CN111476287A - A kind of hyperspectral image small sample classification method and device - Google Patents
A kind of hyperspectral image small sample classification method and device Download PDFInfo
- Publication number
- CN111476287A CN111476287A CN202010256094.4A CN202010256094A CN111476287A CN 111476287 A CN111476287 A CN 111476287A CN 202010256094 A CN202010256094 A CN 202010256094A CN 111476287 A CN111476287 A CN 111476287A
- Authority
- CN
- China
- Prior art keywords
- hyperspectral image
- hyperspectral
- morphological attribute
- morphological
- classification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 88
- 230000000877 morphologic effect Effects 0.000 claims abstract description 92
- 239000013598 vector Substances 0.000 claims abstract description 43
- 238000013145 classification model Methods 0.000 claims abstract description 32
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 12
- 238000007637 random forest analysis Methods 0.000 claims description 28
- 230000015654 memory Effects 0.000 claims description 17
- 238000012706 support-vector machine Methods 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 7
- 238000013527 convolutional neural network Methods 0.000 claims description 7
- 238000003066 decision tree Methods 0.000 claims description 7
- 230000011218 segmentation Effects 0.000 claims description 5
- 238000012847 principal component analysis method Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 14
- 238000012545 processing Methods 0.000 abstract description 4
- 238000001228 spectrum Methods 0.000 abstract description 2
- 230000003595 spectral effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 4
- 241001466077 Salina Species 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种高光谱影像小样本分类方法及装置,属于遥感图像处理与应用技术领域。The invention relates to a hyperspectral image small sample classification method and device, belonging to the technical field of remote sensing image processing and application.
背景技术Background technique
高光谱影像(也称高光谱图像)分类是高光谱影像处理和分析中的关键环节,是实现遥感影像对地观测的重要步骤之一,其基本任务是为每个像素确定唯一的类别标识。The classification of hyperspectral images (also known as hyperspectral images) is a key link in hyperspectral image processing and analysis, and one of the important steps to realize earth observation of remote sensing images. Its basic task is to determine a unique category identifier for each pixel.
传统的高光谱影像分类器包括支持向量机、随机森林、逻辑回归分类器等等,通过结合高光谱影像中的空间特征、纹理特征和光谱特征等,传统分类器能够取得一定的分类效果。但传统分类方法往往需要复杂的特征设计工作,并很大程度上依赖于专家经验进行参数调整,在应用中具有很大的局限性。Traditional hyperspectral image classifiers include support vector machines, random forests, logistic regression classifiers, etc. By combining spatial features, texture features and spectral features in hyperspectral images, traditional classifiers can achieve certain classification effects. However, traditional classification methods often require complex feature design work, and rely heavily on expert experience for parameter adjustment, which has great limitations in application.
近年来,随着深度学习的兴起和不断发展,深度学习方法被广泛应用在高光谱影像分类中,主要有以下几种:In recent years, with the rise and continuous development of deep learning, deep learning methods have been widely used in hyperspectral image classification, mainly in the following categories:
(1)基于三维卷积神经网络(3DCNN)的高光谱影像分类方法。例如:公告号为CN106022355B的发明专利文件中,公开了一种基于3DCNN的高光谱图像空谱联合分类方法,该方法首先从归一化处理后的原始高光谱图像中,提取以待分类像元为中心的n×n×L邻域范围内的数据块Pn×n×L作为该像元的原始空谱特征,n表示邻域块的大小,L表示谱段总数;然后利用经过训练的3DCNN网络完成高光谱图像空谱联合分类。这种方法虽然无需进行谱空间降维,能够自动提取高光谱图像的空谱特征,无需人工预设特征,但是需要依赖于大量的训练样本,而在实际应用中高光谱影像标记样本的获取费时费力,通过寻找大量标记样本训练深度模型十分低效,如果没有足够数量的带有标记的训练样本作支撑,这种方法很难取得较高的分类精度。(1) Hyperspectral image classification method based on three-dimensional convolutional neural network (3DCNN). For example, in the invention patent document with the announcement number CN106022355B, a 3DCNN-based hyperspectral image space-spectrum joint classification method is disclosed. The method firstly extracts the pixels to be classified from the normalized original hyperspectral image. The data block P n×n×L in the n×n×L neighborhood range of the center is used as the original empty spectral feature of the pixel, n represents the size of the neighborhood block, and L represents the total number of spectral segments; The 3DCNN network completes the joint classification of hyperspectral images. Although this method does not require spectral space dimensionality reduction, it can automatically extract the spatial spectral features of hyperspectral images and does not need to manually preset features, but it needs to rely on a large number of training samples, and the acquisition of hyperspectral image labeled samples in practical applications is time-consuming and laborious. , it is very inefficient to train a deep model by finding a large number of labeled samples. If there is not a sufficient number of labeled training samples for support, this method is difficult to achieve high classification accuracy.
(2)基于深度森林的高光谱影像分类方法。例如:公布号为CN108614992A的发明专利申请文件中,公开了一种高光谱遥感图像的分类方法,该方法针对高光谱遥感图像中的光谱信息、空间信息和空谱结合信息分别进行降维处理,得到相应的光谱数据、空间数据和空谱结合数据;然后通过训练好的深度森林分类模型对高光谱遥感图像进行分类。虽然该方法使用深度森林算法对高光谱遥感图像进行分类具有参数少,易调节的优点,也能取得较好的分类效果和实用性,但是该方法的数据预处理过程太过复杂,耗费时间过多,且分类精度还有待进一步提高。(2) Hyperspectral image classification method based on deep forest. For example, in the invention patent application document with the publication number of CN108614992A, a classification method of hyperspectral remote sensing images is disclosed. Corresponding spectral data, spatial data and spatial spectral combined data are obtained; then the hyperspectral remote sensing images are classified by the trained deep forest classification model. Although this method uses the deep forest algorithm to classify hyperspectral remote sensing images, it has the advantages of few parameters and easy adjustment, and can also achieve good classification effect and practicability, but the data preprocessing process of this method is too complicated and time-consuming. The classification accuracy still needs to be further improved.
