CN111484072A - Method for preparing titanate or titanium-based composite oxide material by low-temperature crystalline phase conversion - Google Patents
Method for preparing titanate or titanium-based composite oxide material by low-temperature crystalline phase conversion Download PDFInfo
- Publication number
- CN111484072A CN111484072A CN202010329194.5A CN202010329194A CN111484072A CN 111484072 A CN111484072 A CN 111484072A CN 202010329194 A CN202010329194 A CN 202010329194A CN 111484072 A CN111484072 A CN 111484072A
- Authority
- CN
- China
- Prior art keywords
- titanium
- composite oxide
- titanate
- based composite
- oxide material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010936 titanium Substances 0.000 title claims abstract description 54
- 239000000463 material Substances 0.000 title claims abstract description 44
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 27
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 19
- 239000002131 composite material Substances 0.000 title claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 title abstract description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 48
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000013078 crystal Substances 0.000 claims abstract description 24
- 150000003839 salts Chemical class 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 239000000725 suspension Substances 0.000 claims abstract description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 30
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 23
- 230000009466 transformation Effects 0.000 claims description 20
- 238000003756 stirring Methods 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 239000013618 particulate matter Substances 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 238000003786 synthesis reaction Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 4
- 230000001276 controlling effect Effects 0.000 abstract description 3
- 238000004134 energy conservation Methods 0.000 abstract 1
- 230000007613 environmental effect Effects 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 19
- 238000002425 crystallisation Methods 0.000 description 11
- 230000008025 crystallization Effects 0.000 description 9
- 229910002367 SrTiO Inorganic materials 0.000 description 7
- 238000010668 complexation reaction Methods 0.000 description 7
- 238000003760 magnetic stirring Methods 0.000 description 7
- 238000000967 suction filtration Methods 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003608 titanium Chemical class 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- -1 titanium ions Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/006—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种低温晶相转化制备钛酸盐及钛基复合氧化物材料的方法,属于功能材料技术领域。The invention relates to a method for preparing titanate and titanium-based composite oxide materials by low-temperature crystal phase transformation, and belongs to the technical field of functional materials.
背景技术Background technique
钛酸盐是一种具有典型钙钛矿ABO3结构的氧化物材料,具有热稳定性好、介电损耗低、介电常数高等特点,广泛应用于陶瓷功能工业、电子、和机械领域中。钛酸盐主要的制备方法有高温固相反应合成法、溶胶-凝胶法、水热法等。前两种方法中,即使溶胶-凝胶法煅烧温度较低也需要达到700℃左右,高温不但能源消耗大、生产成本高,制备工艺安全性差,还容易引起材料严重团聚。低温液相合成具有方法简单、产品的化学组成容易控制等优点,尽管水热法所需温度相对较低,但直接合成钛酸盐的晶化温度也远远超过100℃,且需要在压力容器中进行。TiO2晶相转化合成钛酸盐材料方法已有报道(高等学校化学学报,2011,32,2490),即使采用纳米TiO2纤维为前驱体也需要150℃条件下,1M的NaOH溶液中处理24h制得SrTiO3。该方法普遍接受“溶解-结晶”机制,故而前驱体TiO2结构越疏松对转化反应进行越有利。此外,多数已报道的合成工艺相对复杂、生产成本高、几乎很难实现大规模化生产。故而开发一种能在低温甚至室温下简单、稳定地合成钛酸盐以及钛基复合氧化物材料的方法,对钙钛矿型氧化物的理论研究及工业应用具有重要的意义。Titanate is an oxide material with a typical perovskite ABO 3 structure. It has the characteristics of good thermal stability, low dielectric loss and high dielectric constant. It is widely used in ceramic functional industry, electronics, and mechanical fields. The main preparation methods of titanate include high temperature solid-phase reaction synthesis method, sol-gel method, hydrothermal method and so on. In the first two methods, even if the calcination temperature of the sol-gel method is low, it needs to reach about 700 °C. High temperature not only consumes a lot of energy, high production cost, poor preparation process safety, but also easily causes serious material agglomeration. The low temperature liquid phase synthesis has the advantages of simple method and easy control of the chemical composition of the product. Although the temperature required by the hydrothermal method is relatively low, the crystallization temperature of the direct synthesis of titanate is also far above 100 °C, and it needs to be in a pressure vessel. in progress. The method of synthesizing titanate materials by TiO 2 crystal phase transformation has been reported (Journal of Chemistry of Higher Learning Institutions, 2011, 32, 2490). Even if nano-TiO 2 fibers are used as precursors, it needs to be treated in 1M NaOH solution for 24h at 150℃. SrTiO 3 was obtained. This method generally accepts the "dissolution-crystallization" mechanism, so the looser the precursor TiO2 structure is, the more favorable the conversion reaction is. In addition, most of the reported synthetic processes are relatively complex, with high production costs, and it is almost difficult to achieve large-scale production. Therefore, the development of a simple and stable method for synthesizing titanate and titanium-based composite oxide materials at low temperature or even room temperature is of great significance to the theoretical research and industrial application of perovskite oxides.
发明内容SUMMARY OF THE INVENTION
本发明的目的为针对当前技术中存在的不足,提供了一种低温晶相转化合成钛酸盐及钛基复合氧化物材料的方法。本发明的方法以无机钛盐为钛源乙醇热晶化合成TiO2;然后在碱性体系中低温晶相转化合成钛酸盐材料。通过控制晶相转化过程中向体系添加M元素的物质的量以及种类,调控所制备材料中钛酸盐的比例,从而制得钛酸盐或钛基复合氧化物材料。本发明操作简便、稳定易控。The purpose of the present invention is to provide a method for synthesizing titanate and titanium-based composite oxide materials by low-temperature crystal phase transformation in view of the deficiencies in the current technology. In the method of the invention, the inorganic titanium salt is used as the titanium source and ethanol is thermally crystallized to synthesize TiO 2 ; and then the titanate material is synthesized by low-temperature crystal phase transformation in an alkaline system. The titanate or titanium-based composite oxide material is prepared by controlling the amount and type of the substance added to the system of M element during the crystal phase transformation, and regulating the proportion of titanate in the prepared material. The invention is easy to operate, stable and easy to control.
本发明的技术方案为:The technical scheme of the present invention is:
一种低温晶相转化制备钛酸盐或钛基复合氧化物材料的方法,该方法包括如下步骤:A method for preparing titanate or titanium-based composite oxide material by low-temperature crystal phase transformation, the method comprises the following steps:
(1)将Ti(SO4)2·9H2O溶解在乙醇中,再加入H2O2,将混合液搅拌5~30分钟,升温至90~120℃,晶化2-24h,制得TiO2材料;(1) Dissolve Ti(SO 4 ) 2 ·9H 2 O in ethanol, then add H 2 O 2 , stir the mixture for 5-30 minutes, raise the temperature to 90-120° C., and crystallize for 2-24 hours to obtain TiO2 material;
其中,Ti(SO4)2·9H2O乙醇溶液的浓度为5~100g/L;H2O2的体积为混合液体积的5~20%;Wherein, the concentration of Ti(SO 4 ) 2 ·9H 2 O ethanol solution is 5-100 g/L; the volume of H 2 O 2 is 5-20% of the volume of the mixed solution;
(2)将所制得TiO2分散于NaOH溶液中,然后加入M元素的可溶性盐,制得混合物悬浊液;(2) disperse the prepared TiO 2 in NaOH solution, then add the soluble salt of M element to prepare the mixture suspension;
其中,摩尔比为M:Ti=0.01~2,NaOH溶液的溶度为0.2~2mol/L,TiO2与NaOH溶液质量比为2~50%;所述的M为Sr、Ba、Ni或La;Wherein, the molar ratio is M:Ti=0.01~2, the solubility of NaOH solution is 0.2~2mol/L, the mass ratio of TiO 2 and NaOH solution is 2~50%; the M is Sr, Ba, Ni or La ;
(3)将所得悬浊液在25~80℃、密闭条件下恒温晶相转化1-24h,最后冷却;(3) the obtained suspension liquid is thermostatically transformed into crystal phase under airtight conditions at 25-80° C. for 1-24 hours, and finally cooled;
(4)冷却后,把所得颗粒物过滤、洗涤、干燥,即得钛酸盐或钛基复合氧化物材料。(4) After cooling, the obtained particulate matter is filtered, washed and dried to obtain titanate or titanium-based composite oxide material.
其中,步骤(2)所述M元素的可溶性盐为一种或几种元素的可溶性盐,所述的可溶性盐为盐酸盐或硝酸盐。Wherein, the soluble salt of the M element in step (2) is the soluble salt of one or more elements, and the soluble salt is hydrochloride or nitrate.
当M:Ti≥1时,所合成材料为钛酸盐,M:Ti<1时,所合成材料为钛基复合氧化物材料。When M:Ti≥1, the synthesized material is titanate, and when M:Ti<1, the synthesized material is a titanium-based composite oxide material.
本发明的有益效果是:The beneficial effects of the present invention are:
1.本发明以无机钛盐为钛源,所用合成工艺操作方法简单、反应条件温和,即使室温下也可以转化合成,节能环保且稳定性好。1. In the present invention, inorganic titanium salt is used as the titanium source, and the synthesis process used is simple in operation method and mild in reaction conditions, and can be converted into synthesis even at room temperature, which is energy-saving, environmentally friendly, and has good stability.
2.本发明所制备材料的组成比例可以通过简单调控添加M组分的多少进行调控,方法简单易行。2. The composition ratio of the material prepared by the present invention can be regulated by simply regulating the amount of the M component added, and the method is simple and easy to implement.
3.本发明材料制备工艺条件温和,不需要特殊环境(比如说惰性气氛保护等);材料微观结构更容易得到保持不易被破坏。3. The preparation process conditions of the material of the present invention are mild, and no special environment (such as inert atmosphere protection, etc.) is required; the microstructure of the material is easier to obtain and maintain, and it is not easy to be damaged.
附图说明Description of drawings
附图1是实施例1所述的钛酸锶样品XRD图;Accompanying drawing 1 is the XRD pattern of the strontium titanate sample described in Example 1;
附图2是实施例2所述的钛酸钡样品XRD图;
附图3是实施例3所述的钛酸锶样品XRD图;Accompanying
附图4是实施例3所述的钛酸锶样品SEM照片;Accompanying drawing 4 is the SEM photograph of the strontium titanate sample described in Example 3;
附图5是实施例4所述的钛酸锶样品XRD图。5 is the XRD pattern of the strontium titanate sample described in Example 4.
具体实施方式Detailed ways
下面通过实施例对本发明进行说明,所描述的实施例仅用对本发明进一步详细解释和说明,但本发明的保护范围不限于下述的实施例,该领域专业技术人员根据本发明的内容作出的非本质的改进和调整,仍属于本发明的保护范围。The present invention will be described below through the following examples. The described examples are only used to further explain and illustrate the present invention in detail. However, the protection scope of the present invention is not limited to the following examples. Non-essential improvements and adjustments still belong to the protection scope of the present invention.
实施例1:Example 1:
在磁力搅拌下,配制浓度为10g/L的Ti(SO4)2·9H2O乙醇溶液,并加入溶液总体积的7.5%的H2O2与Ti4+进行络合20min,晶化12h,经过抽滤、洗涤,制得TiO2;然后将其分散1mol/L的NaOH溶液中,使得TiO2浓度为5wt%,向体系中加入一定量的SrCl2,使得摩尔比Sr:Ti=50%,搅拌20min后将得到的悬浊液置入晶化釜中,25℃、密闭下分别晶相转化4h,12h,取得两个样品。冷却至室温,把所得颗粒物过滤、洗涤、干燥。样品的XRD表征结果如图1所示,由结果可以看出常温下,晶相转化4h样品中已有SrTiO3材料形成,且随着转化时间的延长形成SrTiO3的量增加。Under magnetic stirring, a Ti(SO 4 ) 2 ·9H 2 O ethanol solution with a concentration of 10 g/L was prepared, and 7.5% of the total volume of the solution was added with H 2 O 2 for complexation with Ti 4+ for 20 min, followed by crystallization for 12 h , through suction filtration and washing to obtain TiO 2 ; then disperse it in a 1 mol/L NaOH solution, so that the concentration of TiO 2 is 5wt%, add a certain amount of SrCl 2 to the system, so that the molar ratio Sr:Ti=50 %, after stirring for 20 min, the obtained suspension was placed in a crystallization kettle, and the crystal phase was transformed for 4 h and 12 h under airtight conditions at 25° C., respectively, and two samples were obtained. After cooling to room temperature, the resulting particles were filtered, washed and dried. The XRD characterization results of the samples are shown in Figure 1. It can be seen from the results that at room temperature, SrTiO 3 material has been formed in the sample after the crystal phase transformation for 4h, and the amount of SrTiO 3 formed increases with the extension of the transformation time.
实施例2:Example 2:
在磁力搅拌下,配制浓度为10g/L的Ti(SO4)2·9H2O乙醇溶液,并加入溶液总体积的7.5%的H2O2与Ti4+进行络合20min,晶化12h,经过抽滤、洗涤,制得TiO2;然后将其分散1mol/L的NaOH溶液中,使得TiO2浓度为1wt%,向体系中加入一定量的SrCl2,使得摩尔比Sr:Ti=50%,搅拌20min后在40℃下密闭晶相转化4h制得材料样品。样品的XRD表征结果如图2所示,由结果可以看出稍微提高晶相转化温度形成SrTiO3的量明显增加。Under magnetic stirring, a Ti(SO 4 ) 2 ·9H 2 O ethanol solution with a concentration of 10 g/L was prepared, and 7.5% of the total volume of the solution was added with H 2 O 2 for complexation with Ti 4+ for 20 min, followed by crystallization for 12 h , through suction filtration and washing to obtain TiO 2 ; then disperse it in a 1 mol/L NaOH solution, so that the concentration of TiO 2 is 1wt%, and add a certain amount of SrCl 2 to the system to make the molar ratio Sr:Ti=50 %, stirred for 20 min, and closed the crystal phase transformation at 40 °C for 4 h to obtain the material sample. The XRD characterization results of the samples are shown in Figure 2. From the results, it can be seen that the amount of SrTiO 3 formed by slightly increasing the crystal phase transition temperature increases significantly.
实施例3:Example 3:
在磁力搅拌下,配制浓度为10g/L的Ti(SO4)2·9H2O乙醇溶液,并加入溶液总体积的7.5%的H2O2与Ti4+进行络合20min,晶化12h,经过抽滤、洗涤,制得TiO2;然后将其分散1mol/L的NaOH溶液中,使得TiO2浓度为1wt%,向体系中加入一定量的SrCl2,使得摩尔比Sr:Ti=50%,搅拌20min后在60℃下密闭晶相转化4h制得材料样品。样品的XRD表征结果如图3所示,扫描电镜照片如图4所示,由结果可以看出继续提高晶相转化温度形成SrTiO3的量更明显增加。Under magnetic stirring, a Ti(SO 4 ) 2 ·9H 2 O ethanol solution with a concentration of 10 g/L was prepared, and 7.5% of the total volume of the solution was added with H 2 O 2 for complexation with Ti 4+ for 20 min, followed by crystallization for 12 h , through suction filtration and washing to obtain TiO 2 ; then disperse it in a 1 mol/L NaOH solution, so that the concentration of TiO 2 is 1wt%, and add a certain amount of SrCl 2 to the system to make the molar ratio Sr:Ti=50 %, stirred for 20min, closed the crystal phase transformation at 60℃ for 4h, and obtained the material sample. The XRD characterization results of the samples are shown in Figure 3, and the scanning electron microscope photos are shown in Figure 4. From the results, it can be seen that the amount of SrTiO 3 formed by continuing to increase the crystal phase transformation temperature increases significantly.
实施例4:Example 4:
在磁力搅拌下,配制浓度为10g/L的Ti(SO4)2·9H2O乙醇溶液,并加入溶液总体积的7.5%的H2O2与Ti4+进行络合20min,晶化12h,经过抽滤、洗涤,制得TiO2;然后将其分散1mol/L的NaOH溶液中,使得TiO2浓度为1wt%,向体系中加入一定量的BaCl2,使得摩尔比Ba:Ti=50%,搅拌20min后在60℃下密闭晶相转化4h制得材料样品。样品的XRD表征结果如图5所示,由结果可以看出以BaCl2替换SrCl2可以制备BaTiO3材料。Under magnetic stirring, a Ti(SO 4 ) 2 ·9H 2 O ethanol solution with a concentration of 10 g/L was prepared, and 7.5% of the total volume of the solution was added with H 2 O 2 for complexation with Ti 4+ for 20 min, followed by crystallization for 12 h , through suction filtration and washing to obtain TiO 2 ; then disperse it in a 1 mol/L NaOH solution, so that the concentration of TiO 2 is 1wt%, and add a certain amount of BaCl 2 to the system to make the molar ratio Ba:Ti=50 %, stirred for 20min, closed the crystal phase transformation at 60℃ for 4h, and obtained the material sample. The XRD characterization results of the samples are shown in Figure 5. From the results, it can be seen that BaTiO3 materials can be prepared by replacing SrCl2 with BaCl2 .
实施例5:Example 5:
在磁力搅拌下,配制浓度为20g/L的Ti(SO4)2·9H2O乙醇溶液,并加入溶液总体积的7.5%的H2O2与Ti4+进行络合20min,晶化8h,经过抽滤、洗涤,制得TiO2;然后将其分散1mol/L的NaOH溶液中,使得TiO2浓度为10wt%,向体系中加入一定量的Sr(NO3)2,使得摩尔比Sr:Ti=50%,搅拌20min后在60℃下密闭晶相转化4h制得材料样品。Under magnetic stirring, a Ti(SO 4 ) 2 ·9H 2 O ethanol solution with a concentration of 20 g/L was prepared, and 7.5% of the total volume of the solution was added with H 2 O 2 for complexation with Ti 4+ for 20 minutes, followed by crystallization for 8 hours. , through suction filtration and washing to obtain TiO 2 ; then disperse it in a 1 mol/L NaOH solution to make the concentration of TiO 2 10wt%, add a certain amount of Sr(NO 3 ) 2 to the system, so that the molar ratio of Sr : Ti=50%, after stirring for 20min, the material sample was prepared by closed crystal phase transformation at 60℃ for 4h.
实施例6:Example 6:
在磁力搅拌下,配制浓度为10g/L的Ti(SO4)2·9H2O乙醇溶液,并加入溶液总体积的7.5%的H2O2与Ti4+进行络合20min,晶化12h,经过抽滤、洗涤,制得TiO2;然后将其分散1mol/L的NaOH溶液中,使得TiO2浓度为5wt%,向体系中加入一定量的SrCl2,使得摩尔比Sr:Ti=100%,搅拌20min后在80℃下密闭晶相转化8h制得材料样品。Under magnetic stirring, a Ti(SO 4 ) 2 ·9H 2 O ethanol solution with a concentration of 10 g/L was prepared, and 7.5% of the total volume of the solution was added with H 2 O 2 for complexation with Ti 4+ for 20 min, followed by crystallization for 12 h , through suction filtration and washing to obtain TiO 2 ; then disperse it in a 1 mol/L NaOH solution to make the TiO 2 concentration 5wt%, add a certain amount of SrCl 2 to the system to make the molar ratio Sr:Ti=100 %, stirred for 20 min, and closed the crystal phase transformation at 80 °C for 8 h to obtain the material sample.
实施例7:Example 7:
在磁力搅拌下,配制浓度为40g/L的Ti(SO4)2·9H2O乙醇溶液,并加入溶液总体积的7.5%的H2O2与Ti4+进行络合20min,晶化20h,经过抽滤、洗涤,制得TiO2;然后将其分散1mol/L的NaOH溶液中,使得TiO2浓度为1wt%,向体系中加入一定量的SrCl2和BaCl2,使得摩尔比(Sr+Ba):Ti=100%,搅拌20min后在80℃下密闭晶相转化4h制得材料样品。Under magnetic stirring, a Ti(SO 4 ) 2 ·9H 2 O ethanol solution with a concentration of 40 g/L was prepared, and 7.5% of the total volume of the solution was added with H 2 O 2 for complexation with Ti 4+ for 20 minutes, followed by crystallization for 20 hours. , through suction filtration and washing to obtain TiO 2 ; then disperse it in a 1 mol/L NaOH solution, so that the concentration of TiO 2 is 1wt%, add a certain amount of SrCl 2 and BaCl 2 to the system, so that the molar ratio (Sr +Ba):Ti=100%, and the material samples were prepared by closed crystal phase transformation at 80℃ for 4h after stirring for 20min.
综上所述,本发明所报道的通过低温晶相转化合成钛酸盐或含钛酸盐复合材料的方法是基于“溶解-结晶”机制,首先利用钛离子与双氧水络合多羟基水合物,热处理形成TiO2过程水合物分解产生氧气使材料结构更疏松;而前驱体结构疏松有利于Ti与NaOH发生作用,进一步促进晶相转化。通过控制加入M元素的量可以调控所合成样品的组成,例如在加入Sr量不足时,所得到材料为TiO2-SrTiO3的复合材料,当加入体系足量或过量Sr则为SrTiO3;即当M:Ti≥1时,所合成材料为钛酸盐,M:Ti<1时所合成材料为钛基复合氧化物材料。To sum up, the method for synthesizing titanate or titanate-containing composite materials by low-temperature crystal phase transformation reported in the present invention is based on the "dissolution-crystallization" mechanism, firstly using titanium ions and hydrogen peroxide to complex polyhydroxy hydrate, In the process of heat treatment to form TiO 2 , the hydrate decomposes to generate oxygen, which makes the material structure looser; and the loose precursor structure is conducive to the interaction between Ti and NaOH, and further promotes the crystal phase transformation. The composition of the synthesized samples can be regulated by controlling the amount of M element added. For example, when the amount of Sr added is insufficient, the obtained material is a TiO 2 -SrTiO 3 composite material, and when a sufficient amount or excess of Sr is added to the system, it is SrTiO 3 ; When M:Ti≥1, the synthesized material is titanate, and when M:Ti<1, the synthesized material is a titanium-based composite oxide material.
本发明未尽事宜为公知技术。Matters not addressed in the present invention are known in the art.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010329194.5A CN111484072A (en) | 2020-04-23 | 2020-04-23 | Method for preparing titanate or titanium-based composite oxide material by low-temperature crystalline phase conversion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010329194.5A CN111484072A (en) | 2020-04-23 | 2020-04-23 | Method for preparing titanate or titanium-based composite oxide material by low-temperature crystalline phase conversion |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111484072A true CN111484072A (en) | 2020-08-04 |
Family
ID=71793054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010329194.5A Pending CN111484072A (en) | 2020-04-23 | 2020-04-23 | Method for preparing titanate or titanium-based composite oxide material by low-temperature crystalline phase conversion |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111484072A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050186133A1 (en) * | 2002-09-24 | 2005-08-25 | Jianfeng Chen | Process for preparing a strontium titanate powder |
CN101045554A (en) * | 2007-03-12 | 2007-10-03 | 胜利油田华鑫石油材料有限公司 | Method for preparing uniform dispersion square phase barium titanate nanocrystal |
CN101595059A (en) * | 2006-09-21 | 2009-12-02 | 托库森美国股份有限公司 | The temperature production method of the TiO 2 particles of nanometer size |
CN102101697A (en) * | 2011-01-04 | 2011-06-22 | 上海大学 | A Rapid Preparation Method of Highly Dispersed TiO2 Nanocrystalline Sol |
CN103833076A (en) * | 2012-11-27 | 2014-06-04 | 王泰林 | Nickel oxide-titanium dioxide nano composite material |
CN104098125A (en) * | 2013-04-10 | 2014-10-15 | 中国科学院大学 | Preparation method for nanometer strontium titanate cube |
CN106268747A (en) * | 2016-08-16 | 2017-01-04 | 曹健 | A kind of preparation method of La doped TiO2 |
-
2020
- 2020-04-23 CN CN202010329194.5A patent/CN111484072A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050186133A1 (en) * | 2002-09-24 | 2005-08-25 | Jianfeng Chen | Process for preparing a strontium titanate powder |
CN101595059A (en) * | 2006-09-21 | 2009-12-02 | 托库森美国股份有限公司 | The temperature production method of the TiO 2 particles of nanometer size |
CN101045554A (en) * | 2007-03-12 | 2007-10-03 | 胜利油田华鑫石油材料有限公司 | Method for preparing uniform dispersion square phase barium titanate nanocrystal |
CN102101697A (en) * | 2011-01-04 | 2011-06-22 | 上海大学 | A Rapid Preparation Method of Highly Dispersed TiO2 Nanocrystalline Sol |
CN103833076A (en) * | 2012-11-27 | 2014-06-04 | 王泰林 | Nickel oxide-titanium dioxide nano composite material |
CN104098125A (en) * | 2013-04-10 | 2014-10-15 | 中国科学院大学 | Preparation method for nanometer strontium titanate cube |
CN106268747A (en) * | 2016-08-16 | 2017-01-04 | 曹健 | A kind of preparation method of La doped TiO2 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102757094B (en) | Method for preparing steady phase-A vanadium dioxide nanorod | |
CN101311376A (en) | Method for preparing strontium titanate nanometer powder of one-dimensional structure | |
CN102718258A (en) | A kind of preparation method of Gd2Zr2O7 nanopowder | |
CN106563437A (en) | Dy-containing nano lamellar structure complex photocatalyst and preparation method thereof | |
CN104030676B (en) | Preparation method of strontium barium titanate nanopowder | |
CN108511797A (en) | A kind of Li7La3Zr2O12Solid electrolyte preparation method | |
CN105948735B (en) | A kind of SrTiO3Heterogeneous cladding BaTiO3The synthetic method of hyperfine nano-powder | |
CN101891466B (en) | Method for preparing tabular barium titanate nanometer powder | |
CN105727922B (en) | A kind of Li adulterates SrTiO3The preparation method and product of ten octahedron nanometer particles | |
CN101100310A (en) | A kind of preparation method of nano barium titanate | |
CN109546126A (en) | A kind of transition metal element doped carbon coating lithium titanate, preparation method and application | |
CN106268612B (en) | A kind of porous barium strontium titanate raw powder's production technology | |
CN106517319B (en) | A kind of preparation method of calcium titanate micron particles | |
CN111484329B (en) | Liquid-phase synthesis of LaxSr1-xCoO3-δMethod for preparing composite oxide | |
CN102677145B (en) | Preparation method of perovskite structure lead titanate single crystal nanoparticles | |
CN102515263B (en) | Preparation method of barium strontium titanate stellar crystal | |
CN111484072A (en) | Method for preparing titanate or titanium-based composite oxide material by low-temperature crystalline phase conversion | |
CN105253904A (en) | Preparation method of aluminum oxide micro-nano powder | |
CN106745210B (en) | A kind of Li adulterates SrTiO3The preparation method and product of porous surface nano particle | |
CN115140764B (en) | A kind of perovskite phase lead titanate with hierarchical structure, hydrothermal synthesis method and application | |
TWI730626B (en) | Manufacturing method of titanium oxide | |
CN116022841A (en) | Preparation method and application of barium calcium titanate powder | |
CN114853056A (en) | Preparation method of nano-scale titanium dioxide with controllable particle size | |
CN109346711A (en) | Carbon-coated lithium titanate doped with rare earth metal element, preparation method and application | |
CN101319383B (en) | A kind of preparation method of nano barium zirconate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |