的有机配体的合成路线如下所示:In the present embodiment, benzene, biphenyl and terphenyl are used as linkers respectively, and the bridging periphery is naphthylethylamine, and the synthetic route of the corresponding organic ligand is as follows:

Figure BDA0002239172190000121
Figure BDA0002239172190000121

(1)中间体2的合成(1) Synthesis of Intermediate 2

6-溴吡啶甲酸(5g,24.8mmol)、S-萘乙胺(4.25g,24.8mmol)、HATU(18.8g,49.50mmol)、DMF(30mL)和三乙胺(3mL)加入到100mL两口烧瓶中。随后反应液在0℃下搅拌15小时。反应结束后,减压蒸馏除去溶剂,采用柱层析色谱法分离产物(洗脱剂:V(二氯甲烷)/V(石油醚)=5:1),得到无色油状物(6.25g,产率为71%)。1H NMR(400MHz,CDCl3,298K)δ8.19(d,J=7.7Hz,2H),8.11(d,J=8.3Hz,1H),7.88(d,J=7.8Hz,1H),7.82(d,J=8.2Hz,1H),7.67(t,J=7.8Hz,1H),7.62(d,J=7.1Hz,1H),7.58–7.52(m,2H),7.48(dd,J=10.2,5.2Hz,2H),6.15(s,1H),1.79(d,J=6.8Hz,3H);13C NMR(101MHz,CDCl3,298K)δ161.77,150.97,140.58,139.64,138.14,133.97,131.15,130.79,128.88,128.44,126.59,125.85,125.36,123.33,122.77,121.51,44.91,21.16;ESI-TOF-MS:calcd for C9H11BrN2O,m/z377.0260[M+Na]+;found:377.0256.上述方法获得了目标产物中间体2。6-Bromopicolinic acid (5g, 24.8mmol), S-naphthylethylamine (4.25g, 24.8mmol), HATU (18.8g, 49.50mmol), DMF (30mL) and triethylamine (3mL) were added to a 100mL two-necked flask middle. The reaction solution was then stirred at 0°C for 15 hours. After the reaction, the solvent was distilled off under reduced pressure, and the product was separated by column chromatography (eluent: V (dichloromethane)/V (petroleum ether)=5:1) to obtain a colorless oil (6.25 g, 71% yield). 1 H NMR (400MHz, CDCl 3 , 298K) δ 8.19 (d, J=7.7 Hz, 2H), 8.11 (d, J=8.3 Hz, 1H), 7.88 (d, J=7.8 Hz, 1H), 7.82 (d, J=8.2Hz, 1H), 7.67 (t, J=7.8Hz, 1H), 7.62 (d, J=7.1Hz, 1H), 7.58–7.52 (m, 2H), 7.48 (dd, J= 10.2, 5.2Hz, 2H), 6.15 (s, 1H), 1.79 (d, J=6.8Hz, 3H); 13 C NMR (101MHz, CDCl 3 , 298K) δ 161.77, 150.97, 140.58, 139.64, 138.14, 133.97, 131.15, 130.79, 128.88, 128.44, 126.59, 125.85, 125.36, 123.33, 122.77, 121.51, 44.91, 21.16; ESI-TOF-MS:calcd for C 9 H 11 BrN 2 O,m/z377.0260[M+Na] + ; found: 377.0256. The above-mentioned method obtained the target product intermediate 2.

(2)中间体3的合成(2) Synthesis of Intermediate 3

中间体2(5.0g,14.1mmol)、CuI(537.1mg,2.82mmol)和Pd(PPh3)4(814.7mg,0.705mmol)加入到三口圆底烧瓶中,将反应混合物溶于无水TEA/THF(80mL,v/v=1:1)的混合溶剂中,然后滴加三甲基硅基乙炔(2.08g,21.2mmol),室温搅拌过夜。反应结束后,减压蒸馏除去溶剂,采用柱层析色谱法分离产物(洗脱剂:V(二氯甲烷)/V(石油醚)=2:1),得到无色油状物(3.6g,产率为68.3%)。1H NMR(400MHz,DMSO,298K)δ8.97(d,J=8.5Hz,1H),8.20(d,J=8.3Hz,1H),8.04(d,J=6.8Hz,1H),7.97(t,J=7.8Hz,1H),7.93(d,J=7.8Hz,1H),7.83(d,J=8.2Hz,1H),7.71(d,J=7.6Hz,1H),7.65(d,J=7.0Hz,1H),7.55(t,J=6.8Hz,1H),7.53–7.44(m,2H),6.00(p,J=6.9Hz,1H),1.66(d,J=6.9Hz,3H),0.22(s,9H);13C NMR(101MHz,DMSO,298K)δ162.38,150.52,140.78,139.34,138.39,133.32,130.46,130.18,128.66,127.45,126.23,125.55,125.39,123.00,122.11,103.48,95.32,44.39,20.93,-0.50;ESI-TOF-MS:calcd for C14H20N2OSi,m/z395.1550[M+Na]+;found:395.1545.上述方法获得了目标产物中间体3。Intermediate 2 (5.0 g, 14.1 mmol), CuI (537.1 mg, 2.82 mmol) and Pd(PPh 3 ) 4 (814.7 mg, 0.705 mmol) were added to a three-necked round bottom flask, and the reaction mixture was dissolved in anhydrous TEA/ In a mixed solvent of THF (80 mL, v/v=1:1), trimethylsilylacetylene (2.08 g, 21.2 mmol) was added dropwise, and the mixture was stirred at room temperature overnight. After the reaction, the solvent was distilled off under reduced pressure, and the product was separated by column chromatography (eluent: V (dichloromethane)/V (petroleum ether)=2:1) to obtain a colorless oil (3.6 g, Yield 68.3%). 1 H NMR (400MHz, DMSO, 298K)δ8.97(d,J=8.5Hz,1H),8.20(d,J=8.3Hz,1H),8.04(d,J=6.8Hz,1H),7.97( t, J=7.8Hz, 1H), 7.93(d, J=7.8Hz, 1H), 7.83(d, J=8.2Hz, 1H), 7.71(d, J=7.6Hz, 1H), 7.65(d, J=7.0Hz, 1H), 7.55 (t, J=6.8Hz, 1H), 7.53–7.44 (m, 2H), 6.00 (p, J=6.9Hz, 1H), 1.66 (d, J=6.9Hz, 3H), 0.22(s, 9H); 13 C NMR (101MHz, DMSO, 298K) δ 162.38, 150.52, 140.78, 139.34, 138.39, 133.32, 130.46, 130.18, 128.66, 127.45, 126.23, 125.55, 125.3 103.48, 95.32, 44.39, 20.93, -0.50; ESI-TOF-MS: calcd for C 14 H 20 N 2 OSi, m/z395.1550[M+Na] + ; found: 395.1545. The above method obtained the intermediate of the target product body 3.