综上,目前已有的高光谱图像分类方法中,传统分类方法不仅需要依靠专家经验进行复杂的特征设计工作,分类精度也较低;基于3DCNN网络的分类方法需要依赖于大量的训练样本,在标记样本非常少的条件下分类精度较低;基于深度森林的分类方法,数据预处理过程太过复杂,耗费时间过多,且分类精度还有待进一步提高。To sum up, among the existing hyperspectral image classification methods, traditional classification methods not only need to rely on expert experience for complex feature design work, but also have low classification accuracy; classification methods based on 3DCNN network need to rely on a large number of training samples. Under the condition of very few labeled samples, the classification accuracy is low; for the classification method based on deep forest, the data preprocessing process is too complicated and time-consuming, and the classification accuracy needs to be further improved.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种高光谱影像小样本分类方法及装置,用以解决现有高光谱影像分类方法在标记样本非常少的条件下分类精度不高的问题。The purpose of the present invention is to provide a small sample classification method and device for hyperspectral images, so as to solve the problem that the classification accuracy of the existing hyperspectral image classification methods is not high under the condition of very few labeled samples.
为实现上述目的,本发明提供了一种高光谱影像小样本分类方法,该方法包括以下步骤:In order to achieve the above purpose, the present invention provides a method for classifying small samples of hyperspectral images, the method comprising the following steps:
(1)输入高光谱影像;(1) Input hyperspectral images;
(2)利用形态学属性剖面算法构造所述高光谱影像的形态学属性剖面;(2) Constructing the morphological attribute profile of the hyperspectral image by using the morphological attribute profile algorithm;
(3)在所述高光谱影像的形态学属性剖面中,选取待分类像素设定邻域范围内的数据立方体作为该像素的形态学属性剖面立方体,进而得到所述高光谱影像的形态学属性剖面立方体;(3) In the morphological attribute profile of the hyperspectral image, select the data cube within the set neighborhood range of the pixel to be classified as the morphological attribute profile cube of the pixel, and then obtain the morphological attribute of the hyperspectral image. section cube;
(4)根据所述高光谱影像的形态学属性剖面立方体得到所述高光谱影像的特征向量;(4) obtaining the feature vector of the hyperspectral image according to the morphological attribute profile cube of the hyperspectral image;
(5)将所述高光谱影像的特征向量输入预先训练好的分类模型完成高光谱影像分类。(5) Input the feature vector of the hyperspectral image into the pre-trained classification model to complete the hyperspectral image classification.
本发明还提供了一种高光谱影像小样本分类装置,该装置包括处理器和存储器,所述处理器执行由所述存储器存储的计算机程序,以实现上述的高光谱影像小样本分类方法。The present invention also provides a hyperspectral image small sample classification device, the device includes a processor and a memory, the processor executes a computer program stored in the memory, so as to realize the above-mentioned hyperspectral image small sample classification method.
本发明的高光谱影像小样本分类方法及装置的有益效果是:本发明先对高光谱影像进行形态学属性剖面运算,以保留影像中的空谱联合信息,然后通过选取高光谱影像的形态学属性剖面中的待分类像素设定邻域范围内的数据立方体,得到高光谱影像的形态学属性剖面立方体,最后根据高光谱影像的形态学属性剖面立方体得到高光谱影像的特征向量。通过构建高光谱影像的形态学属性剖面立方体能够充分利用高光谱影像中的空谱联合信息,为后续的分类过程提供丰富的特征信息源,从而能在标记样本非常少(即小样本)的条件下获得较高的分类精度。The beneficial effects of the hyperspectral image small sample classification method and device of the present invention are as follows: the present invention first performs morphological attribute profile operation on the hyperspectral image to retain the space-spectral joint information in the image, and then selects the morphological properties of the hyperspectral image by selecting The pixels to be classified in the attribute profile are set as data cubes in the neighborhood range, and the morphological attribute profile cube of the hyperspectral image is obtained. Finally, the feature vector of the hyperspectral image is obtained according to the morphological attribute profile cube of the hyperspectral image. By constructing the morphological attribute section cube of the hyperspectral image, the space-spectral joint information in the hyperspectral image can be fully utilized, and a rich source of feature information can be provided for the subsequent classification process. to obtain higher classification accuracy.
进一步地,在上述高光谱影像小样本分类方法及装置中,采用不同尺度的滑动窗口对所述高光谱影像的形态学属性剖面立方体进行多粒度扫描,根据扫描结果得到所述高光谱影像的特征向量。Further, in the above-mentioned method and device for classifying small samples of hyperspectral images, sliding windows of different scales are used to perform multi-granularity scanning on the morphological attribute section cubes of the hyperspectral images, and the characteristics of the hyperspectral images are obtained according to the scanning results. vector.
这样做的有益效果是:采用不同尺度的滑动窗口对高光谱影像的形态学属性剖面立方体进行多粒度扫描,能够更好地利用高光谱影像中的不同尺度的特征信息,且能够提取更加抽象的特征用作高光谱影像中地物分类的判别信息,从而能够极大地提高分类精度,同时还能够降低高光谱影像的特征向量的维度。The beneficial effect of this is: using sliding windows of different scales to perform multi-granularity scanning on the morphological attribute section cubes of hyperspectral images, the feature information of different scales in hyperspectral images can be better utilized, and more abstract features can be extracted. The feature is used as the discriminant information for the classification of ground objects in the hyperspectral image, which can greatly improve the classification accuracy and reduce the dimension of the feature vector of the hyperspectral image.
进一步地,为了进一步增强特征的丰富性和多样性,在上述高光谱影像小样本分类方法及装置中,将一个扫描结果作为一个实例,将一个实例分别输入一个完全随机森林和一个普通随机森林得到该实例的两个特征向量,将所有实例的特征向量进行连接作为所述高光谱影像的特征向量。Further, in order to further enhance the richness and diversity of features, in the above-mentioned method and device for classifying small samples of hyperspectral images, a scan result is used as an instance, and an instance is input into a complete random forest and an ordinary random forest, respectively. The two eigenvectors of this instance are connected with the eigenvectors of all instances as the eigenvectors of the hyperspectral image.
