[go: up one dir, main page]

CN111458793A - LNOI-based ridge-type optical waveguide end-face coupling structure and its application - Google Patents

LNOI-based ridge-type optical waveguide end-face coupling structure and its application Download PDF

Info

Publication number
CN111458793A
CN111458793A CN202010309288.6A CN202010309288A CN111458793A CN 111458793 A CN111458793 A CN 111458793A CN 202010309288 A CN202010309288 A CN 202010309288A CN 111458793 A CN111458793 A CN 111458793A
Authority
CN
China
Prior art keywords
waveguide core
ridge
core layer
region
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010309288.6A
Other languages
Chinese (zh)
Inventor
李金野
刘建国
戴双兴
于文琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN202010309288.6A priority Critical patent/CN111458793A/en
Publication of CN111458793A publication Critical patent/CN111458793A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种LNOI基脊型光波导端面耦合结构及其应用,该LNOI基脊型光波导端面耦合结构包括衬底;绝缘层;脊型波导区,包括:第一波导芯层平板区、第一波导芯层脊型区、第二波导芯层平板区和第二波导芯层脊型区;以及第三波导芯层。本发明的结构中通过使第二波导芯层脊型区和第二波导芯层平板区分层不同步缩小成楔形结构,使第二波导芯层脊型区楔形尖端不需要尺寸很小即可将光场转换到平板区继续传输,然后在平板区楔形尖端泄露扩展到第三波导芯层继续传输,降低了小尺寸结构的制备工艺难度;本发明的结构能够实现LNOI芯片与光纤的高效率耦合,有利于实现大规模光子集成。

Figure 202010309288

An LNOI-based ridge-type optical waveguide end-face coupling structure and application thereof. The LNOI-based ridge-type optical waveguide end-face coupling structure comprises a substrate; an insulating layer; a core layer ridge region, a second waveguide core layer slab region, and a second waveguide core layer ridge region; and a third waveguide core layer. In the structure of the present invention, the ridge region of the second waveguide core layer and the flat plate partition layer of the second waveguide core layer are asynchronously reduced into a wedge-shaped structure, so that the wedge-shaped tip of the ridge region of the second waveguide core layer does not need to be small in size. The optical field is converted to the flat plate area for continuous transmission, and then the wedge-shaped tip leaks in the flat plate area and extends to the third waveguide core layer for continuous transmission, which reduces the difficulty of the preparation process of the small-sized structure; the structure of the invention can realize the high efficiency of the LNOI chip and the optical fiber coupling, which is conducive to the realization of large-scale photonic integration.

Figure 202010309288

Description

LNOI基脊型光波导端面耦合结构及其应用LNOI-based ridge-type optical waveguide end-face coupling structure and its application

技术领域technical field

本发明属于集成光学领域,更具体地涉及一种LNOI基脊型光波导端面耦合结构及其应用。The invention belongs to the field of integrated optics, and more particularly relates to an LNOI-based ridge-type optical waveguide end-face coupling structure and its application.

背景技术Background technique

铌酸锂晶体在常温下是一种铁电体,具备优良的电光效应、压电效应、热电效应、铁电效应以及非线性光学性质,而绝缘体上的铌酸锂(Lithium niobate on insulator,LNOI)具备铌酸锂晶体的优异性质,单晶性高,折射率对比差大,限光能力强,被广泛应用于集成光学中的各类光电器件研究中,比如光耦合器、滤波器、频率转换器、谐振腔、电光调制器等无源和有源器件。而光纤与波导器件之间的耦合是集成光学中的一个重要研究内容,随着对单晶铌酸锂薄膜器件的研究和应用,光纤与LNOI器件之间的高效耦合成为一个重要的问题,常用耦合方式分为表面光栅耦合和端面耦合两大类,波导光栅耦合器利用波导上周期性刻蚀的光栅的衍射作用,来实现光栅衍射场的相位调制,从而实现光纤与波导表面耦合,但光栅耦合器的设计需要复杂的理论计算,在薄膜上制备困难,制作后也无法进一步调整,且垂直耦合的光路难以实现波导器件的气密性封装;而传统的对接耦合直接将光纤与波导端面对准实现耦合,对准容差小且耦合效率低,很难将光高效地耦合进入尺度相差很大的薄膜器件中,对于小尺寸脊型光波导的耦合难度更是增加。Lithium niobate crystal is a ferroelectric at room temperature with excellent electro-optic effect, piezoelectric effect, pyroelectric effect, ferroelectric effect and nonlinear optical properties, while lithium niobate on insulator (Lithium niobate on insulator, LNOI ) has the excellent properties of lithium niobate crystal, high single crystallinity, large refractive index contrast difference, strong light limiting ability, and is widely used in the research of various optoelectronic devices in integrated optics, such as optical couplers, filters, frequency Passive and active devices such as converters, resonators, electro-optic modulators. The coupling between optical fibers and waveguide devices is an important research content in integrated optics. With the research and application of single crystal lithium niobate thin film devices, the efficient coupling between optical fibers and LNOI devices has become an important issue. Commonly used The coupling methods are divided into two categories: surface grating coupling and end-face coupling. The waveguide grating coupler utilizes the diffraction effect of the periodically etched grating on the waveguide to realize the phase modulation of the grating diffraction field, thereby realizing the coupling between the optical fiber and the waveguide surface, but the grating effect. The design of the coupler requires complex theoretical calculations, it is difficult to prepare on the film, and it cannot be further adjusted after fabrication, and it is difficult to realize the airtight packaging of the waveguide device with the optical path of vertical coupling; while the traditional butt coupling directly connects the optical fiber to the waveguide end face. Alignment realizes coupling, with small alignment tolerance and low coupling efficiency, it is difficult to efficiently couple light into thin-film devices with large scale differences, and the coupling difficulty for small-sized ridge-type optical waveguides is even more difficult.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明的主要目的之一在于提出一种LNOI基脊型光波导端面耦合结构及其应用,以期至少部分地解决上述技术问题中的至少之一。In view of this, one of the main purposes of the present invention is to propose an LNOI-based ridge-type optical waveguide end-face coupling structure and its application, so as to at least partially solve at least one of the above technical problems.

为了实现上述目的,作为本发明的一个方面,提供了一种LNOI基脊型光波导端面耦合结构,包括:In order to achieve the above purpose, as an aspect of the present invention, an LNOI-based ridge-type optical waveguide end-face coupling structure is provided, including:

衬底;substrate;

绝缘层,其设置在衬底上;an insulating layer disposed on the substrate;

脊型波导区,包括:第一波导芯层平板区,设置在绝缘层上,为固定宽度部分;第一波导芯层脊型区,设置在第一波导芯层平板区上,为固定宽度部分;第二波导芯层平板区,设置在绝缘层上,与第一波导芯层平板区相接触,为反向楔形部分;以及第二波导芯层脊型区,设置在第一波导芯层平板区和第二波导芯层平板区上,与第一波导芯层脊型区相接触,为反向楔形部分;以及The ridge-type waveguide region includes: a first waveguide core-layer slab region, which is arranged on the insulating layer and is a fixed-width portion; a first waveguide core-layer ridge-type region, which is arranged on the first waveguide core layer slab region and is a fixed-width portion ; a second waveguide core plate area, disposed on the insulating layer, in contact with the first waveguide core plate area, and is a reverse wedge-shaped part; and a second waveguide core layer ridge area, disposed in the first waveguide core layer plate On the second waveguide core layer slab region and the second waveguide core layer plate region, in contact with the first waveguide core layer ridge region, it is a reverse wedge-shaped part; and

第三波导芯层,其折射率小于脊型波导区的折射率且大于空气的折射率,为固定宽度部分。The third waveguide core layer, whose refractive index is smaller than that of the ridge waveguide region and greater than that of air, is a fixed width portion.

作为本发明的另一个方面,还提供了如上所述的LNOI基脊型光波导端面耦合结构在集成光学领域的应用。As another aspect of the present invention, an application of the above-mentioned LNOI-based ridge-type optical waveguide end-face coupling structure in the field of integrated optics is also provided.

基于上述技术方案可知,本发明的LNOI基脊型光波导端面耦合结构及其应用相对于现有技术至少具有以下优势之一:Based on the above technical solutions, the LNOI-based ridge-type optical waveguide end-face coupling structure and its application of the present invention have at least one of the following advantages over the prior art:

1、本发明的结构中制备有反向楔形波导芯层结构,可以选择为单纯的水平方向制备为楔形,单纯的垂直方向制备为楔形,或者水平方向和垂直方向都制备为楔形,实现波导中光场在水平和垂直方向的扩展,LNOI芯片(LN薄膜厚度<1微米)中的亚微米级光模场经过扩展实现与光纤中微米级光场的高效匹配,提高耦合效率;1. The structure of the present invention is prepared with a reverse wedge-shaped waveguide core layer structure, which can be selected as a wedge shape in a pure horizontal direction, a wedge shape in a pure vertical direction, or a wedge shape in both the horizontal direction and the vertical direction. The expansion of the optical field in the horizontal and vertical directions, the sub-micron optical mode field in the LNOI chip (LN film thickness < 1 micron) is expanded to achieve efficient matching with the micron optical field in the fiber, improving the coupling efficiency;

2、本发明的结构中通过使第二波导芯层脊型区和第二波导芯层平板区分层不同步缩小成楔形结构,使第二波导芯层脊型区楔形尖端不需要尺寸很小即可将光场转换到平板区继续传输,然后在平板区楔形尖端泄露扩展到第三波导芯层继续传输,降低了小尺寸结构(小脊型)的制备工艺难度;2. In the structure of the present invention, the ridge-shaped region of the second waveguide core layer and the flat-plate partition layer of the second waveguide core layer are asynchronously reduced into a wedge-shaped structure, so that the wedge-shaped tip of the ridge-shaped region of the second waveguide core layer does not need to be small in size. The light field can be converted to the flat plate area for continuous transmission, and then the wedge-shaped tip leaks in the flat plate area and extends to the third waveguide core layer for continuous transmission, which reduces the difficulty of the fabrication process of small-sized structures (small ridges);

3、本发明的结构中在与光纤端面耦合的第三波导芯层的端面镀了增透膜,减小了光场的反射损耗,进一步提高耦合效率;3. In the structure of the present invention, the end face of the third waveguide core layer coupled with the end face of the optical fiber is coated with an anti-reflection film, which reduces the reflection loss of the optical field and further improves the coupling efficiency;

4、本发明的结构能够实现LNOI芯片与光纤的高效率耦合,有利于实现大规模光子集成。4. The structure of the present invention can realize high-efficiency coupling between the LNOI chip and the optical fiber, which is beneficial to realize large-scale photonic integration.

附图说明Description of drawings

图1是本发明一实施例的LNOI基脊型光波导端面耦合结构的结构示意图;1 is a schematic structural diagram of an LNOI-based ridge-type optical waveguide end-face coupling structure according to an embodiment of the present invention;

图2是图1的俯视图。FIG. 2 is a plan view of FIG. 1 .

上图中,附图标记含义如下:In the above figure, the reference symbols have the following meanings:

1-衬底;2-绝缘层;3-第一波导芯层平板区;4-第一波导芯层脊型区;5-第二波导芯层脊型区;6-第二波导芯层平板区;7-第三波导芯层;8-增透膜。1-substrate; 2-insulating layer; 3-first waveguide core layer slab area; 4-first waveguide core layer ridge-type region; 5-second waveguide core layer ridge-type region; 6-second waveguide core layer slab region; 7- the third waveguide core layer; 8- anti-reflection coating.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

本发明利用脊型光波导芯层在宽度上和高度上的分层变化,以及在第三波导耦合端镀增透膜,实现了光场从脊波导传输到光纤过程中在水平和垂直方向扩展的同时,增加了第二波导脊型区楔形尖端的几何尺寸,降低了小尺寸结构的工艺制备难度,提高了LNOI波导和光纤的模场匹配度,减小了光耦合反射损耗,最终实现脊型光波导亚微米光模场与微米光纤模场的跨尺度高效率端面耦合,有利于实现光路的大规模集成。The invention utilizes the layered changes in the width and height of the core layer of the ridge optical waveguide, and coats the anti-reflection film on the coupling end of the third waveguide, so as to realize the horizontal and vertical expansion of the optical field during the transmission from the ridge waveguide to the optical fiber. At the same time, the geometric size of the wedge-shaped tip of the second waveguide ridge region is increased, which reduces the difficulty of fabrication of small-sized structures, improves the mode field matching between the LNOI waveguide and the optical fiber, reduces the optical coupling reflection loss, and finally realizes the ridge. The cross-scale high-efficiency end-face coupling between the sub-micron optical mode field of the optical waveguide and the micron optical fiber mode field is conducive to the realization of large-scale integration of optical paths.

本发明公开了一种LNOI基脊型光波导端面耦合结构,包括:The invention discloses an LNOI-based ridge-type optical waveguide end-face coupling structure, comprising:

衬底;substrate;

绝缘层,其设置在衬底上;an insulating layer disposed on the substrate;

脊型波导区,包括:第一波导芯层平板区,设置在绝缘层上,为固定宽度部分;第一波导芯层脊型区,设置在第一波导芯层平板区上,为固定宽度部分;第二波导芯层平板区,设置在绝缘层上,与第一波导芯层平板区相接触,为反向楔形部分;以及第二波导芯层脊型区,设置在第一波导芯层平板区和第二波导芯层平板区上,与第一波导芯层脊型区相接触,为反向楔形部分;以及The ridge-type waveguide region includes: a first waveguide core-layer slab region, which is arranged on the insulating layer and is a fixed-width portion; a first waveguide core-layer ridge-type region, which is arranged on the first waveguide core layer slab region and is a fixed-width portion ; a second waveguide core plate area, disposed on the insulating layer, in contact with the first waveguide core plate area, and is a reverse wedge-shaped part; and a second waveguide core layer ridge area, disposed in the first waveguide core layer plate On the second waveguide core layer slab region and the second waveguide core layer plate region, in contact with the first waveguide core layer ridge region, it is a reverse wedge-shaped part; and

第三波导芯层,其折射率小于脊型波导区的折射率且大于空气的折射率,为固定宽度部分。The third waveguide core layer, whose refractive index is smaller than that of the ridge waveguide region and greater than that of air, is a fixed width portion.

在本发明的一些实施例中,所述第二波导芯层脊型区和第二波导芯层平板区分层不同步缩小成楔形结构。In some embodiments of the present invention, the ridge region of the second waveguide core layer and the flat plate region of the second waveguide core layer are not synchronously reduced into a wedge-shaped structure.

在本发明的一些实施例中,所述第二波导芯层平板区和第二波导芯层脊型区的反向楔形部分的尖端方向均指向LNOI芯片与光纤的耦合端。In some embodiments of the present invention, both the tip directions of the flat plate region of the second waveguide core layer and the opposite wedge-shaped portion of the ridge region of the second waveguide core layer point toward the coupling end of the LNOI chip and the optical fiber.

在本发明的一些实施例中,所述第二波导芯层平板区和第二波导芯层脊型区的反向楔形区的楔形部分的减小方向包括宽度方向或高度方向中的任一种或两种结合。In some embodiments of the present invention, the decreasing direction of the wedge-shaped portion of the opposite wedge-shaped region of the flat plate region of the second waveguide core layer and the ridge region of the second waveguide core layer includes any one of a width direction or a height direction or a combination of both.

在本发明的一些实施例中,所述衬底采用的材料包括铌酸锂、石英或硅中的任一种;In some embodiments of the present invention, the material used for the substrate includes any one of lithium niobate, quartz or silicon;

在本发明的一些实施例中,所述绝缘层采用的材料包括二氧化硅,厚度为1至5微米。In some embodiments of the present invention, the material used for the insulating layer includes silicon dioxide, and the thickness is 1 to 5 microns.

在本发明的一些实施例中,所述脊型波导区采用的材料包括铌酸锂;In some embodiments of the present invention, the material used in the ridge waveguide region includes lithium niobate;

在本发明的一些实施例中,所述脊型波导区的厚度小于1微米。In some embodiments of the present invention, the thickness of the ridge waveguide region is less than 1 micron.

在本发明的一些实施例中,所述第三波导芯层采用的材料包括二氧化硅。In some embodiments of the present invention, the material used for the third waveguide core layer includes silicon dioxide.

在本发明的一些实施例中,所述第一波导芯层脊型区和第一波导芯层平板区的光模场面积均小于1平方微米;In some embodiments of the present invention, the optical mode field areas of the first waveguide core ridge region and the first waveguide core flat region are both less than 1 square micrometer;

在本发明的一些实施例中,所述第三波导芯层端面光模场直径为2.5微米至6微米之间。In some embodiments of the present invention, the diameter of the optical mode field at the end face of the third waveguide core layer is between 2.5 μm and 6 μm.

在本发明的一些实施例中,所述端面耦合结构还包括用于减少光场反射的增透膜,所述增透膜设置在第三波导芯层固定宽度区的耦合端端面上。In some embodiments of the present invention, the end-face coupling structure further includes an anti-reflection film for reducing light field reflection, the anti-reflection film is disposed on the coupling end face of the fixed width region of the third waveguide core layer.

本发明还公开了如上所述的LNOI基脊型光波导端面耦合结构在集成光学领域的应用。The invention also discloses the application of the above-mentioned LNOI-based ridge-type optical waveguide end-face coupling structure in the field of integrated optics.

在一个示例性实施例中,本发明公开了一种LNOI基光波导端面耦合结构,包括:In an exemplary embodiment, the present invention discloses an LNOI-based optical waveguide end-face coupling structure, comprising:

第一波导芯层平板区,其材料属性为LNOI体系最上层的LN(铌酸锂),为固定宽度部分;The flat plate region of the first waveguide core layer, whose material property is LN (lithium niobate) in the uppermost layer of the LNOI system, is a fixed width part;

第一波导芯层脊型区,其材料属性为LNOI体系最上层的LN,为固定宽度部分;The ridge-type region of the first waveguide core layer, whose material property is the LN of the uppermost layer of the LNOI system, is a fixed width part;

第二波导芯层平板区,其材料属性为LNOI体系最上层的LN,为反向楔形部分;The second waveguide core plate area, whose material properties are the LN of the uppermost layer of the LNOI system, is an inverse wedge-shaped part;

第二波导芯层脊型区,其材料属性为LNOI体系最上层的LN,为反向楔形部分;The ridge region of the second waveguide core layer has the material property of the uppermost LN of the LNOI system, which is an inverse wedge-shaped part;

第三波导芯层,其材料属性为折射率小于LN但大于空气,为固定宽度部分;The third waveguide core layer, whose material property is that the refractive index is smaller than LN but larger than air, is a fixed width part;

增透膜,用于减少端面耦合光场的反射;Anti-reflection coating to reduce reflection of end-coupled light fields;

衬底,用于支撑整体薄膜结构;a substrate for supporting the overall thin film structure;

绝缘层,衬底和最上层LN薄膜之间的部分。The insulating layer, the part between the substrate and the uppermost LN film.