(3)中间体4的合成(3) Synthesis of Intermediate 4

向中间体3(3.6g,9.7mmol)的甲醇(80mL)溶液中加入KF(620.0mg,10.7mmol),随后在室温下搅拌6小时。反应结束后,减压蒸馏除去溶剂,采用柱层析色谱法分离产物(洗脱剂:二氯甲烷),得到无色油状物(2.9g,产率为99.8%)。1H NMR(400MHz,CDCl3)δ8.24(t,J=8.8Hz,2H),8.18(d,J=8.4Hz,1H),7.86(d,J=7.9Hz,1H),7.81(t,J=7.8Hz,2H),7.62(d,J=7.1Hz,1H),7.59–7.55(m,1H),7.54–7.50(m,1H),7.50–7.45(m,2H),6.14(m,J=13.9,6.9Hz,1H),3.16(s,1H),1.78(d,J=6.8Hz,3H);13C NMR(101MHz,CDCl3,298K)δ162.39,150.25,140.75,138.23,137.65,133.96,131.19,129.97,128.71,128.37,126.53,125.79,125.31,123.39,122.76,122.32,82.19,77.87,44.79,21.10;ESI-TOF-MS:calcd forC11H12N2O,m/z 323.1155[M+Na]+;found:323.1154.上述方法获得了目标产物中间体4。To a solution of Intermediate 3 (3.6 g, 9.7 mmol) in methanol (80 mL) was added KF (620.0 mg, 10.7 mmol), followed by stirring at room temperature for 6 hours. After the reaction, the solvent was distilled off under reduced pressure, and the product was separated by column chromatography (eluent: dichloromethane) to obtain a colorless oil (2.9 g, yield 99.8%). 1 H NMR (400 MHz, CDCl 3 ) δ 8.24 (t, J=8.8 Hz, 2H), 8.18 (d, J=8.4 Hz, 1H), 7.86 (d, J=7.9 Hz, 1H), 7.81 (t , J=7.8Hz, 2H), 7.62 (d, J=7.1Hz, 1H), 7.59–7.55 (m, 1H), 7.54–7.50 (m, 1H), 7.50–7.45 (m, 2H), 6.14 ( m, J=13.9, 6.9Hz, 1H), 3.16 (s, 1H), 1.78 (d, J=6.8Hz, 3H); 13 C NMR (101MHz, CDCl 3 , 298K) δ 162.39, 150.25, 140.75, 138.23, 137.65,133.96,131.19,129.97,128.71,128.37,126.53,125.79,125.31,123.39,122.76,122.32,82.19,77.87,44.79,21.10; ESI-TOF-MS: calcd , forC z 11 H 12 323.1155[M+Na] + ; found: 323.1154. The above method obtained the target product Intermediate 4.

(4)1,4-二叠氮苯的合成(4) Synthesis of 1,4-diazidobenzene

在氮气保护的氛围下,1,4-二溴苯(2.36g,10mmol)、NaN3(2.6g,40mmol)、CuI(0.38g,2.0mmol)和NaOH(0.24g,3.0mmol)溶于THF/H2O(20mL,V(THF)/V(H2O)=7:3)的溶剂中。反应混合物在95℃下搅拌4小时。反应结束后,冷却反应液至室温,加入等体积的乙酸乙酯和水的混合物,分液,取下层有机相,旋干乙酸乙酯。采用柱层析色谱法分离产物(洗脱剂:石油醚),得到黄色粉末(456mg,产率为60.0%)。1H NMR(400MHz,CDCl3,298K):7.01(s,4H,ArH).上述方法获得了目标产物1,4-二叠氮苯。Under a nitrogen atmosphere, 1,4-dibromobenzene (2.36 g, 10 mmol), NaN 3 (2.6 g, 40 mmol), CuI (0.38 g, 2.0 mmol) and NaOH (0.24 g, 3.0 mmol) were dissolved in THF /H 2 O (20 mL, V(THF)/V(H 2 O)=7:3). The reaction mixture was stirred at 95°C for 4 hours. After the reaction was completed, the reaction solution was cooled to room temperature, an equal volume of a mixture of ethyl acetate and water was added, the layers were separated, the lower organic phase was taken out, and the ethyl acetate was spin-dried. The product was isolated by column chromatography (eluent: petroleum ether) to give a yellow powder (456 mg, 60.0% yield). 1 H NMR (400MHz, CDCl 3 , 298K): 7.01 (s, 4H, ArH). The above method obtained the target product 1,4-diazidobenzene.

(5)4,4'-二叠氮联苯的合成(5) Synthesis of 4,4'-Diazidebiphenyl

亚硝酸钠(1.65g,24mmol)的水溶液(c=2.4mol/L)加入到联苯胺(737mg,4mmol)的稀酸溶液中(c=2.0mol/L)。搅拌两小时后,逐滴加入叠氮钠(650mg,10mmol)的水溶液(c=1.0mol/L),然后继续搅拌2小时。过滤,烘干,得到淡黄色粉末(756mg,产率为80.0%)。1HNMR(400MHz,CDCl3,298K)δ7.55(d,J=8.4Hz,4H),7.10(d,J=8.4Hz,4H).上述方法获得了目标产物4,4'-二叠氮联苯。An aqueous solution (c=2.4 mol/L) of sodium nitrite (1.65 g, 24 mmol) was added to a dilute acid solution (c=2.0 mol/L) of benzidine (737 mg, 4 mmol). After stirring for two hours, an aqueous solution of sodium azide (650 mg, 10 mmol) (c=1.0 mol/L) was added dropwise, and stirring was continued for 2 hours. Filtration and drying gave pale yellow powder (756 mg, 80.0% yield). 1 HNMR (400MHz, CDCl 3 , 298K)δ7.55(d,J=8.4Hz,4H),7.10(d,J=8.4Hz,4H). The above method obtained the target product 4,4'-diazide Biphenyl.

(6)4,4'-二叠氮三联苯的合成(6) Synthesis of 4,4'-diazide terphenyl

亚硝酸钠(1.93g,28mmol)的水溶液(c=2.8mol/L)加入三联苯胺(1.0g,3.84mmol)的稀酸溶液中(c=2.0mol/L)。搅拌两小时后,逐滴加入叠氮钠(624mg,9.6mmol)的水溶液(c=0.96mol/L),然后继续搅拌2小时。过滤,烘干,得到淡黄色粉末(546mg,产率为45.6%)。1H NMR(400MHz,CDCl3,298K)δ7.53(d,J=7.4Hz,4H),7.43(d,J=7.4Hz,4H),7.25(s,4H).上述方法获得了目标产物4,4'-二叠氮三联苯。An aqueous solution of sodium nitrite (1.93 g, 28 mmol) (c=2.8 mol/L) was added to a dilute acid solution of terbenzidine (1.0 g, 3.84 mmol) (c=2.0 mol/L). After stirring for two hours, an aqueous solution of sodium azide (624 mg, 9.6 mmol) (c=0.96 mol/L) was added dropwise, and stirring was continued for 2 hours. Filtration and drying gave pale yellow powder (546 mg, 45.6% yield). 1 H NMR (400MHz, CDCl 3 , 298K)δ7.53(d,J=7.4Hz,4H),7.43(d,J=7.4Hz,4H),7.25(s,4H). The above method obtained the target product 4,4'-Diazide terphenyl.