进一步地,在上述高光谱影像小样本分类方法及装置中,所述预先训练好的分类模型是深度森林分类模型,所述深度森林分类模型采用级联结构进行连接。Further, in the above method and device for classifying small samples of hyperspectral images, the pre-trained classification model is a deep forest classification model, and the deep forest classification models are connected by a cascade structure.
这样做的有益效果是:采用深度森林分类模型通过多层级联使用输入的特征信息,能够提高特征信息的利用率,进而在标记样本非常少的条件下获得较高的分类精度,同时,深度森林分类模型能够避免过多的超参数,提高分类效率。The beneficial effect of this is: using the deep forest classification model to use the input feature information through multi-level cascade can improve the utilization rate of the feature information, and then obtain higher classification accuracy under the condition of very few labeled samples. The classification model can avoid too many hyperparameters and improve the classification efficiency.
进一步地,为了提高分类效率,在上述高光谱影像小样本分类方法及装置中,所述深度森林分类模型的每一层设置两个完全随机森林和两个普通随机森林,所述完全随机森林中每棵决策树的每个叶节点上均随机选择一个特征进行分割并生长;所述普通随机森林中每棵决策树的每个叶节点通过随机选择个特征作为候选特征,d是输入特征的个数,并选择基尼系数最好的特征进行分割并生长。Further, in order to improve the classification efficiency, in the above-mentioned method and device for classifying small samples of hyperspectral images, two complete random forests and two ordinary random forests are set in each layer of the deep forest classification model. A feature is randomly selected on each leaf node of each decision tree for segmentation and growth; each leaf node of each decision tree in the ordinary random forest is randomly selected by A feature is used as a candidate feature, d is the number of input features, and the feature with the best Gini coefficient is selected for segmentation and growth.
进一步地,在上述高光谱影像小样本分类方法及装置中,所述预先训练好的分类模型是利用支持向量机或卷积神经网络训练好的分类模型。Further, in the above-mentioned method and device for classifying small samples of hyperspectral images, the pre-trained classification model is a classification model trained by a support vector machine or a convolutional neural network.
进一步地,在上述高光谱影像小样本分类方法及装置中,所述高光谱影像的形态学属性剖面通过以下步骤得到:利用主成分分析法提取所述高光谱影像中的前N个主成分,N≥1,利用形态学属性剖面算法对所述前N个主成分中的每个主成分均构造形态学属性剖面,然后将前N个主成分的形态学属性剖面进行综合得到所述高光谱影像的形态学属性剖面。Further, in the above method and device for classifying small samples of hyperspectral images, the morphological attribute profile of the hyperspectral image is obtained by the following steps: extracting the first N principal components in the hyperspectral image by using a principal component analysis method, N≥1, use the morphological attribute profile algorithm to construct a morphological attribute profile for each of the first N principal components, and then synthesize the morphological attribute profiles of the first N principal components to obtain the hyperspectral Morphological properties profile of the image.
进一步地,在上述高光谱影像小样本分类方法及装置中,分别采用大小为1、3、5、7、9的正方形结构元素构造所述高光谱影像的形态学属性剖面。Further, in the above method and device for classifying small samples of hyperspectral images, square structural elements with sizes of 1, 3, 5, 7, and 9 are respectively used to construct the morphological attribute profile of the hyperspectral image.
进一步地,在上述高光谱影像小样本分类方法及装置中,所述形态学属性剖面算法的运算顺序为:先执行开运算后执行闭运算,或者先执行闭运算后执行开运算。Further, in the above-mentioned method and device for classifying small samples of hyperspectral images, the operation sequence of the morphological attribute profile algorithm is: first perform the opening operation and then perform the closing operation, or perform the closing operation first and then perform the opening operation.
附图说明Description of drawings
图1是本发明方法实施例中的高光谱影像小样本分类方法流程图;1 is a flowchart of a method for classifying small samples of hyperspectral images in a method embodiment of the present invention;
图2是本发明方法实施例中的高光谱影像的形态学属性剖面立方体的构建过程示意图;2 is a schematic diagram of the construction process of the morphological attribute section cube of the hyperspectral image in the method embodiment of the present invention;
图3是本发明方法实施例中的多粒度扫描获得高光谱影像的特征向量的过程示意图;3 is a schematic diagram of a process for obtaining feature vectors of hyperspectral images by multi-granularity scanning in an embodiment of the method of the present invention;
图4是本发明方法实施例中的利用深度森林分类模型完成高光谱影像分类的过程示意图;4 is a schematic diagram of a process of using a deep forest classification model to complete hyperspectral image classification in an embodiment of the method of the present invention;
图5是本发明方法实施例中的高光谱影像小样本分类方法在不同标记样本数量下的分类结果对比图;5 is a comparison diagram of the classification results of the hyperspectral image small sample classification method in the method embodiment of the present invention under different numbers of labeled samples;
图6是本发明装置实施例中的高光谱影像小样本分类装置结构图。FIG. 6 is a structural diagram of an apparatus for classifying small samples of hyperspectral images in an embodiment of the apparatus of the present invention.
具体实施方式Detailed ways
方法实施例Method embodiment
本实施例的高光谱影像小样本分类方法如图1所示,该方法包括以下步骤:The hyperspectral image small sample classification method of this embodiment is shown in FIG. 1 , and the method includes the following steps:
(1)输入高光谱影像,假设高光谱影像大小为a×b,有L个光谱波段;(1) Input a hyperspectral image, assuming that the size of the hyperspectral image is a×b, and there are L spectral bands;
(2)利用形态学属性剖面算法构造该高光谱影像的形态学属性剖面;(2) Constructing the morphological attribute profile of the hyperspectral image by using the morphological attribute profile algorithm;
本实施例中,为了提高运算效率,先利用主成分分析法提取高光谱影像中的前3个主成分波段(以下简称主成分),然后利用形态学属性剖面算法对前3个主成分中的每个主成分均构造形态学属性剖面,最后将前3个主成分的形态学属性剖面进行综合得到该高光谱影像的形态学属性剖面。In this embodiment, in order to improve the computing efficiency, the first three principal component bands (hereinafter referred to as principal components) in the hyperspectral image are extracted by principal component analysis, and then the A morphological attribute profile is constructed for each principal component, and finally the morphological attribute profiles of the first three principal components are synthesized to obtain the morphological attribute profile of the hyperspectral image.