其中,绝缘层粘附于衬底上,LN薄膜层粘附于绝缘层上,增透膜镀于第三波导芯层耦合端端面;Wherein, the insulating layer is adhered to the substrate, the LN film layer is adhered to the insulating layer, and the anti-reflection film is coated on the coupling end face of the third waveguide core layer;

其中,所述衬底通常为铌酸锂,石英或者硅材料;Wherein, the substrate is usually lithium niobate, quartz or silicon material;

其中,绝缘层通常为二氧化硅材料,厚度通常在1-5微米之间;Among them, the insulating layer is usually made of silicon dioxide material, and the thickness is usually between 1-5 microns;

其中,LNOI最上层制备超薄薄膜器件的LN层厚度<1微米;Among them, the LN layer thickness of the ultra-thin thin film device prepared by the uppermost layer of LNOI is less than 1 micron;

其中,所述第三波导芯层为折射率尽量接近空气的材料,以减小反射,可以为SiO2材料;Wherein, the third waveguide core layer is a material whose refractive index is as close to air as possible to reduce reflection, and may be a SiO 2 material;

其中,所述反向楔形部分的尖端方向指向LNOI芯片与光纤的耦合端;Wherein, the tip direction of the reverse wedge-shaped portion points to the coupling end of the LNOI chip and the optical fiber;

其中,所述第一波导芯层脊型区初始的脊型波导光模场面积小于1平方微米;Wherein, the initial ridge waveguide optical mode field area of the ridge region of the first waveguide core layer is less than 1 square micrometer;

其中,所述第三波导端面光模场直径(Mode Filed Diameter,MFD)为2.5-6微米之间;Wherein, the mode field diameter (Mode Field Diameter, MFD) of the third waveguide end face is between 2.5-6 microns;

其中,单模光纤可以选择为透镜/拉锥光纤,光模场直径在2.5-6微米之间。Among them, the single-mode fiber can be selected as a lens/tapered fiber, and the optical mode field diameter is between 2.5-6 microns.

其中,所述第一波导芯层平板区和脊型区为LNOI片上无源或有源器件中的正常光传输波导部分;Wherein, the flat plate region and the ridge region of the first waveguide core layer are the normal optical transmission waveguide part in the passive or active device on the LNOI chip;

所述第二波导芯层平板区可以在水平和垂直方向都减小形成楔形,以实现楔形尖端的光场在两个方向的扩展;The flat plate area of the second waveguide core layer can be reduced in both horizontal and vertical directions to form a wedge shape, so as to realize the expansion of the light field of the wedge-shaped tip in both directions;

所述第二波导芯层脊型区可以在水平和垂直方向都减小形成楔形,以实现楔形尖端的光场在两个方向的扩展;The ridge region of the second waveguide core layer can be reduced in both the horizontal and vertical directions to form a wedge shape, so as to realize the expansion of the light field of the wedge-shaped tip in both directions;

所述第二波导芯层平板区和第二波导芯层脊型区不同步缩小成楔形,第二波导芯层脊型区缩小到一定尺寸使脊型部分光场转换到第二波导芯层平板区中继续传输即可;The second waveguide core plate area and the second waveguide core ridge area are not synchronously reduced into a wedge shape, and the second waveguide core ridge area is reduced to a certain size so that the ridge part of the light field is converted to the second waveguide core layer plate You can continue to transmit in the area;

所述第三波导芯层中的光模场与单模光纤的光模场实现匹配耦合。The optical mode field in the third waveguide core layer and the optical mode field of the single-mode fiber realize matching coupling.

所述第二波导芯层脊型区和第二波导芯层平板区分层不同步缩小成楔形结构,使第二波导芯层脊型区楔形尖端不需要尺寸很小即可将光场转换到平板区继续传输,然后在平板区楔形尖端泄露扩展到第三波导芯层继续传输,降低了小尺寸结构(小脊型)的制备工艺难度;The ridge region of the second waveguide core layer and the flat plate region of the second waveguide core layer are asynchronously reduced into a wedge-shaped structure, so that the wedge-shaped tip of the ridge region of the second waveguide core layer does not need to be small in size to convert the optical field to The flat plate area continues to transmit, and then the wedge-shaped tip leaks in the flat area and extends to the third waveguide core layer and continues to transmit, which reduces the difficulty of the fabrication process of small-sized structures (small ridges);

所述第三波导芯层中的光模场与单模光纤的光模场匹配度增加,耦合效率增加,而且第三波导芯层耦合端面镀了增透膜,减小了光场反射,进一步提高了耦合效率。The matching degree of the optical mode field in the third waveguide core layer and the optical mode field of the single-mode fiber is increased, and the coupling efficiency is increased, and the coupling end face of the third waveguide core layer is coated with an anti-reflection coating, which reduces the reflection of the optical field, further The coupling efficiency is improved.

如果第二波导芯层平板区和脊型区同步开始缩小为楔形并同步结束,则楔形尖端的尺寸需要做到非常小才能将光场泄漏同时扩展到第三波导芯层中继续传输,形成和光纤匹配的光场;If the slab region and ridge region of the second waveguide core start to shrink into a wedge and end synchronously, the size of the wedge tip needs to be very small to simultaneously expand the light field leakage into the third waveguide core and continue to transmit, forming and Fiber-matched light field;

脊型波导楔形结构的平板区和脊型区在工艺上是分步完成,尖端的尺寸受限于图形制备精度,尺寸越小,制备工艺难度越大,成品率越低;The flat area and the ridge area of the wedge-shaped structure of the ridge waveguide are completed in steps in the process, and the size of the tip is limited by the precision of pattern preparation. The smaller the size, the more difficult the preparation process and the lower the yield;

所述第二波导芯层脊型区先缩小成楔形,随后第二波导芯层平板区也缩小成楔形,脊型区可以在尺寸不那么小的情况下即可将光场转换到平板区继续传输,然后在平板区楔形尖端泄露扩展到第三波导芯层继续传输,最终与光纤实现模场匹配。The ridge region of the second waveguide core layer is first reduced to a wedge shape, and then the flat plate region of the second waveguide core layer is also reduced to a wedge shape, and the ridge region can convert the light field to the flat plate region even when the size is not so small. Then the wedge-shaped tip leaks at the flat plate area and extends to the third waveguide core layer for further transmission, and finally achieves mode field matching with the optical fiber.