(7)有机配体L1 SS的合成(7) Synthesis of organic ligand L 1 SS

1,4-二叠氮苯(160mg,1.0mmol)和中间体4(901mg,3mmol)加入到抗坏血酸钠(411mg,2.1mmol)和CuSO4·5H2O(225mg,0.9mmol)的DMF(50mL)溶液中。反应液在60℃条件下搅拌24小时。过滤反应液,滤液减压蒸馏,进一步用柱层析法进行分离(洗脱剂:V(二氯甲烷)/V(甲醇)=100:1),得到淡黄色固体粉末(456mg,产率为60.0%)。1H NMR(400MHz,CDCl3,298K)δ8.59(d,J=8.5Hz,2H),8.46(s,2H),8.21(d,J=7.6Hz,4H),8.11(d,J=8.4Hz,2H),7.95(t,J=7.8Hz,2H),7.80(d,J=7.9Hz,2H),7.77(s,4H),7.74(d,J=8.2Hz,2H),7.59(d,J=7.1Hz,2H),7.50–7.43(m,2H),7.43–7.35(m,4H),6.05(p,J=6.9Hz,2H),1.77(d,J=6.8Hz,6H);13C NMR(101MHz,CDCl3,298K)δ163.24,149.82,148.14,148.08,138.53,138.37,136.58,133.88,131.15,128.78,128.33,126.49,125.82,125.13,123.38,123.12,122.84,122.16,121.54,120.25,45.21,20.93;ESI-TOF-MS:calcd forC57H51N15O3,m/z 783.2915[M+Na]+;found:783.2910.上述方法获得了目标产物有机配体L1 SS1,4-Benzene diazide (160 mg, 1.0 mmol) and intermediate 4 (901 mg, 3 mmol) were added to sodium ascorbate (411 mg, 2.1 mmol) and CuSO4.5H2O ( 225 mg, 0.9 mmol) in DMF (50 mL) ) in the solution. The reaction solution was stirred at 60°C for 24 hours. The reaction solution was filtered, the filtrate was distilled under reduced pressure, and further separated by column chromatography (eluent: V (dichloromethane)/V (methanol)=100:1) to obtain a pale yellow solid powder (456 mg, the yield was 60.0%). 1 H NMR (400MHz, CDCl 3 , 298K) δ 8.59 (d, J=8.5 Hz, 2H), 8.46 (s, 2H), 8.21 (d, J=7.6 Hz, 4H), 8.11 (d, J= 8.4Hz, 2H), 7.95(t, J=7.8Hz, 2H), 7.80(d, J=7.9Hz, 2H), 7.77(s, 4H), 7.74(d, J=8.2Hz, 2H), 7.59 (d, J=7.1Hz, 2H), 7.50–7.43 (m, 2H), 7.43–7.35 (m, 4H), 6.05 (p, J=6.9Hz, 2H), 1.77 (d, J=6.8Hz, 6H); 13 C NMR(101MHz,CDCl 3 ,298K)δ163.24,149.82,148.14,148.08,138.53,138.37,136.58,133.88,131.15,128.78,128.33,126.49,125.82,125.13,123.38,123.12,122.84,122.16, 121.54, 120.25, 45.21, 20.93; ESI-TOF-MS: calcd forC 57 H 51 N 15 O 3 , m/z 783.2915[M+Na] + ; found: 783.2910. The above method obtained the target product organic ligand L 1 SS .

(8)有机配体L2 SS的合成(8) Synthesis of organic ligand L 2 SS

4,4'-二叠氮联苯(236mg,1.0mmol)和中间体4(901mg,3mmol)加入到抗坏血酸钠(411mg,2.1mmol)和CuSO4·5H2O(225mg,0.9mmol)的DMF(50mL)溶液中。反应液在60℃条件下搅拌24小时。过滤反应液,滤液减压蒸馏,进一步用柱层析法进行分离(洗脱剂:V(二氯甲烷)/V(甲醇)=100:1),得到淡黄色固体粉末(628mg,产率为75.1%)。1H NMR(400MHz,CDCl3,298K)δ8.41(s,2H),8.37(dd,J=7.8,0.8Hz,2H),8.32(d,J=8.6Hz,2H),8.27(dd,J=7.8,0.8Hz,2H),8.20(d,J=8.4Hz,2H),8.00(t,J=7.8Hz,2H),7.87(d,J=7.8Hz,2H),7.82(dd,J=8.2,6.3Hz,6H),7.72(d,J=8.6Hz,4H),7.64(d,J=7.1Hz,2H),7.53(t,J=7.0Hz,2H),7.47(dd,J=14.7,7.2Hz,4H),6.17–6.09(m,2H),1.84(d,J=6.8Hz,6H);13CNMR(101MHz,CDCl3,298K)δ163.04,149.76,148.57,148.11,140.14,138.44,138.36,136.40,134.00,131.27,128.84,128.45,128.30,126.60,125.90,125.20,123.56,123.18,122.91,122.04,121.00,119.99,45.23,21.11;ESI-TOF-MS:calcd for C57H51N15O3,m/z859.3228[M+Na]+;found:859.3213.上述方法获得了目标产物有机配体L2 SS4,4' - Diazidebiphenyl (236 mg, 1.0 mmol) and Intermediate 4 (901 mg, 3 mmol) were added to sodium ascorbate (411 mg, 2.1 mmol) and CuSO4.5H2O (225 mg, 0.9 mmol) in DMF (50 mL) solution. The reaction solution was stirred at 60°C for 24 hours. The reaction solution was filtered, the filtrate was distilled under reduced pressure, and further separated by column chromatography (eluent: V (dichloromethane)/V (methanol)=100:1) to obtain a pale yellow solid powder (628 mg, the yield was 75.1%). 1 H NMR (400MHz, CDCl 3 , 298K) δ 8.41 (s, 2H), 8.37 (dd, J=7.8, 0.8 Hz, 2H), 8.32 (d, J=8.6 Hz, 2H), 8.27 (dd, J=7.8,0.8Hz,2H),8.20(d,J=8.4Hz,2H),8.00(t,J=7.8Hz,2H),7.87(d,J=7.8Hz,2H),7.82(dd, J=8.2,6.3Hz,6H),7.72(d,J=8.6Hz,4H),7.64(d,J=7.1Hz,2H),7.53(t,J=7.0Hz,2H),7.47(dd, J=14.7, 7.2Hz, 4H), 6.17-6.09 (m, 2H), 1.84 (d, J=6.8Hz, 6H); 13 CNMR (101 MHz, CDCl 3 , 298K) δ 163.04, 149.76, 148.57, 148.11, 140.14 ,138.44,138.36,136.40,134.00,131.27,128.84,128.45,128.30,126.60,125.90,125.20,123.56,123.18,122.91,122.04,121.00,119.99,45.23,21.11;ESI-TOF-MS:calcd for C 57 H 51 N 15 O 3 , m/z 859.3228[M+Na] + ; found: 859.3213. The above method obtained the target product organic ligand L 2 SS .

(9)有机配体L3 SS的合成(9) Synthesis of organic ligand L 3 SS

4,4'-二叠氮三联苯(312mg,1.0mmol)和中间体4(901mg,3mmol)加入到抗坏血酸钠(411mg,2.1mmol)和CuSO4·5H2O(225mg,0.9mmol)的DMF(50mL)溶液中。反应液在60℃条件下搅拌24小时。过滤反应液,滤液减压蒸馏,进一步用柱层析法进行分离(洗脱剂:V(二氯甲烷)/V(甲醇)=100:1),得到淡黄色固体粉末(502mg,产率为55.0%)。1H NMR(400MHz,CDCl3,298K)δ8.40(d,J=8.6Hz,2H),8.38(s,2H),8.33(d,J=7.8Hz,2H),8.24(t,J=8.1Hz,2H),8.18(d,J=8.4Hz,2H),7.95(t,J=7.8Hz,2H),7.84(d,J=7.7Hz,2H),7.78(d,J=8.2Hz,2H),7.74(d,J=8.5Hz,4H),7.70–7.59(m,10H),7.50(dd,J=11.2,4.1Hz,2H),7.44(dd,J=16.3,8.2Hz,4H),6.16–6.06(m,2H),1.83(d,J=6.8Hz,6H);13C NMR(101MHz,CDCl3,298K)δ163.11,149.74,148.61,148.00,140.89,138.98,138.41,136.00,133.97,131.26,128.83,128.40,128.09,127.54,126.57,125.88,125.19,123.53,123.12,122.93,121.98,120.85,120.05,45.20,29.72,21.11.ESI-TOF-MS:calcd for C57H51N15O3,m/z935.3541[M+Na]+;found:935.3531.上述方法获得了目标产物有机配体L3 SS4,4' - Diazide terphenyl (312 mg, 1.0 mmol) and intermediate 4 (901 mg, 3 mmol) were added to sodium ascorbate (411 mg, 2.1 mmol) and CuSO4.5H2O (225 mg, 0.9 mmol) in DMF (50 mL) solution. The reaction solution was stirred at 60°C for 24 hours. The reaction solution was filtered, the filtrate was distilled under reduced pressure, and further separated by column chromatography (eluent: V (dichloromethane)/V (methanol)=100:1) to obtain a pale yellow solid powder (502 mg, the yield was 55.0%). 1 H NMR (400MHz, CDCl 3 , 298K) δ 8.40 (d, J=8.6 Hz, 2H), 8.38 (s, 2H), 8.33 (d, J=7.8 Hz, 2H), 8.24 (t, J= 8.1Hz, 2H), 8.18(d, J=8.4Hz, 2H), 7.95(t, J=7.8Hz, 2H), 7.84(d, J=7.7Hz, 2H), 7.78(d, J=8.2Hz ,2H),7.74(d,J=8.5Hz,4H),7.70–7.59(m,10H),7.50(dd,J=11.2,4.1Hz,2H),7.44(dd,J=16.3,8.2Hz, 4H), 6.16-6.06 (m, 2H), 1.83 (d, J=6.8Hz, 6H); 13 C NMR (101MHz, CDCl 3 , 298K) δ 163.11, 149.74, 148.61, 148.00, 140.89, 138.98, 138.41, 136.00 , 133.97,131.26,128.83,128.40,128.09,127.54,126.57,125.88,125.19,123.53,123.12,122.93,121.98,120.85,120.05,45.20,29.72,21.11.CalcESId for C 15 O 3 , m/z 935.3541[M+Na] + ; found: 935.3531. The target product organic ligand L 3 SS was obtained by the above method.

实施例2:镧系多核配合物Eu4(L1 SS)6的合成Example 2: Synthesis of Lanthanide Polynuclear Complex Eu 4 (L 1 SS ) 6

向有机配体L1 SS(5mg,6.6μmol)的500μL的CD3CN/CD3OD(v/v=4:1)混合溶液中加入Eu(OTf)3(2.64mg,4.4μmol),并40℃条件下搅拌1小时。白色悬浊液逐渐变成澄清的黄色溶液。旋干反应液,得到淡黄色粉末(7.2mg,产率为94%)。1H NMR(400MHz,CD3CN,298K)δ9.57(d,J=8.1Hz,12H),9.37(s,12H),8.85(s,24H),8.65(s,12H),8.12(t,J=7.3Hz,12H),7.57–7.41(m,24H),6.94(d,J=8.3Hz,12H),6.14(t,J=7.7Hz,12H),5.53(t,J=7.9Hz,12H),5.40(d,J=6.7Hz,12H),4.34–4.16(m,24H),2.36(d,J=5.5Hz,36H);13C NMR(101MHz,CD3CN,298K)δ171.02,159.78,150.93,149.81,140.40,140.22,135.96,135.67,133.57,130.33,129.98,129.70,127.68,127.65,126.78,124.86,123.36,122.67,122.54,119.87,119.36,113.20,103.93,94.60,91.46,85.37,82.09,22.79.ESI-TOF-MS:calcd.For[Eu4(L1 SS)6(OTf)4]8+721.1636,found 721.1652;calcd.For[Eu4(L1 SS)6(OTf)5]7+845.4659,found 845.4669;calcd.For[Eu4(L1 SS)6(OTf)6]6+1011.2022,found 1011.2031;calcd.For[Eu4(L1 SS)6(OTf)7]5+1243.2332,found1243.2347;calcd.For[Eu4(L1 SS)6(OTf)8]4+1591.2795,found 1591.2808.上述方法获得了目标产物镧系多核配合物Eu4(L1 SS)6,其为镧系四面体笼。To a mixed solution of organic ligand L 1 SS (5 mg, 6.6 μmol) in 500 μL of CD 3 CN/CD 3 OD (v/v=4:1) was added Eu(OTf) 3 (2.64 mg, 4.4 μmol), and Stir at 40°C for 1 hour. The white suspension gradually turned into a clear yellow solution. The reaction solution was spin-dried to obtain a pale yellow powder (7.2 mg, 94% yield). 1 H NMR (400MHz, CD 3 CN, 298K) δ 9.57(d, J=8.1Hz, 12H), 9.37(s, 12H), 8.85(s, 24H), 8.65(s, 12H), 8.12(t , J=7.3Hz, 12H), 7.57–7.41 (m, 24H), 6.94 (d, J=8.3Hz, 12H), 6.14 (t, J=7.7Hz, 12H), 5.53 (t, J=7.9Hz) ,12H),5.40(d,J=6.7Hz,12H),4.34-4.16(m,24H),2.36(d,J=5.5Hz,36H); 13C NMR(101MHz,CD3CN,298K)δ171.02,159.78, 150.93,149.81,140.40,140.22,135.96,135.67,133.57,130.33,129.98,129.70,127.68,127.65,126.78,124.86,123.36,122.67,122.54,119.87,119.36,113.20,103.93,94.60,91.46,85.37,82.09, 22.79.ESI-TOF-MS:calcd.For[Eu 4 (L 1 SS ) 6 (OTf) 4 ] 8+ 721.1636,found 721.1652; calcd.For[Eu 4 (L 1 SS ) 6 (OTf) 5 ] 7 + 845.4659, found 845.4669; calcd.For[Eu 4 (L 1 SS ) 6 (OTf) 6 ] 6+ 1011.2022, found 1011.2031; calcd.For[Eu 4 (L 1 SS ) 6 (OTf) 7 ] 5+ 1243.2332 , found1243.2347; calcd.For[Eu 4 (L 1 SS ) 6 (OTf) 8 ] 4+ 1591.2795, found 1591.2808. The above method obtained the target product lanthanide multinuclear complex Eu 4 (L 1 SS ) 6 , which For the lanthanide tetrahedral cage.

实施例3:镧系多核配合物Eu4(L2 SS)6的合成Example 3: Synthesis of Lanthanide Polynuclear Complex Eu 4 (L 2 SS ) 6

向有机配体L2 SS(2mg,2.4μmol)的500μL的CD3CN/CD3OD(v/v=4:1)混合溶液中加入Eu(OTf)3(1.0mg,1.6μmol),并40℃条件下搅拌1小时。白色悬浊液逐渐变成澄清的黄色溶液。旋干反应液,得到淡黄色粉末(2.86mg,产率为95.3%)。1H NMR(400MHz,CD3CN,298K)δ9.57(d,J=8.1Hz,12H),9.37(s,12H),8.85(s,24H),8.65(s,12H),8.12(t,J=7.3Hz,12H),7.57–7.41(m,24H),6.94(d,J=8.3Hz,12H),6.14(t,J=7.7Hz,12H),5.53(t,J=7.9Hz,12H),5.40(d,J=6.7Hz,12H),4.34–4.16(m,24H),2.36(d,J=5.5Hz,36H);13C NMR(101MHz,CD3CN,298K)δ170.71,150.74,142.02,140.41,135.85,134.18,133.65,130.01,129.75,129.11,127.75,127.60,126.75,124.94,123.35,122.47,122.16,119.90,114.28,103.42,94.54,85.13,22.79.ESI-TOF-MS:calcd.For[Eu4(L2 SS)6(OTf)2]10+592.7593,found592.7594;calcd.For[Eu4(L2 SS)6(OTf)3]9+675.1717,found 675.1723;calcd.For[Eu4(L2 SS)6(OTf)4]8+778.1872,found 778.1869;calcd.For[Eu4(L2 SS)6(OTf)5]7+910.6357,found 910.6357;calcd.For[Eu4(L2 SS)6(OTf)6]6+1087.2337,found 1087.2337;calcd.For[Eu4(L2 SS)6(OTf)7]5+1334.4709,found 1334.4706;calcd.For[Eu2(L2 SS)3(OTf)0]6+469.1406,found 469.1415;calcd.For[Eu2(L2 SS)3(OTf)1]5+592.7590,found 592.7594;calcd.For[Eu2(L2 SS)3(OTf)2]4+778.1871,found 778.1869;calcd.For[Eu2(L2 SS)3(OTf)3]3+1087.2336,found 1087.2337;calcd.For[Eu2(L2 SS)3(OTf)4]2+1705.3267,found1705.3273.上述方法获得了目标产物镧系多核配合物Eu4(L2 SS)6,其为镧系四面体笼。Eu(OTf) 3 (1.0 mg, 1.6 μmol) was added to a mixed solution of organic ligand L 2 SS (2 mg, 2.4 μmol) in 500 μL of CD 3 CN/CD 3 OD (v/v=4:1), and Stir at 40°C for 1 hour. The white suspension gradually turned into a clear yellow solution. The reaction solution was spin-dried to obtain a pale yellow powder (2.86 mg, 95.3% yield). 1 H NMR (400MHz, CD 3 CN, 298K) δ 9.57(d, J=8.1Hz, 12H), 9.37(s, 12H), 8.85(s, 24H), 8.65(s, 12H), 8.12(t , J=7.3Hz, 12H), 7.57–7.41 (m, 24H), 6.94 (d, J=8.3Hz, 12H), 6.14 (t, J=7.7Hz, 12H), 5.53 (t, J=7.9Hz) , 12H), 5.40 (d, J=6.7Hz, 12H), 4.34-4.16 (m, 24H), 2.36 (d, J=5.5Hz, 36H); 13 C NMR (101MHz, CD 3 CN, 298K) δ170 .71,150.74,142.02,140.41,135.85,134.18,133.65,130.01,129.75,129.11,127.75,127.60,126.75,124.94,123.35,122.47,122.16,119.90,114.28,103.42,94.54,85.13,22.79.ESI-TOF-MS :calcd.For[Eu 4 (L 2 SS ) 6 (OTf) 2 ] 10+ 592.7593, found592.7594; calcd.For[Eu 4 (L 2 SS ) 6 (OTf) 3 ] 9+ 675.1717, found 675.1723; calcd.For[Eu 4 (L 2 SS ) 6 (OTf) 4 ] 8+ 778.1872, found 778.1869; calcd.For[Eu 4 (L 2 SS ) 6 (OTf) 5 ] 7+ 910.6357, found 910.6357; calcd. For[Eu 4 (L 2 SS ) 6 (OTf) 6 ] 6+ 1087.2337, found 1087.2337; calcd.For[Eu 4 (L 2 SS ) 6 (OTf) 7 ] 5+ 1334.4709, found 1334.4706; calcd.For[ Eu 2 (L 2 SS ) 3 (OTf) 0 ] 6+ 469.1406, found 469.1415; calcd.For[Eu 2 (L 2 SS ) 3 (OTf) 1 ] 5+ 592.7590, found 592.7594; calcd.For[Eu 2 (L 2 SS ) 3 (OTf) 2 ] 4+ 778.1 871,found 778.1869; calcd.For[Eu 2 (L 2 SS ) 3 (OTf) 3 ] 3+ 1087.2336, found 1087.2337; calcd.For[Eu 2 (L 2 SS ) 3 (OTf) 4 ] 2+ 1705.3267, found1705.3273. The above method obtained the target product lanthanide polynuclear complex Eu 4 (L 2 SS ) 6 , which is a lanthanide tetrahedral cage.

实施例4:镧系多核配合物Eu2(L3 SS)3的合成Example 4: Synthesis of Lanthanide Polynuclear Complex Eu 2 (L 3 SS ) 3

向有机配体L3 SS(3mg,3.3μmol)的500μL的CD3CN/CD3OD(v/v=4:1)混合溶液中加入Eu(OTf)3(1.3mg,2.2μmol),并40℃条件下搅拌1小时。白色悬浊液逐渐变成澄清的黄色溶液。旋干反应液,得到淡黄色粉末(4.2mg,产率为97.6%)。1H NMR(400MHz,CD3CN,298K)δ8.48(s,6H),8.09(d,J=8.2Hz,6H),7.97(d,J=8.1Hz,6H),7.75(t,J=7.3Hz,6H),7.72–7.66(m,6H),7.63(d,J=8.3Hz,6H),7.42(d,J=8.2Hz,12H),7.30(d,J=8.1Hz,12H),7.20(s,12H),7.05(t,J=7.7Hz,6H),6.89(d,J=7.0Hz,6H),6.63(t,J=8.0Hz,6H),6.36(s,6H),5.40(d,J=7.8Hz,6H),5.26(d,J=7.8Hz,6H),1.86(d,J=5.6Hz,18H);13C NMR(101MHz,CD3CN,298K)δ167.53,160.20,153.35,142.78,142.55,140.18,138.83,134.67,132.72,130.58,130.21,128.58,128.25,128.13,127.70,127.10,126.06,123.01,120.93,32.50,30.19,22.26,14.17.ESI-TOF-MS:calcd.For[Eu2(L3 SS)3(OTf)0]6+507.1563,found507.1578;calcd.For[Eu2(L3 SS)3(OTf)1]5+638.3781,found 638.3789;calcd.For[Eu2(L3 SS)3(OTf)2]4+835.2107,found 835.2121;calcd.For[Eu2(L3 SS)3(OTf)3]3+1163.2651,found 1163.2667.上述方法获得了目标产物镧系多核配合物Eu2(L3 SS)3,其具有三股螺旋体结构。To the organic ligand L 3 SS (3 mg, 3.3 μmol) in 500 μL of CD 3 CN/CD 3 OD (v/v=4:1) mixed solution was added Eu(OTf) 3 (1.3 mg, 2.2 μmol), and Stir at 40°C for 1 hour. The white suspension gradually turned into a clear yellow solution. The reaction solution was spin-dried to obtain a pale yellow powder (4.2 mg, yield 97.6%). 1 H NMR (400MHz, CD 3 CN, 298K) δ 8.48 (s, 6H), 8.09 (d, J=8.2 Hz, 6H), 7.97 (d, J=8.1 Hz, 6H), 7.75 (t, J =7.3Hz,6H),7.72-7.66(m,6H),7.63(d,J=8.3Hz,6H),7.42(d,J=8.2Hz,12H),7.30(d,J=8.1Hz,12H) ),7.20(s,12H),7.05(t,J=7.7Hz,6H),6.89(d,J=7.0Hz,6H),6.63(t,J=8.0Hz,6H),6.36(s,6H) ), 5.40 (d, J=7.8Hz, 6H), 5.26 (d, J=7.8Hz, 6H), 1.86 (d, J=5.6Hz, 18H); 13 C NMR (101MHz, CD 3 CN, 298K) δ167.53,160.20,153.35,142.78,142.55,140.18,138.83,134.67,132.72,130.58,130.21,128.58,128.25,128.13,127.70,127.10,126.06,123.01,120.93,32.50,30.19,22.26,14.17.ESI-TOF- MS:calcd.For[Eu 2 (L 3 SS ) 3 (OTf) 0 ] 6+ 507.1563, found507.1578; calcd.For[Eu 2 (L 3 SS ) 3 (OTf) 1 ] 5+ 638.3781, found 638.3789 ;calcd.For[Eu 2 (L 3 SS ) 3 (OTf) 2 ] 4+ 835.2107, found 835.2121; calcd.For[Eu 2 (L 3 SS ) 3 (OTf) 3 ] 3+ 1163.2651, found 1163.2667. above The method obtained the target product lanthanide multinuclear complex Eu 2 (L 3 SS ) 3 , which has a triple helix structure.

实施例5:紫外可见吸收光谱测试Example 5: UV-Vis Absorption Spectrum Test

有机配体的紫外可见吸收光谱在室温下以二氯甲烷为溶剂(c=1×10-5M)进行测试,其结果如图1所示,随着有机配体的中间桥连单元的延长(L1 SS<L2 SS<L3 SS),配体的平面芳环性也随之增加,从UV-Vis光谱上相应观察到最大吸收波长的逐渐红移。The UV-Vis absorption spectra of organic ligands were tested with dichloromethane as solvent (c=1×10 -5 M) at room temperature, and the results are shown in Figure 1. With the extension of the intermediate bridging unit of organic ligands (L 1 SS <L 2 SS <L 3 SS ), the planar aromaticity of the ligands also increases, and the corresponding gradual red shift of the maximum absorption wavelength is observed from the UV-Vis spectrum.

镧系多核配合物的紫外可见吸收光谱以乙腈为溶剂(c=1×10-5M)进行测试,其结果如图2所示。类似于有机配体的紫外可见吸收光谱观察到的结果,镧系多核配合物的紫外可见吸收光谱也表现出了相应的红移现象,这表明随着中间桥连单元的延长,配体的能级逐渐减小,由此实现了配体能级的连续性调控。The ultraviolet-visible absorption spectrum of lanthanide polynuclear complexes was tested with acetonitrile as solvent (c=1×10 -5 M), and the results are shown in Fig. 2 . Similar to the results observed for the UV-Vis absorption spectra of organic ligands, the UV-Vis absorption spectra of lanthanide multinuclear complexes also exhibit a corresponding red-shift phenomenon, which indicates that with the extension of the intermediate bridging unit, the energy of the ligands increases. The level is gradually reduced, thereby realizing the continuous regulation of the ligand energy level.

实施例6:荧光性能测试Example 6: Fluorescence performance test

在爱丁堡FS5荧光光谱仪上分别测量镧系多核配合物的激发光谱、发射光谱、发光寿命和荧光量子产率。The excitation spectra, emission spectra, luminescence lifetimes and fluorescence quantum yields of the lanthanide multinuclear complexes were measured on an Edinburgh FS5 fluorescence spectrometer, respectively.

以镧系多核配合物Eu2(L3 SS)3的激发和发射光谱为例,如图3所示,铕离子的特征发射峰位于580、594、615、649、693nm,分别对应于5D07FJ(J=0,1,2,3,4)的跃迁吸收。在Eu4(L1 SS)6、Eu4(L2 SS)6和Eu2(L3 SS)3三个配合物中,Eu2(L3 SS)3的最大激发波长是最高的,且其激发窗口可延伸至370nm。值得注意的是,Eu2(L3 SS)3的荧光量子产率是上述三个配合物中最高的,达到42.4%,这在稀土多核配合物中是非常少见的。Taking the excitation and emission spectra of the lanthanide polynuclear complex Eu 2 (L 3 SS ) 3 as an example, as shown in Figure 3, the characteristic emission peaks of europium ions are located at 580, 594, 615, 649, and 693 nm, corresponding to 5 D 07 FJ ( J =0,1,2,3,4) transition absorption. Among the three complexes of Eu 4 (L 1 SS ) 6 , Eu 4 (L 2 SS ) 6 and Eu 2 (L 3 SS ) 3 , the maximum excitation wavelength of Eu 2 (L 3 SS ) 3 is the highest, and Its excitation window can be extended to 370nm. It is worth noting that the fluorescence quantum yield of Eu 2 (L 3 SS ) 3 is the highest among the above three complexes, reaching 42.4%, which is very rare in rare earth multinuclear complexes.

镧系多核配合物Eu4(L1 SS)6、Eu4(L2 SS)6和Eu2(L3 SS)3的光学性能测量结果汇总于表1,其中λabs max表示紫外最大吸收波长,ε表示摩尔吸收系数,λex表示最大激发波长,τobs表示荧光寿命,ФFL表示荧光量子产率。The optical properties measurement results of the lanthanide polynuclear complexes Eu 4 (L 1 SS ) 6 , Eu 4 (L 2 SS ) 6 and Eu 2 (L 3 SS ) 3 are summarized in Table 1, where λ abs max represents the ultraviolet maximum absorption wavelength , ε is the molar absorption coefficient, λ ex is the maximum excitation wavelength, τ obs is the fluorescence lifetime, and Ф FL is the fluorescence quantum yield.

表1镧系多核配合物的光学性能测量数据Table 1 Optical properties measurement data of lanthanide multinuclear complexes

Figure BDA0002239172190000181
Figure BDA0002239172190000181

Figure BDA0002239172190000191
Figure BDA0002239172190000191

由表1结果可知,镧系多核配合物Eu2(L3 SS)3的激发波长344nm是所列三种配合物中最大的,对应的荧光量子产率也是最高的(42.4%)。这一结果明显优于常规的稀土多核配合物的光学性能数据。It can be seen from the results in Table 1 that the excitation wavelength of 344 nm for the lanthanide polynuclear complex Eu 2 (L 3 SS ) 3 is the largest among the three complexes listed, and the corresponding fluorescence quantum yield is also the highest (42.4%). This result is significantly better than the optical performance data of conventional rare earth multinuclear complexes.

以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。The above are only a few embodiments of the present application, and are not intended to limit the present application in any form. Although the present application is disclosed as above with preferred embodiments, it is not intended to limit the present application. Without departing from the scope of the technical solution of the present application, any changes or modifications made by using the technical content disclosed above are equivalent to equivalent implementation cases and fall within the scope of the technical solution.