其中,在构造某个主成分的形态学属性剖面时,先采用大小为1、3、5、7、9的正方形结构元素对该主成分执行形态学开运算滤波得到5个剖面,再采用大小为1、3、5、7、9的正方形结构元素对该主成分执行形态学闭运算滤波得到5个剖面,由于结构元素大小为1时得到的剖面是原始波段,则实际上该主成分共得到9个剖面,这9个剖面共同构成该主成分的形态学属性剖面。综上,由于每个主成分的形态学属性剖面实际上包含9个剖面,则将高光谱影像中的前3个主成分的形态学属性剖面进行综合后,得到的该高光谱影像的形态学属性剖面实际上包含3×9=27个剖面,也就是说,所得到的该高光谱影像的形态学属性剖面实际上是一个a×b×27的数据立方体。Among them, when constructing the morphological attribute profile of a principal component, first use square structural elements with
作为其他实施方式,还可以利用主成分分析法提取高光谱影像中的前N个主成分,N≥1即可,并不局限于提取前3个主成分,同时,结构元素的大小也可以根据实际需要设置,例如采用1、3、5、7、9、11的正方形结构元素,这种情况下,高光谱影像的形态学属性剖面实际上是一个a×b×11N的数据立方体,具体构建过程与提取前3个主成分时类似,此处不再赘述。As another embodiment, the principal component analysis method can also be used to extract the first N principal components in the hyperspectral image, where N≥1, and the extraction of the first three principal components is not limited. Actual settings are required, for example, square structural elements of 1, 3, 5, 7, 9, and 11 are used. In this case, the morphological attribute profile of the hyperspectral image is actually a data cube of a×b×11N. The process is similar to that of extracting the first three principal components, and will not be repeated here.
作为其他实施方式,为了保留输入的高光谱影像中的特征信息,也可以省略提取主成分的步骤,直接利用形态学属性剖面算法对输入的高光谱影像进行处理得到其形态学属性剖面;另外,形态学属性剖面算法中结构元素的形状也可以根据实际需要设置,例如菱形结构元素;形态学属性剖面算法的运算顺序也可以根据实际需要设置,例如还可以先执行闭运算后执行开运算。As another embodiment, in order to retain the feature information in the input hyperspectral image, the step of extracting the principal components can also be omitted, and the morphological attribute profile algorithm is directly used to process the input hyperspectral image to obtain its morphological attribute profile; in addition, The shape of the structural elements in the morphological attribute profile algorithm can also be set according to actual needs, such as diamond-shaped structural elements; the operation order of the morphological attribute profile algorithm can also be set according to actual needs, for example, the closing operation can be performed first and then the opening operation can be performed.
(3)在该高光谱影像的形态学属性剖面中,选取待分类像素设定邻域范围内的数据立方体作为该像素的形态学属性剖面立方体,进而得到该高光谱影像的形态学属性剖面立方体;(3) In the morphological attribute profile of the hyperspectral image, select the data cube within the set neighborhood range of the pixel to be classified as the morphological attribute profile cube of the pixel, and then obtain the morphological attribute profile cube of the hyperspectral image. ;
本实施例中,令设定领域范围为28×28,则一个像素得到一个大小为28×28×27的形态学属性剖面立方体,由于该高光谱影像的形态学属性剖面中共包含a×b个像素,则得到的该高光谱影像的形态学属性剖面立方体中实际上包含a×b个大小为28×28×27的形态学属性剖面立方体。In this embodiment, if the set field range is 28×28, one pixel obtains a morphological attribute section cube with a size of 28×28×27, because the morphological attribute section of the hyperspectral image contains a×b morphological attribute sections in total. pixel, the obtained morphological attribute section cube of the hyperspectral image actually contains a×b morphological attribute section cubes with a size of 28×28×27.
作为其他实施方式,设定邻域范围可根据实际需要设置,不局限于28×28。As another implementation manner, the set neighborhood range can be set according to actual needs, and is not limited to 28×28.
(4)采用不同尺度的滑动窗口对该高光谱影像的形态学属性剖面立方体进行多粒度扫描;将一个扫描结果作为一个实例,将一个实例分别输入一个完全随机森林和一个普通随机森林得到该实例的两个特征向量,将所有实例的特征向量进行连接作为该高光谱影像的特征向量;(4) Multi-granularity scanning of the morphological attribute profile cube of the hyperspectral image using sliding windows of different scales; taking a scan result as an instance, and inputting an instance into a complete random forest and an ordinary random forest respectively to obtain the instance The two eigenvectors of , connect the eigenvectors of all instances as the eigenvectors of the hyperspectral image;
步骤(3)中得到的该高光谱影像的形态学属性剖面立方体共包含a×b个大小为28×28×27的形态学属性剖面立方体,进行多粒度扫描时以28×28×27的形态学属性剖面立方体为单位进行。本实施例中,对一个28×28×27的形态学属性剖面立方体分别采用大小为7×7、10×10和14×14的滑动窗口进行步长为2的扫描,能得到100个大小为7×7×27的实例、81个大小为10×10×27的实例和49个大小为14×14×27的实例,由于一个实例对应两个特征向量(假设特征向量的维数为n),则将所有实例的特征向量进行连接后,一个28×28×27的形态学属性剖面立方体能得到一个100×2×n+81×2×n+49×2×n=460n维的特征向量,进而a×b个大小为28×28×27的形态学属性剖面立方体能得到a×b个维度为460n的特征向量,这a×b个维度为460n的特征向量就是该高光谱影像的特征向量。The morphological attribute section cube of the hyperspectral image obtained in step (3) includes a×b morphological attribute section cubes with a size of 28×28×27 in total, and the shape of 28×28×27 is used for multi-granularity scanning. The scientific property section is carried out in cubic units. In this embodiment, a 28×28×27 morphological attribute section cube is scanned with a step size of 2 using sliding windows with sizes of 7×7, 10×10 and 14×14, and 100 pieces of size can be obtained. 7×7×27 instances, 81 instances of
作为其他实施方式,进行多粒度扫描时,滑动窗口的大小、个数以及扫描步长均可以根据实际需要调整。As another implementation manner, when performing multi-granularity scanning, the size, number and scanning step size of the sliding windows can be adjusted according to actual needs.
(5)将该高光谱影像的特征向量输入预先训练好的深度森林分类模型完成高光谱影像分类。(5) The feature vector of the hyperspectral image is input into the pre-trained deep forest classification model to complete the hyperspectral image classification.
其中,深度森林分类模型采用级联结构进行连接,即其每一层接收前一层输出的特征向量,并将该层得到的特征向量输出到下一层。深度森林分类模型中的每一层都是决策树的集合。在深度森林分类模型的每一层中,设置不同类型的森林能够有效促进特征的多样性,本实施例中,为了简单起见,深度森林分类模型的每一层设置两个完全随机森林和两个普通随机森林,完全随机森林中每棵决策树的每个叶节点上均随机选择一个特征进行分割并生长;普通随机森林中每棵决策树的每个叶节点通过随机选择个特征作为候选特征,d是输入特征的个数,并选择基尼系数最好的特征进行分割并生长。Among them, the deep forest classification model is connected by a cascade structure, that is, each layer receives the feature vector output by the previous layer, and outputs the feature vector obtained by this layer to the next layer. Each layer in a deep forest classification model is an ensemble of decision trees. In each layer of the deep forest classification model, setting different types of forests can effectively promote the diversity of features. In this embodiment, for the sake of simplicity, each layer of the deep forest classification model is set with two complete random forests and two Ordinary random forest, a feature is randomly selected on each leaf node of each decision tree in the complete random forest to divide and grow; each leaf node of each decision tree in the ordinary random forest is randomly selected A feature is used as a candidate feature, d is the number of input features, and the feature with the best Gini coefficient is selected for segmentation and growth.
本实施例在深度森林分类模型的每一层设置两个完全随机森林和两个普通随机森林,从而每一层会输出四个特征向量;作为其他实施方式,深度森林分类模型每一层设置的森林类型和数量可以根据实际需要进行调整,调整后每一层输出的特征向量也会跟着改变。In this embodiment, two complete random forests and two ordinary random forests are set in each layer of the deep forest classification model, so that each layer will output four feature vectors; The type and number of forests can be adjusted according to actual needs, and the feature vector output by each layer will also change accordingly.
本实施例中,利用预先训练好的深度森林分类模型完成高光谱影像分类;作为其他实施方式,还可以利用预先训练好的支持向量机分类模型或卷积神经网络分类模型完成高光谱影像分类。In this embodiment, a pre-trained deep forest classification model is used to complete the hyperspectral image classification; as another implementation, a pre-trained support vector machine classification model or a convolutional neural network classification model can also be used to complete the hyperspectral image classification.
本实施例中,在得到高光谱影像的形态学属性剖面立方体后,还对形态学属性剖面立方体进行多粒度扫描,并对扫描结果作了进一步处理才得到高光谱影像的特征向量,这样能够更好地利用高光谱影像中的不同尺度的特征信息,且能够提取更加抽象的特征用作高光谱影像中地物分类的判别信息,从而能够极大地提高分类精度,同时还能够降低高光谱影像的特征向量的维度;作为其他实施方式,还可以直接将高光谱影像的形态学属性剖面立方体作为高光谱影像的特征向量,或者将多粒度扫描结果作为高光谱影像的特征向量。In this embodiment, after the morphological attribute section cube of the hyperspectral image is obtained, multi-granularity scanning is performed on the morphological attribute section cube, and the scanning result is further processed to obtain the feature vector of the hyperspectral image. It can make good use of the feature information of different scales in hyperspectral images, and can extract more abstract features as the discriminative information for the classification of ground objects in hyperspectral images, which can greatly improve the classification accuracy and reduce the impact of hyperspectral images. The dimension of the feature vector; as another embodiment, the morphological attribute section cube of the hyperspectral image can also be directly used as the feature vector of the hyperspectral image, or the multi-granularity scanning result can be used as the feature vector of the hyperspectral image.
下面在Salinas数据集上对本实施例的高光谱影像小样本分类方法的有效性进行验证,具体过程如下:The validity of the hyperspectral image small sample classification method of this embodiment is verified on the Salinas data set below, and the specific process is as follows:
步骤1、输入高光谱影像I。输入的高光谱影像为常用的Salinas影像,其维度为512×217×204,高光谱影像中共包括16类地物和54129个待分类像素。Step 1. Input hyperspectral image I. The input hyperspectral image is a commonly used Salinas image with a dimension of 512×217×204. The hyperspectral image includes 16 types of ground objects and 54129 pixels to be classified.
步骤2、构造高光谱影像I的形态学属性剖面立方体,具体过程如图2所示:
首先,利用主成分分析法提取高光谱影像I(512×217×204)的前三个主成分,得到提取主成分之后的高光谱影像I′,即I→I′(512×217×3);First, the first three principal components of the hyperspectral image I (512×217×204) are extracted by principal component analysis, and the hyperspectral image I′ after the extraction of the principal components is obtained, that is, I→I′ (512×217×3) ;
然后,分别采用大小为1、3、5、7、9的正方形结构元素对每个主成分先执行开运算后执行闭运算,得到每个主成分的形态学属性剖面(分别见图2中的第1、第2和第3主成分形态学属性剖面),接着将前3个主成分的形态学属性剖面进行综合得到高光谱影像I的形态学属性剖面,即I′→IMAP(512×217×27);Then, the square structural elements with sizes of 1, 3, 5, 7, and 9 are used to perform the opening operation and then the closing operation on each principal component, respectively, to obtain the morphological attribute profile of each principal component (see Fig. 2, respectively). The morphological attribute profiles of the first, second and third principal components), and then the morphological attribute profiles of the first three principal components are synthesized to obtain the morphological attribute profile of the hyperspectral image I, that is, I′→I MAP (512× 217×27);
最后,选取高光谱影像I的形态学属性剖面中的待分类像素邻域范围为28×28内的数据立方体作为该像素的形态学属性剖面立方体,输入的高光谱影像I共形成512×217个大小为28×28×27的形态学属性剖面立方体,这512×217个大小为28×28×27的形态学属性剖面立方体构成高光谱影像I的形态学属性剖面立方体。Finally, the data cube whose neighborhood range of the pixel to be classified in the morphological attribute profile of hyperspectral image I is 28 × 28 is selected as the morphological attribute profile cube of the pixel, and the input hyperspectral image I forms a total of 512 × 217 data cubes. The morphological attribute section cubes with a size of 28×28×27, and these 512×217 morphological attribute section cubes with a size of 28×28×27 constitute the morphological attribute section cubes of the hyperspectral image I.
步骤3、采用不同尺度的滑动窗口对高光谱影像I的形态学属性剖面立方体进行多粒度扫描,将一个扫描结果作为一个实例,将一个实例分别输入一个完全随机森林和一个普通随机森林得到该实例的两个特征向量,将所有实例的特征向量进行连接作为高光谱影像I的特征向量,具体过程见图3:Step 3. Use sliding windows of different scales to perform multi-granularity scanning on the morphological attribute profile cube of the hyperspectral image I, take a scan result as an instance, and input an instance into a complete random forest and an ordinary random forest respectively to obtain the instance The two eigenvectors of , connect the eigenvectors of all instances as the eigenvectors of the hyperspectral image I. The specific process is shown in Figure 3:
进行多粒度扫描时以28×28×27的形态学属性剖面立方体为单位进行。首先,对一个28×28×27的形态学属性剖面立方体分别采用大小为7×7、10×10和14×14的滑动窗口进行步长为2的扫描,得到100个大小为7×7×27的实例、81个大小为10×10×27的实例和49个大小为14×14×27的实例;然后,将每个实例分别输入一个完全随机森林和一个普通随机森林(分别见图3中的随机森林A和随机森林B),每个森林将每个实例转换成一个16维的特征向量,将所有实例的特征向量进行连接,从而一个28×28×27的形态学属性剖面立方体得到一个100×2×16+81×2×16+49×2×16=7360维的特征向量;由于输入的高光谱影像I共形成512×217个大小为28×28×27的形态学属性剖面立方体,则高光谱影像I的特征向量共包含512×217个7360维的特征向量。When performing multi-grain scanning, the unit of 28×28×27 morphological property profile cube is performed. First, a 28 × 28 × 27 morphological attribute profile cube is scanned with a step size of 2 using sliding windows of
步骤4、将高光谱影像I的特征向量输入预先训练好的深度森林分类模型完成高光谱影像分类,具体过程如图4所示:Step 4. Input the feature vector of the hyperspectral image I into the pre-trained deep forest classification model to complete the hyperspectral image classification. The specific process is shown in Figure 4:
首先,将高光谱影像I的特征向量中某个7360维的特征向量作为深度森林分类模型的输入;由于深度森林分类模型的每一层包括两个完全随机森林和两个普通随机森林,一个森林输出一个16维的特征向量,则第一层会得到一个16×4=64维的特征向量;First, a 7360-dimensional feature vector in the feature vector of hyperspectral image I is used as the input of the deep forest classification model; since each layer of the deep forest classification model includes two complete random forests and two ordinary random forests, one forest If a 16-dimensional feature vector is output, the first layer will get a 16×4=64-dimensional feature vector;
然后,将第一层得到的64维特征向量与输入向量进行连接,得到下一层维度为16×4+7360=7424的输入向量,该层处理结束后同样会得到4个16维度的特征向量,将该层得到的特征向量与该层的输入向量进行连接,作为下一层的输入向量;如此类推,直到深度森林分类模型的最后一层生成4个16维度的特征向量,对其取平均值得到最终的16维特征向量,从而得到某个待分类像素的类别标记;Then, connect the 64-dimensional feature vector obtained in the first layer with the input vector to obtain the input vector with the next layer dimension of 16×4+7360=7424. After this layer is processed, four 16-dimensional feature vectors will also be obtained. , connect the feature vector obtained by this layer with the input vector of this layer as the input vector of the next layer; and so on, until the last layer of the deep forest classification model generates four 16-dimensional feature vectors, and average them value to obtain the final 16-dimensional feature vector, thereby obtaining the category label of a pixel to be classified;
将512×217个7360维的特征向量均输入深度森林模型后,得到高光谱影像I的所有待分类像素的类别标记,高光谱影像分类完成。After inputting 512×217 7360-dimensional feature vectors into the deep forest model, the category labels of all pixels to be classified in the hyperspectral image I are obtained, and the hyperspectral image classification is completed.
本实施例中的仿真条件为:英特尔酷睿i7-5700HQ,2.7GHz中央处理器,GeForceGTX970M图形处理器,32GB内存;在Salinas数据集上,随机选取每类地物的5、10、15、20、25个标记样本作为训练样本,其余样本作为测试样本,利用支持向量机(SVM)、拉普拉斯支持向量机(LapSVM)、转导支持向量机(TSVM)、半监督卷积神经网络(SS-CNN)、图卷积神经网络(GCN)和本发明的高光谱影像小样本分类方法分别进行20次实验。其中,本发明的高光谱影像小样本分类方法在某次实验结束后的分类结果如图5所示,20次实验结束后各种方法的最终分类结果如表1所示,表1中最终分类结果以平均值和方差的形式呈现。The simulation conditions in this embodiment are: Intel Core i7-5700HQ, 2.7GHz CPU, GeForceGTX970M graphics processor, 32GB memory; on the Salinas data set, randomly select 5, 10, 15, 20, 25 labeled samples are used as training samples, and the rest are used as test samples, using support vector machine (SVM), Laplacian support vector machine (LapSVM), transduction support vector machine (TSVM), semi-supervised convolutional neural network (SS) -CNN), Graph Convolutional Neural Network (GCN) and the small sample classification method of hyperspectral images of the present invention were respectively carried out 20 experiments. Among them, the classification results of the hyperspectral image small sample classification method of the present invention after a certain experiment is shown in Figure 5, and the final classification results of various methods after 20 experiments are shown in Table 1. The final classification in Table 1 Results are presented as mean and variance.
表1各种方法的最终分类结果对比表Table 1 Comparison table of final classification results of various methods
由图5可以看出,在L=5、L=10、L=15、L=20、L=25时,即标记样本的个数分别为5、10、15、20、25时,本发明的高光谱影像小样本分类方法的分类精度分别为93.69%、94.61%、97.97%、98.27%、98.96%,说明本发明的高光谱影像小样本分类方法在极其少量标记样本下能取得较高的分类精度。It can be seen from FIG. 5 that when L=5, L=10, L=15, L=20, and L=25, that is, when the number of marked samples is 5, 10, 15, 20, and 25, respectively, the present invention The classification accuracy of the hyperspectral image small sample classification method of the present invention is 93.69%, 94.61%, 97.97%, 98.27%, 98.96%, respectively, indicating that the hyperspectral image small sample classification method of the present invention can achieve a high degree of accuracy with a very small number of labeled samples. Classification accuracy.
由表1可以看出,在L=5、L=10、L=15、L=20、L=25时,本发明的高光谱影像小样本分类方法的分类精度均远高于其他方法,说明本发明的高光谱影像小样本分类方法能够大幅提高高光谱影像在极其少量标记样本下的分类精度。It can be seen from Table 1 that when L=5, L=10, L=15, L=20, and L=25, the classification accuracy of the hyperspectral image small sample classification method of the present invention is much higher than that of other methods. The hyperspectral image small sample classification method of the present invention can greatly improve the classification accuracy of the hyperspectral image under an extremely small number of labeled samples.
装置实施例Device embodiment
本实施例提供了一种高光谱影像小样本分类装置,如图6所示,该装置包括处理器、存储器,存储器中存储有可在处理器上运行的计算机程序,所述处理器在执行所述计算机程序时实现上述方法实施例中的方法。This embodiment provides an apparatus for classifying small samples of hyperspectral images. As shown in FIG. 6 , the apparatus includes a processor and a memory. The memory stores a computer program that can be run on the processor. When the computer program is implemented, the methods in the above method embodiments are implemented.
也就是说,以上方法实施例中的方法应理解为可由计算机程序指令实现高光谱影像小样本分类方法的流程。可提供这些计算机程序指令到处理器,使得通过处理器执行这些指令产生用于实现上述方法流程所指定的功能。That is to say, the methods in the above method embodiments should be understood as the process of implementing the method for classifying small samples of hyperspectral images by computer program instructions. The computer program instructions may be provided to a processor such that execution by the processor of the instructions results in the implementation of the functions specified by the above-described method flows.
本实施例所指的处理器是指微处理器MCU或可编程逻辑器件FPGA等的处理装置。The processor in this embodiment refers to a processing device such as a microprocessor MCU or a programmable logic device FPGA.
本实施例所指的存储器包括用于存储信息的物理装置,通常是将信息数字化后再以利用电、磁或者光学等方式的媒体加以存储。例如:利用电能方式存储信息的各式存储器,RAM、ROM等;利用磁能方式存储信息的的各式存储器,硬盘、软盘、磁带、磁芯存储器、磁泡存储器、U盘;利用光学方式存储信息的各式存储器,CD或DVD。当然,还有其他方式的存储器,例如量子存储器、石墨烯存储器等等。The memory referred to in this embodiment includes a physical device for storing information. Usually, the information is digitized and then stored in an electrical, magnetic, or optical medium. For example: all kinds of memories that use electrical energy to store information, RAM, ROM, etc.; all kinds of memories that use magnetic energy to store information, hard disks, floppy disks, magnetic tapes, magnetic core memories, magnetic bubble memories, U disks; use optical methods to store information of all kinds of memory, CD or DVD. Of course, there are other ways of memory, such as quantum memory, graphene memory, and so on.
通过上述存储器、处理器以及计算机程序构成的装置,在计算机中由处理器执行相应的程序指令来实现,处理器可以搭载各种操作系统,如windows操作系统、linux系统、android、iOS系统等。The device constituted by the above-mentioned memory, processor and computer program is realized by the processor executing corresponding program instructions in the computer, and the processor can be equipped with various operating systems, such as windows operating system, linux system, android, iOS system, etc.
作为其他实施方式,装置还可以包括显示器,显示器用于将分类结果展示出来,以供工作人员参考。As another implementation manner, the apparatus may further include a display, and the display is used for displaying the classification result for reference by the staff.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010256094.4A CN111476287A (en) | 2020-04-02 | 2020-04-02 | A kind of hyperspectral image small sample classification method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010256094.4A CN111476287A (en) | 2020-04-02 | 2020-04-02 | A kind of hyperspectral image small sample classification method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111476287A true CN111476287A (en) | 2020-07-31 |
Family
ID=71749647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010256094.4A Pending CN111476287A (en) | 2020-04-02 | 2020-04-02 | A kind of hyperspectral image small sample classification method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111476287A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112749752A (en) * | 2021-01-15 | 2021-05-04 | 中国人民解放军战略支援部队信息工程大学 | Hyperspectral image classification method based on depth transform |
CN112766106A (en) * | 2021-01-08 | 2021-05-07 | 河海大学 | Remote sensing building detection method |
CN112949416A (en) * | 2021-02-04 | 2021-06-11 | 东华理工大学 | Supervised hyperspectral multi-scale graph volume integral classification method |
CN113111863A (en) * | 2021-05-13 | 2021-07-13 | 辽宁工程技术大学 | Graph convolution network hyperspectral classification method based on micro batch processing and cascade fusion |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106772682A (en) * | 2016-12-31 | 2017-05-31 | 华中科技大学 | A kind of infrared radiation spectrum Simulation Analysis method of moving-target |
WO2018045626A1 (en) * | 2016-09-07 | 2018-03-15 | 深圳大学 | Super-pixel level information fusion-based hyperspectral image classification method and system |
CN108182449A (en) * | 2017-12-25 | 2018-06-19 | 南京信息工程大学 | A kind of hyperspectral image classification method |
CN108280396A (en) * | 2017-12-25 | 2018-07-13 | 西安电子科技大学 | Hyperspectral image classification method based on depth multiple features active migration network |
CN108427913A (en) * | 2018-02-05 | 2018-08-21 | 中国地质大学(武汉) | The Hyperspectral Image Classification method of combined spectral, space and hierarchy information |
US20180260657A1 (en) * | 2016-11-01 | 2018-09-13 | Shenzhen University | Method and system for extracting and classifying features of hyperspectral remote sensing image |
CN106022355B (en) * | 2016-05-09 | 2019-03-29 | 西北工业大学 | High spectrum image sky based on 3DCNN composes joint classification method |
CN109858477A (en) * | 2019-02-01 | 2019-06-07 | 厦门大学 | The Raman spectrum analysis method of object is identified in complex environment with depth forest |
-
2020
- 2020-04-02 CN CN202010256094.4A patent/CN111476287A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106022355B (en) * | 2016-05-09 | 2019-03-29 | 西北工业大学 | High spectrum image sky based on 3DCNN composes joint classification method |
WO2018045626A1 (en) * | 2016-09-07 | 2018-03-15 | 深圳大学 | Super-pixel level information fusion-based hyperspectral image classification method and system |
US20180260657A1 (en) * | 2016-11-01 | 2018-09-13 | Shenzhen University | Method and system for extracting and classifying features of hyperspectral remote sensing image |
CN106772682A (en) * | 2016-12-31 | 2017-05-31 | 华中科技大学 | A kind of infrared radiation spectrum Simulation Analysis method of moving-target |
CN108182449A (en) * | 2017-12-25 | 2018-06-19 | 南京信息工程大学 | A kind of hyperspectral image classification method |
CN108280396A (en) * | 2017-12-25 | 2018-07-13 | 西安电子科技大学 | Hyperspectral image classification method based on depth multiple features active migration network |
CN108427913A (en) * | 2018-02-05 | 2018-08-21 | 中国地质大学(武汉) | The Hyperspectral Image Classification method of combined spectral, space and hierarchy information |
CN109858477A (en) * | 2019-02-01 | 2019-06-07 | 厦门大学 | The Raman spectrum analysis method of object is identified in complex environment with depth forest |
Non-Patent Citations (4)
Title |
---|
MAURO DALLA MURA等: "Morphological Attribute Profiles for the Analysis of Very High Resolution Images", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》 * |
任守纲等: "基于多尺度空谱鉴别特征的高光谱图像分类", 《计算机科学》 * |
薛志祥等: "融合光谱-空间多特征的高光谱影像张量特征提取", 《计算机工程》 * |
鲍蕊 等: "基于形态学属性剖面的高光谱影像集成分类", 《遥感技术与应用》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112766106A (en) * | 2021-01-08 | 2021-05-07 | 河海大学 | Remote sensing building detection method |
CN112766106B (en) * | 2021-01-08 | 2021-08-10 | 河海大学 | Remote sensing building detection method |
CN112749752A (en) * | 2021-01-15 | 2021-05-04 | 中国人民解放军战略支援部队信息工程大学 | Hyperspectral image classification method based on depth transform |
CN112749752B (en) * | 2021-01-15 | 2023-02-03 | 中国人民解放军战略支援部队信息工程大学 | A Hyperspectral Image Classification Method Based on Deep Transformer |
CN112949416A (en) * | 2021-02-04 | 2021-06-11 | 东华理工大学 | Supervised hyperspectral multi-scale graph volume integral classification method |
CN112949416B (en) * | 2021-02-04 | 2022-10-04 | 东华理工大学 | A Supervised Hyperspectral Multiscale Graph Convolutional Classification Method |
CN113111863A (en) * | 2021-05-13 | 2021-07-13 | 辽宁工程技术大学 | Graph convolution network hyperspectral classification method based on micro batch processing and cascade fusion |
CN113111863B (en) * | 2021-05-13 | 2023-11-24 | 辽宁工程技术大学 | Graph convolutional network hyperspectral classification method based on micro-batch processing and cascade fusion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110298396B (en) | Hyperspectral image classification method based on deep learning multi-feature fusion | |
CN111476287A (en) | A kind of hyperspectral image small sample classification method and device | |
Liu et al. | Automatic grape bunch detection in vineyards with an SVM classifier | |
CN106372648B (en) | Plankton image classification method based on multi-feature fusion convolutional neural network | |
CN104268593B (en) | The face identification method of many rarefaction representations under a kind of Small Sample Size | |
CN102496034B (en) | High-spatial resolution remote-sensing image bag-of-word classification method based on linear words | |
CN109766858A (en) | Three-dimensional convolution neural network hyperspectral image classification method combined with bilateral filtering | |
CN109446985B (en) | Multi-angle Plant Recognition Method Based on Vector Neural Network | |
CN109726725B (en) | A method for oil painting author recognition based on multi-kernel learning of large interval inter-class mutual dissimilarity | |
Zhu et al. | Diverse sample generation with multi-branch conditional generative adversarial network for remote sensing objects detection | |
Majid et al. | An Integrated Deep Learning Framework for Fruits Diseases Classification. | |
CN110021028A (en) | A kind of automatic clothing method based on garment fashion drawing | |
Zhang et al. | Improved adaptive image retrieval with the use of shadowed sets | |
CN111507409A (en) | A hyperspectral image classification method and device based on deep multi-view learning | |
CN114419430A (en) | A method and device for extracting cultivated land blocks based on SE-U-Net++ model | |
CN106845551A (en) | A kind of histopathology image-recognizing method | |
CN103390170A (en) | Surface feature type texture classification method based on multispectral remote sensing image texture elements | |
CN104850859A (en) | Multi-scale analysis based image feature bag constructing method | |
CN109993213A (en) | An Automatic Recognition Method for Apparel Parts Diagram | |
CN109002771B (en) | Remote sensing image classification method based on recurrent neural network | |
Yang et al. | Maize stem–leaf segmentation framework based on deformable point clouds | |
Cheng et al. | A two-stage convolutional sparse coding network for hyperspectral image classification | |
CN103903010A (en) | Method for classifying hyperspectral images based on sparse characteristics and same neighborhood properties | |
CN108363962A (en) | A kind of method for detecting human face and system based on multi-level features deep learning | |
Pawar et al. | Region based image classification using watershed transform techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200731 |