上述LNOI上制备有反向楔形波导芯层结构,可以选择为单纯的水平方向制备为楔形,单纯的垂直方向制备为楔形,或者水平方向和垂直方向都制备为楔形,实现波导中光场在水平和垂直方向的扩展,LNOI芯片(LN薄膜厚度<1微米)中的亚微米级光模场经过扩展实现与光纤中微米级光场的高效匹配,提高耦合效率;The above-mentioned LNOI is prepared with a reverse wedge-shaped waveguide core layer structure, which can be selected as a wedge shape in a pure horizontal direction, a wedge shape in a pure vertical direction, or a wedge shape in both the horizontal and vertical directions, so as to realize the optical field in the waveguide in the horizontal direction. and vertical expansion, the sub-micron optical mode field in the LNOI chip (LN film thickness < 1 micron) can be extended to achieve efficient matching with the micron optical field in the fiber and improve the coupling efficiency;

上述第二波导芯层脊型区和第二波导芯层平板区分层不同步缩小成楔形结构,使第二波导芯层脊型区楔形尖端不需要尺寸很小即可将光场转换到平板区继续传输,然后在平板区楔形尖端泄露扩展到第三波导芯层继续传输,降低了小尺寸结构(小脊型)的制备工艺难度;The ridge region of the second waveguide core layer and the flat plate region of the second waveguide core layer are asynchronously reduced into a wedge-shaped structure, so that the wedge-shaped tip of the ridge region of the second waveguide core layer does not need to be small in size to convert the light field to a flat plate Then the wedge-shaped tip leaks in the flat plate area and extends to the third waveguide core layer and continues to transmit, which reduces the difficulty of the fabrication process of small-sized structures (small ridges);

上述与光纤端面耦合的第三波导芯层的端面镀了增透膜,减小了光场的反射损耗,进一步提高了耦合效率,有利于实现大规模光子集成。The end face of the third waveguide core layer coupled with the end face of the optical fiber is coated with an anti-reflection film, which reduces the reflection loss of the optical field, further improves the coupling efficiency, and is conducive to realizing large-scale photon integration.

以下通过具体实施例结合附图对本发明的技术方案做进一步阐述说明。需要注意的是,下述的具体实施例仅是作为举例说明,本发明的保护范围并不限于此。The technical solutions of the present invention will be further described below through specific embodiments and accompanying drawings. It should be noted that the following specific embodiments are only for illustration, and the protection scope of the present invention is not limited thereto.

如图1和图2所示,本实施例提供了一种LNOI基脊型光波导端面耦合结构,包括衬底1,绝缘层2,第一波导芯层平板区3,第一波导芯层脊型区4,第二波导芯层脊型区5,第二波导芯层平板区6,第三波导芯层7,增透膜8。As shown in FIG. 1 and FIG. 2 , this embodiment provides an LNOI-based ridge-type optical waveguide end-face coupling structure, including a substrate 1, an insulating layer 2, a first waveguide core layer slab region 3, and a first waveguide core layer ridge Molded region 4 , ridged region 5 of the second waveguide core layer, slab region 6 of the second waveguide core layer, third waveguide core layer 7 , anti-reflection coating 8 .

衬底1上面是绝缘层2,绝缘层2上面是LN薄膜层,通常超薄薄膜层的厚度小于1微米,在最上层LN薄膜上制备脊型光波导,第一波导芯层脊型区4和第一波导芯层平板区3结合展示了正常光场传输的截面结构,第二波导芯层脊型区5和第二波导芯层平板区6分层不同步制备成反向楔形结构,反向楔形部分朝向LNOI芯片与单模光纤耦合端,光场从第一波导芯层平板区3和第一波导芯层脊型区4传输到第二波导芯层脊型区5和第二波导芯层平板区6,其中光场在第二波导芯层脊型区5的尖端处泄露到第二波导芯层平板区6中继续传输,到第二波导芯层平板区6的尖端泄露扩散到第三波导芯层7中继续传输,最终在第三波导芯层7的端面与光纤耦合,光场会跟随楔形的形式(上述单纯水平楔形,单纯垂直楔形和水平+垂直楔形)进行相应方向上光模场的扩展,从而实现LNOI芯片中的亚微米级光模场到光纤中微米级光场的转换,实现高效率耦合;脊型波导楔形结构的平板区和脊型区在工艺上是分步完成,尖端的尺寸受限于图形制备精度,尺寸越小,制备工艺难度越大,成品率越低;The insulating layer 2 is on the substrate 1, and the LN film layer is on the insulating layer 2. Usually, the thickness of the ultra-thin film layer is less than 1 micron. A ridge-type optical waveguide is prepared on the uppermost LN film. The first waveguide core layer ridge-type region 4 Combined with the first waveguide core slab region 3, it shows the cross-sectional structure of normal optical field transmission. The second waveguide core ridge region 5 and the second waveguide core slab region 6 are layered asynchronously to form an inverse wedge-shaped structure. Towards the wedge-shaped part toward the coupling end of the LNOI chip and the single-mode fiber, the optical field is transmitted from the first waveguide core slab region 3 and the first waveguide core ridge region 4 to the second waveguide core ridge region 5 and the second waveguide core layer plate region 6, wherein the light field leaks into the second waveguide core layer plate region 6 at the tip of the second waveguide core layer ridge region 5 and continues to transmit, to the tip of the second waveguide core layer plate region 6 leakage diffuses to the second waveguide core layer plate region 6. The transmission continues in the three waveguide core layers 7, and finally the end face of the third waveguide core layer 7 is coupled with the optical fiber, and the optical field will follow the wedge shape (the above-mentioned simple horizontal wedge, simple vertical wedge and horizontal + vertical wedge) to carry out light in the corresponding direction The expansion of the mode field, so as to realize the conversion of the sub-micron optical mode field in the LNOI chip to the micron optical field in the fiber, and realize high-efficiency coupling; the flat area and the ridge area of the ridge waveguide wedge structure are step-by-step in process Completed, the size of the tip is limited by the precision of graphic preparation, the smaller the size, the more difficult the preparation process and the lower the yield;

所述第二波导芯层脊型区5和第二波导芯层平板区6分层次不同步缩小成楔形,使第二波导芯层脊型区5的楔形尖端可以在尺寸不是很小的情况下即可将光场转换到第二波导芯层平板区6继续传输,然后在第二波导芯层平板区6的楔形尖端泄露扩展到第三波导芯层7继续传输,最终与光纤实现模场匹配,这降低了芯片上小尺寸结构(小脊型)的制备工艺难度;除此之外,为了进一步提高芯片与光纤的耦合效率,在第三波导芯层7与光纤耦合端端面镀了增透膜8,减小光模场的反射损耗,有利于实现大规模光子集成。The second waveguide core ridge region 5 and the second waveguide core slab region 6 are not synchronously reduced into a wedge shape in layers, so that the wedge-shaped tip of the second waveguide core ridge region 5 can be small in size. The optical field can be converted to the second waveguide core slab area 6 for continuous transmission, and then the wedge-shaped tip of the second waveguide core slab area 6 leaks and extends to the third waveguide core layer 7 for continued transmission, and finally achieves mode field matching with the optical fiber. , which reduces the difficulty of the preparation process of the small-scale structure (small ridge type) on the chip; in addition, in order to further improve the coupling efficiency between the chip and the fiber, the third waveguide core layer 7 and the fiber coupling end face are plated with antireflection The film 8 reduces the reflection loss of the optical mode field, which is beneficial to realize large-scale photonic integration.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned specific embodiments are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principle of the present invention, any modifications, equivalent replacements, improvements, etc. made should be included within the protection scope of the present invention.

Claims (10)

1.一种LNOI基脊型光波导端面耦合结构,包括:1. An LNOI-based ridge-type optical waveguide end-face coupling structure, comprising: 衬底;substrate; 绝缘层,其设置在衬底上;an insulating layer disposed on the substrate; 脊型波导区,包括:第一波导芯层平板区,设置在绝缘层上,为固定宽度部分;第一波导芯层脊型区,设置在第一波导芯层平板区上,为固定宽度部分;第二波导芯层平板区,设置在绝缘层上,与第一波导芯层平板区相接触,为反向楔形部分;以及第二波导芯层脊型区,设置在第一波导芯层平板区和第二波导芯层平板区上,与第一波导芯层脊型区相接触,为反向楔形部分;以及The ridge-type waveguide region includes: a first waveguide core-layer slab region, which is arranged on the insulating layer and is a fixed-width portion; a first waveguide core-layer ridge-type region, which is arranged on the first waveguide core layer slab region and is a fixed-width portion ; a second waveguide core plate area, disposed on the insulating layer, in contact with the first waveguide core plate area, and is a reverse wedge-shaped part; and a second waveguide core layer ridge area, disposed in the first waveguide core layer plate On the second waveguide core layer slab region and the second waveguide core layer plate region, in contact with the first waveguide core layer ridge region, it is a reverse wedge-shaped part; and 第三波导芯层,其折射率小于脊型波导区的折射率且大于空气的折射率,为固定宽度部分。The third waveguide core layer, whose refractive index is smaller than that of the ridge waveguide region and greater than that of air, is a fixed width portion. 2.根据权利要求1所述的LNOI基脊型光波导端面耦合结构,其特征在于,所述第二波导芯层脊型区和第二波导芯层平板区分层不同步缩小成楔形结构。2 . The LNOI-based ridge-type optical waveguide end-face coupling structure according to claim 1 , wherein the ridge-type region of the second waveguide core layer and the flat plate partition layer of the second waveguide core layer are asynchronously reduced into a wedge-shaped structure. 3 . 3.根据权利要求1所述的LNOI基脊型光波导端面耦合结构,其特征在于,所述第二波导芯层平板区和第二波导芯层脊型区的反向楔形部分的尖端方向均指向LNOI芯片与光纤的耦合端。3 . The LNOI-based ridge-type optical waveguide end-face coupling structure according to claim 1 , wherein the tip directions of the flat plate region of the second waveguide core layer and the reverse wedge-shaped portion of the ridge region of the second waveguide core layer are both oriented. 4 . Point to the coupling end of the LNOI chip and the fiber. 4.根据权利要求1所述的LNOI基脊型光波导端面耦合结构,其特征在于,所述第二波导芯层平板区和第二波导芯层脊型区的反向楔形区的楔形部分的减小方向包括宽度方向或高度方向中的任一种或两种结合。4 . The LNOI-based ridge-type optical waveguide end-face coupling structure according to claim 1 , wherein the flat plate region of the second waveguide core layer and the wedge-shaped portion of the reverse wedge-shaped region of the ridge-type region of the second waveguide core layer The decreasing direction includes either the width direction or the height direction or a combination of both. 5.根据权利要求1所述的LNOI基脊型光波导端面耦合结构,其特征在于,所述衬底采用的材料包括铌酸锂、石英或硅中的任一种;5. The LNOI-based ridge-type optical waveguide end-face coupling structure according to claim 1, wherein the material used for the substrate comprises any one of lithium niobate, quartz or silicon; 所述绝缘层采用的材料包括二氧化硅,厚度为1至5微米。The insulating layer is made of silicon dioxide with a thickness of 1 to 5 microns. 6.根据权利要求1所述的LNOI基脊型光波导端面耦合结构,其特征在于,所述脊型波导区采用的材料包括铌酸锂;6. The LNOI-based ridge-type optical waveguide end-face coupling structure according to claim 1, wherein the material used in the ridge-type waveguide region comprises lithium niobate; 所述脊型波导区的厚度小于1微米。The thickness of the ridge waveguide region is less than 1 micron. 7.根据权利要求1所述的LNOI基脊型光波导端面耦合结构,其特征在于,所述第三波导芯层采用的材料包括二氧化硅。7 . The LNOI-based ridge-type optical waveguide end-face coupling structure according to claim 1 , wherein the material used for the third waveguide core layer comprises silicon dioxide. 8 . 8.根据权利要求1所述的LNOI基脊型光波导端面耦合结构,其特征在于,所述第一波导芯层脊型区和第一波导芯层平板区的光模场面积均小于1平方微米;8 . The LNOI-based ridge-type optical waveguide end-face coupling structure according to claim 1 , wherein the optical mode field areas of the ridge-type region of the first waveguide core layer and the flat region of the first waveguide core layer are both less than 1 square. 9 . microns; 所述第三波导芯层端面光模场直径为2.5微米至6微米之间。The diameter of the optical mode field at the end face of the third waveguide core layer is between 2.5 microns and 6 microns. 9.根据权利要求1所述的LNOI基脊型光波导端面耦合结构,其特征在于,所述端面耦合结构还包括用于减少光场反射的增透膜,所述增透膜设置在第三波导芯层固定宽度区的耦合端端面上。9 . The LNOI-based ridge-type optical waveguide end-face coupling structure according to claim 1 , wherein the end-face coupling structure further comprises an anti-reflection film for reducing the reflection of the light field, and the anti-reflection film is arranged on the third ridge. 10 . on the coupling end face of the fixed width region of the waveguide core layer. 10.如权利要求1至9任一项所述的LNOI基脊型光波导端面耦合结构在集成光学领域的应用。10. The application of the LNOI-based ridge-type optical waveguide end-face coupling structure according to any one of claims 1 to 9 in the field of integrated optics.
CN202010309288.6A 2020-04-17 2020-04-17 LNOI-based ridge-type optical waveguide end-face coupling structure and its application Pending CN111458793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010309288.6A CN111458793A (en) 2020-04-17 2020-04-17 LNOI-based ridge-type optical waveguide end-face coupling structure and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010309288.6A CN111458793A (en) 2020-04-17 2020-04-17 LNOI-based ridge-type optical waveguide end-face coupling structure and its application

Publications (1)

Publication Number Publication Date
CN111458793A true CN111458793A (en) 2020-07-28

Family

ID=71682564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010309288.6A Pending CN111458793A (en) 2020-04-17 2020-04-17 LNOI-based ridge-type optical waveguide end-face coupling structure and its application

Country Status (1)

Country Link
CN (1) CN111458793A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112596155A (en) * 2020-12-16 2021-04-02 东南大学 Low insertion loss end face coupler based on LNOI material
CN113568106A (en) * 2021-07-21 2021-10-29 中山大学 A kind of broadband end-face coupler based on lithium niobate film and preparation method thereof
CN113820801A (en) * 2021-09-24 2021-12-21 南京南智先进光电集成技术研究院有限公司 Ridge waveguide end face coupler based on lithium niobate film
CN113885132A (en) * 2021-10-22 2022-01-04 清华大学 Optical fiber and optical waveguide coupled spot-size converter and manufacturing method thereof
CN113900180A (en) * 2021-10-22 2022-01-07 南京南智先进光电集成技术研究院有限公司 Three-dimensional wedge-shaped lithium niobate thin film waveguide device
CN114063211A (en) * 2020-08-05 2022-02-18 格芯(美国)集成电路科技有限公司 Edge coupler with partially etched back taper
WO2022048380A1 (en) * 2020-09-07 2022-03-10 苏州旭创科技有限公司 Optical assembly, photonic integrated chip and coupling structure thereof
CN115113326A (en) * 2021-03-23 2022-09-27 格芯(美国)集成电路科技有限公司 Optical coupler for ridge to rib waveguide core transition
CN115296138A (en) * 2022-08-03 2022-11-04 中国科学院半导体研究所 Silicon substrate light source of integrated end face coupler
CN118377084A (en) * 2024-06-21 2024-07-23 中国科学院半导体研究所 Thin-film lithium niobate end coupler with high process tolerance and preparation method thereof
JP7528691B2 (en) 2020-09-30 2024-08-06 住友大阪セメント株式会社 Optical waveguide element, optical modulation device using the same, and optical transmission device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055338A (en) * 2006-04-13 2007-10-17 中国科学院半导体研究所 Wave-guide optical switch integrated with light field spot-size converter and its method
CN101529292A (en) * 2006-07-31 2009-09-09 奥尼奇普菲托尼克斯有限公司 Integrated vertical wavelength (de)multiplexer using tapered waveguides
CN101634729A (en) * 2008-07-23 2010-01-27 中国科学院半导体研究所 Method for manufacturing reversed taper waveguide coupler
CN102159975A (en) * 2008-09-17 2011-08-17 英特尔公司 Method and apparatus for efficient coupling between silicon photonic chip and optical fiber
CN203241564U (en) * 2013-05-30 2013-10-16 青岛海信宽带多媒体技术有限公司 Optical fiber waveguide spot size converter and optical coupler
US9625651B2 (en) * 2014-02-06 2017-04-18 Skorpios Technologies, Inc. Integrated multistage taper coupler for waveguide to fiber coupling
CN207780304U (en) * 2018-02-02 2018-08-28 苏州易缆微光电技术有限公司 Effectively high coupling ratios Optical Waveguide Modes spot conversion equipment
US20180321445A1 (en) * 2017-05-02 2018-11-08 Stmicroelectronics S.R.L. Optical waveguide, corresponding coupling arrangement and method
CN108885307A (en) * 2016-12-22 2018-11-23 华为技术有限公司 The optical edge coupler with controllable mould field for photon chip
US20180348432A1 (en) * 2011-08-30 2018-12-06 Skorpios Technologies, Inc. Integrated photonics mode expander
US10345521B2 (en) * 2014-05-27 2019-07-09 Skorpios Technologies, Inc. Method of modifying mode size of an optical beam, using a waveguide mode expander having non-crystalline silicon features
CN209417341U (en) * 2018-12-04 2019-09-20 苏州易缆微光电技术有限公司 A kind of waveguide surface coupling spot-size converter
CN209417340U (en) * 2018-11-13 2019-09-20 苏州易缆微光电技术有限公司 The double-deck optical waveguide supporter spot-size converter
CN110632702A (en) * 2019-10-23 2019-12-31 北京工业大学 A LNOI-based optical waveguide reverse wedge mode spot coupler and its preparation method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055338A (en) * 2006-04-13 2007-10-17 中国科学院半导体研究所 Wave-guide optical switch integrated with light field spot-size converter and its method
CN101529292A (en) * 2006-07-31 2009-09-09 奥尼奇普菲托尼克斯有限公司 Integrated vertical wavelength (de)multiplexer using tapered waveguides
CN101634729A (en) * 2008-07-23 2010-01-27 中国科学院半导体研究所 Method for manufacturing reversed taper waveguide coupler
CN102159975A (en) * 2008-09-17 2011-08-17 英特尔公司 Method and apparatus for efficient coupling between silicon photonic chip and optical fiber
US20180348432A1 (en) * 2011-08-30 2018-12-06 Skorpios Technologies, Inc. Integrated photonics mode expander
CN203241564U (en) * 2013-05-30 2013-10-16 青岛海信宽带多媒体技术有限公司 Optical fiber waveguide spot size converter and optical coupler
US9625651B2 (en) * 2014-02-06 2017-04-18 Skorpios Technologies, Inc. Integrated multistage taper coupler for waveguide to fiber coupling
US10345521B2 (en) * 2014-05-27 2019-07-09 Skorpios Technologies, Inc. Method of modifying mode size of an optical beam, using a waveguide mode expander having non-crystalline silicon features
CN108885307A (en) * 2016-12-22 2018-11-23 华为技术有限公司 The optical edge coupler with controllable mould field for photon chip
US20180321445A1 (en) * 2017-05-02 2018-11-08 Stmicroelectronics S.R.L. Optical waveguide, corresponding coupling arrangement and method
CN207780304U (en) * 2018-02-02 2018-08-28 苏州易缆微光电技术有限公司 Effectively high coupling ratios Optical Waveguide Modes spot conversion equipment
CN209417340U (en) * 2018-11-13 2019-09-20 苏州易缆微光电技术有限公司 The double-deck optical waveguide supporter spot-size converter
CN209417341U (en) * 2018-12-04 2019-09-20 苏州易缆微光电技术有限公司 A kind of waveguide surface coupling spot-size converter
CN110632702A (en) * 2019-10-23 2019-12-31 北京工业大学 A LNOI-based optical waveguide reverse wedge mode spot coupler and its preparation method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063211B (en) * 2020-08-05 2024-02-06 格芯(美国)集成电路科技有限公司 Edge coupler with partially etched back taper
CN114063211A (en) * 2020-08-05 2022-02-18 格芯(美国)集成电路科技有限公司 Edge coupler with partially etched back taper
WO2022048380A1 (en) * 2020-09-07 2022-03-10 苏州旭创科技有限公司 Optical assembly, photonic integrated chip and coupling structure thereof
JP7528691B2 (en) 2020-09-30 2024-08-06 住友大阪セメント株式会社 Optical waveguide element, optical modulation device using the same, and optical transmission device
CN112596155A (en) * 2020-12-16 2021-04-02 东南大学 Low insertion loss end face coupler based on LNOI material
CN112596155B (en) * 2020-12-16 2022-06-14 东南大学 Low insertion loss end face coupler based on LNOI material
CN115113326A (en) * 2021-03-23 2022-09-27 格芯(美国)集成电路科技有限公司 Optical coupler for ridge to rib waveguide core transition
CN115113326B (en) * 2021-03-23 2024-02-06 格芯(美国)集成电路科技有限公司 Optical coupler for ridge-to-rib waveguide core transition
CN113568106A (en) * 2021-07-21 2021-10-29 中山大学 A kind of broadband end-face coupler based on lithium niobate film and preparation method thereof
CN113820801A (en) * 2021-09-24 2021-12-21 南京南智先进光电集成技术研究院有限公司 Ridge waveguide end face coupler based on lithium niobate film
CN113885132B (en) * 2021-10-22 2022-05-13 清华大学 A mode spot converter coupled with an optical fiber and an optical waveguide and a manufacturing method thereof
CN113900180A (en) * 2021-10-22 2022-01-07 南京南智先进光电集成技术研究院有限公司 Three-dimensional wedge-shaped lithium niobate thin film waveguide device
CN113885132A (en) * 2021-10-22 2022-01-04 清华大学 Optical fiber and optical waveguide coupled spot-size converter and manufacturing method thereof
CN115296138A (en) * 2022-08-03 2022-11-04 中国科学院半导体研究所 Silicon substrate light source of integrated end face coupler
CN118377084A (en) * 2024-06-21 2024-07-23 中国科学院半导体研究所 Thin-film lithium niobate end coupler with high process tolerance and preparation method thereof

Similar Documents

Publication Publication Date Title
CN111458793A (en) LNOI-based ridge-type optical waveguide end-face coupling structure and its application
CN111487715A (en) L NOI-based optical waveguide end face coupling structure and application thereof
CN113640913B (en) A LNOI Fundamental Mode Spot Converter Directly Coupled with Single-Mode Optical Fiber
CN112596161B (en) Multi-layer structured spot-size converter and implementation method thereof
CN111679363B (en) Silicon waveguide end-face coupling structure and fabrication method thereof
CN114721176B (en) Polarization controller based on-chip mode conversion
CN108535807A (en) With the optical fiber-silicon optical chip coupler and preparation method for tilting Waveguide end face
CN109324372B (en) Silicon optical waveguide end face coupler
CN117590628B (en) Optical devices, preparation methods and working methods based on thin film lithium niobate waveguides
CN105204113A (en) Silicon-based tunable polarization rotator
CN111367014B (en) On-chip edge coupler with spot-size conversion function for optical interconnection
CN209117912U (en) A kind of silicon optical waveguide end coupling device
CN111522096A (en) Silicon waveguide and silicon oxide waveguide mode converter and preparation method thereof
CN117192686A (en) High-efficiency thin-film lithium niobate conical sub-wavelength grating end surface coupler and preparation method thereof
CN113126204A (en) Visible light waveband thin-film lithium niobate grating coupler and preparation method thereof
CN116794768B (en) Adiabatic mode coupler
CN115857091A (en) MMI polarization beam splitter of lithium niobate thin film
CN115877506B (en) Thin film lithium niobate end face coupler covering visible light band and preparation method thereof
US11520175B2 (en) Active region-less modulator and method
CN114995010B (en) Silicon-based three-dimensional waveguide mode optical switch based on phase change material
CN113419364B (en) A groove-assisted acousto-optic modulator based on lithium niobate thin film
CN115144965A (en) A kind of lithium niobate thin film ridge waveguide end-face coupler and preparation method thereof
CN115755275B (en) A miniaturized slot waveguide mode conversion device based on subwavelength structure
CN115857098B (en) Optical circulator on silicon substrate
CN115373082B (en) End face coupler based on silicon and lithium niobate composite film

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200728

WD01 Invention patent application deemed withdrawn after publication