Claims (10)

1.一种线性C2对称性化合物,其特征在于,具有式I所示的结构式:1. a linear C2 symmetry compound, is characterized in that, has the structural formula shown in formula I:
Figure FDA0002239172180000011
Figure FDA0002239172180000011
其中,R选自C3~C12的烷基、C8~C12的芳烷基和
Figure FDA0002239172180000012
中的一种,k=1~6;
wherein, R is selected from C 3 -C 12 alkyl, C 8 -C 12 aralkyl and
Figure FDA0002239172180000012
One of them, k=1~6;
Figure FDA0002239172180000013
选自以下基团中的一种:
Figure FDA0002239172180000013
One of the following groups:
Figure FDA0002239172180000014
Figure FDA0002239172180000014
2.根据权利要求1所述的线性C2对称性化合物,其特征在于,式I中,R选自以下基团中的一种:2. linear C2 symmetry compound according to claim 1 is characterized in that, in formula I, R is selected from a kind of in following group:
Figure FDA0002239172180000021
Figure FDA0002239172180000021
优选地,式I中,
Figure FDA0002239172180000022
选自具有式I-1所示结构式的基团中的一种:
Preferably, in formula I,
Figure FDA0002239172180000022
One of the groups selected from the group having the structural formula shown in formula I-1:
Figure FDA0002239172180000023
Figure FDA0002239172180000023
其中,m=1、2或3。where m=1, 2 or 3.
3.权利要求1或2所述的线性C2对称性化合物的制备方法,其特征在于,包括:3. the preparation method of the linear C2 symmetry compound described in claim 1 or 2, is characterized in that, comprises: 将含有叠氮化合物和炔烃化合物的混合物在50~70℃下反应,得到所述线性C2对称性化合物;reacting the mixture containing the azide compound and the alkyne compound at 50-70° C. to obtain the linear C2 symmetry compound; 其中,所述反应为三氮唑关环反应;Wherein, the reaction is a triazole ring-closing reaction; 所述叠氮化合物选自具有式II所示结构式的化合物中的至少一种:The azide compound is selected from at least one of the compounds having the structural formula shown in formula II:
Figure FDA0002239172180000024
Figure FDA0002239172180000024
所述炔烃化合物选自具有式III所示结构式的化合物中的至少一种:The alkyne compound is selected from at least one of the compounds having the structural formula shown in formula III:
Figure FDA0002239172180000025
Figure FDA0002239172180000025
4.根据权利要求3所述的方法,其特征在于,所述反应的时间为12~36小时;4. method according to claim 3, is characterized in that, the time of described reaction is 12~36 hours; 优选地,所述叠氮化合物与所述炔烃化合物的摩尔比为1:2~1:4;Preferably, the molar ratio of the azide compound to the alkyne compound is 1:2 to 1:4; 优选地,所述混合物还包含硫酸酮和抗坏血酸钠;Preferably, the mixture further comprises ketone sulfate and sodium ascorbate; 更优选地,所述硫酸酮与所述叠氮化合物的摩尔比为0.8:1~1:1;More preferably, the molar ratio of the ketone sulfate to the azide compound is 0.8:1 to 1:1; 更优选地,所述抗坏血酸钠与所述叠氮化合物的摩尔比为1.5:1~2.5:1;More preferably, the molar ratio of the sodium ascorbate to the azide compound is 1.5:1 to 2.5:1; 优选地,所述混合物还包含溶剂;Preferably, the mixture further comprises a solvent; 更优选地,所述溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜/甲醇中的至少一种。More preferably, the solvent is selected from at least one of N,N-dimethylformamide, N,N-dimethylacetamide, and dimethylsulfoxide/methanol. 5.一种镧系多核配合物,其特征在于,所述镧系多核配合物具有如式VI所示的通式:5. A lanthanide polynuclear complex, characterized in that the lanthanide polynuclear complex has the general formula shown in formula VI: Ln2nL3n 式IVLn 2n L 3n Formula IV 其中,Ln选自镧系元素中的一种;Wherein, Ln is selected from one of the lanthanides; L为有机配体,其选自权利要求1或2所述的线性C2对称性化合物、根据权利要求3或4所述方法制备得到的线性C2对称性化合物中的一种;L is an organic ligand, which is selected from the linear C2 symmetry compound according to claim 1 or 2 and the linear C2 symmetry compound prepared by the method according to claim 3 or 4; n选自1或2;n is selected from 1 or 2; 其中,L中的氮原子和氧原子与Ln配位。Among them, nitrogen atoms and oxygen atoms in L coordinate with Ln. 6.根据权利要求5所述的镧系多核配合物,其特征在于,n=2,所述镧系多核配合物为镧系四面体笼;6. The lanthanide polynuclear complex according to claim 5, wherein n=2, and the lanthanide polynuclear complex is a lanthanide tetrahedral cage; 优选地,所述镧系四面体笼选自具有式V所示结构式的化合物中的至少一种:Preferably, the lanthanide tetrahedral cage is selected from at least one compound having the structural formula shown in formula V:
Figure FDA0002239172180000031
Figure FDA0002239172180000031
其中,
Figure FDA0002239172180000032
代表Ln;
in,
Figure FDA0002239172180000032
represents Ln;
Figure FDA0002239172180000041
选自以下基团中的一种:
Figure FDA0002239172180000041
One of the following groups:
Figure FDA0002239172180000042
Figure FDA0002239172180000042
7.根据权利要求5所述的镧系多核配合物,其特征在于,n=1,所述镧系多核配合物具有三股螺旋体结构;7. The lanthanide polynuclear complex according to claim 5, wherein n=1, and the lanthanide polynuclear complex has a triple helix structure; 优选地,
Figure FDA0002239172180000043
选自以下基团中的一种:
Preferably,
Figure FDA0002239172180000043
One of the following groups:
Figure FDA0002239172180000044
Figure FDA0002239172180000044
8.权利要求5至7中任一项所述的镧系多核配合物的制备方法,其特征在于,包括:8. The preparation method of the lanthanide polynuclear complex according to any one of claims 5 to 7, characterized in that, comprising: 将含有镧系元素Ln前驱体和有机配体L的混合物在30~50℃下反应,得到所述镧系多核配合物。The lanthanide polynuclear complex is obtained by reacting the mixture containing the lanthanide Ln precursor and the organic ligand L at 30-50°C. 9.根据权利要求8所述的方法,其特征在于,所述镧系元素Ln前驱体选自Eu(OTf)3、Sm(OTf)3、Eu(OTf)3、DyOTf)3中的至少一种;9. The method according to claim 8, wherein the lanthanide Ln precursor is selected from at least one of Eu(OTf) 3 , Sm(OTf) 3 , Eu(OTf) 3 , DyOTf) 3 kind; 优选地,所述镧系元素Ln前驱体与所述有机配体L的摩尔比为1:1~1:2,其中镧系元素Ln前驱体的摩尔数以对应的镧系元素Ln的摩尔数计;Preferably, the molar ratio of the lanthanide Ln precursor to the organic ligand L is 1:1 to 1:2, wherein the mole number of the lanthanide Ln precursor is the corresponding mole number of the lanthanide Ln count; 优选地,所述反应的时间为0.5~1.5小时;Preferably, the reaction time is 0.5 to 1.5 hours; 优选地,所述混合物还包含溶剂;Preferably, the mixture further comprises a solvent; 更优选地,所述溶剂选自乙腈、甲醇、硝基甲烷中的至少一种。More preferably, the solvent is selected from at least one of acetonitrile, methanol, and nitromethane. 10.权利要求1或2所述的线性C2对称性化合物、根据权利要求3或4所述方法制备得到的线性C2对称性化合物、权利要求5至7中任一项所述的镧系多核配合物、根据权利要求8或9所述方法制备得到的镧系多核配合物中的至少一种在光化学超分子器件中的应用。10. The linear C2 symmetric compound according to claim 1 or 2, the linear C2 symmetric compound prepared by the method according to claim 3 or 4, and the lanthanide polynuclear complex according to any one of claims 5 to 7 The application of at least one of the lanthanide polynuclear complexes prepared by the method according to claim 8 or 9 in a photochemical supramolecular device.
CN201910993963.9A 2019-01-28 2019-10-18 Preparation method and application of a class of linear C2 symmetric compounds and lanthanide polynuclear complexes thereof Active CN111484478B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019100812187 2019-01-28
CN201910081218 2019-01-28

Publications (2)

Publication Number Publication Date
CN111484478A true CN111484478A (en) 2020-08-04
CN111484478B CN111484478B (en) 2022-12-06

Family

ID=71811533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910993963.9A Active CN111484478B (en) 2019-01-28 2019-10-18 Preparation method and application of a class of linear C2 symmetric compounds and lanthanide polynuclear complexes thereof

Country Status (1)

Country Link
CN (1) CN111484478B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117050059A (en) * 2023-06-27 2023-11-14 中国科学院福建物质结构研究所 Rare earth up-conversion luminescent material and preparation method and application thereof
EP4255903A4 (en) * 2020-12-04 2025-01-29 Eubulus Biotherapeutics Inc. Heteroaryl-acetylenes, pharmaceutical compositions thereof, and their therapeutic applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103012375A (en) * 2012-12-29 2013-04-03 贵州大学 Pyridyl triazole methyl substituted acridine derivative, preparation method and application thereof
CN104119317A (en) * 2014-07-25 2014-10-29 沈阳药科大学 Quinoline compound containing 1,2,3-triazole as well as preparation method and application thereof
US20160228581A1 (en) * 2013-09-12 2016-08-11 The Research Foundation For The State University Of New York Macrocycles, cobalt and iron complexes of same, and methods of making and using same
JP2017025054A (en) * 2014-12-03 2017-02-02 日産化学工業株式会社 Heterocyclic amide compound
WO2017114275A1 (en) * 2015-12-31 2017-07-06 成都先导药物开发有限公司 Compound for inhibiting rock, preparation method and use of same
CN106939000A (en) * 2017-02-13 2017-07-11 太原理工大学 Hot activation delayed fluorescence material based on 1,2,4 triazole acceptors
CN108191832A (en) * 2018-01-04 2018-06-22 南方医科大学 A kind of bisquinoline dimer salt derivative and its preparation method and application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103012375A (en) * 2012-12-29 2013-04-03 贵州大学 Pyridyl triazole methyl substituted acridine derivative, preparation method and application thereof
US20160228581A1 (en) * 2013-09-12 2016-08-11 The Research Foundation For The State University Of New York Macrocycles, cobalt and iron complexes of same, and methods of making and using same
CN104119317A (en) * 2014-07-25 2014-10-29 沈阳药科大学 Quinoline compound containing 1,2,3-triazole as well as preparation method and application thereof
JP2017025054A (en) * 2014-12-03 2017-02-02 日産化学工業株式会社 Heterocyclic amide compound
WO2017114275A1 (en) * 2015-12-31 2017-07-06 成都先导药物开发有限公司 Compound for inhibiting rock, preparation method and use of same
CN106939000A (en) * 2017-02-13 2017-07-11 太原理工大学 Hot activation delayed fluorescence material based on 1,2,4 triazole acceptors
CN108191832A (en) * 2018-01-04 2018-06-22 南方医科大学 A kind of bisquinoline dimer salt derivative and its preparation method and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOSEPH P. BYRNE等: "《The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry》", 《CHEMICAL SOCIETY REVIEWS》 *
林东恩等: "《利巴韦林衍生物的合成》", 《华南理工大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4255903A4 (en) * 2020-12-04 2025-01-29 Eubulus Biotherapeutics Inc. Heteroaryl-acetylenes, pharmaceutical compositions thereof, and their therapeutic applications
CN117050059A (en) * 2023-06-27 2023-11-14 中国科学院福建物质结构研究所 Rare earth up-conversion luminescent material and preparation method and application thereof

Also Published As

Publication number Publication date
CN111484478B (en) 2022-12-06

Similar Documents

Publication Publication Date Title
Andreiadis et al. Remarkable tuning of the coordination and photophysical properties of lanthanide ions in a series of tetrazole‐based complexes
Liu et al. Binuclear and Starburst Organoplatinum (II) Complexes of 2, 2 ‘-Dipyridylamino Derivative Ligands: Structures, Fluxionality, and Luminescence
CN110218220A (en) A kind of functional metal-organic frame compound, its compound formed and its preparation method and application
CN115785949B (en) A kind of copper-platinum multinuclear cluster and its preparation method and application
CN111484478B (en) Preparation method and application of a class of linear C2 symmetric compounds and lanthanide polynuclear complexes thereof
CN101314634A (en) Broken-line water-soluble poly(arylene acetylene) and its preparation method and application
US20110257356A1 (en) Synthesis of Poly-(P-Aryleneethynylene)s in Neat Water Under Aerobic Conditions
Taydakov et al. Synthesis, phosphorescence and luminescence properties of novel europium and gadolinium tris-acylpyrazolonate complexes
Guo et al. Coordination bonding construction, characterization and photoluminescence of ternary lanthanide (Eu 3+, Tb 3+) hybrids with phenylphenacyl-sulfoxide modified bridge and polymer units
CN108456310B (en) A strip-shaped single-layer metal-organic polymer sheet and preparation method thereof
Wang et al. Boronic acid derived salicylidenehydrazinopyridine (BOSPY) complexes with aggregation-induced emission for fluorescence imaging of cellular organelles
CN103289677A (en) Iridium complex phosphor material taking phthalazine derivative as ligand and preparation method thereof
CN114874145B (en) A water-soluble trityl radical material and its preparation method and application
CN115093572B (en) A kind of polypyridine ring metal iridium supramolecular material, preparation method and application
CN110981917B (en) An amphiphilic bisplatin complex and its application in the preparation of luminescent nanoassemblies
Yan et al. Sol–gel preparation, microstructure and luminescence of rare earth/silica/polyacrylamide hybrids through double functionalized covalent Si–O linkage
CN115057887A (en) Dicarbazole phenyl bisphosphine ligand and preparation method thereof, carbazole phenyl bisphosphine cuprous halide and preparation method and application thereof
Forniés et al. Synthesis and characterization of mono and heteropolynuclear luminescent alkynyl platinum diphenylphosphinous acid/phosphinite complexes
CN113121501B (en) C 2 Symmetrical compound, lanthanide series organic polyhedron and preparation method and application thereof
CN108424765B (en) Yellow phosphorescent Cu (I) complex luminescent material and preparation method thereof
JP7623142B2 (en) Compound and method for producing same
JP2002537404A (en) Bright metal- (bis) ligand complexes having different ligands
CN110724163B (en) Application of 5-methylpyridine tetrazole tetranuclear copper [ I ] complex in stimulus response luminescent and photochromic material
KR100893608B1 (en) Fluorescent Gelled Silver-Compound Structure Structure and Manufacturing Method Thereof
Jayasooriya Developing novel 2, 6-pyridinedicarboxamide-1, 2, 3 triazole ligands for luminescent lanthanide materials: a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Chemistry, School of Natural and Computational Sciences, Massey University, Albany, New Zealand

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant