[go: up one dir, main page]

CN111448206A - IbOr-R96H variant derived from sweet potato and use thereof - Google Patents

IbOr-R96H variant derived from sweet potato and use thereof Download PDF

Info

Publication number
CN111448206A
CN111448206A CN201880078459.XA CN201880078459A CN111448206A CN 111448206 A CN111448206 A CN 111448206A CN 201880078459 A CN201880078459 A CN 201880078459A CN 111448206 A CN111448206 A CN 111448206A
Authority
CN
China
Prior art keywords
ibor
plant
variant
sweet potato
transformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880078459.XA
Other languages
Chinese (zh)
Other versions
CN111448206B (en
Inventor
郭尚洙
金昊秀
金昭恩
李粲椆
池昶润
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Research Institute of Bioscience and Biotechnology KRIBB
Original Assignee
Korea Research Institute of Bioscience and Biotechnology KRIBB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Research Institute of Bioscience and Biotechnology KRIBB filed Critical Korea Research Institute of Bioscience and Biotechnology KRIBB
Publication of CN111448206A publication Critical patent/CN111448206A/en
Application granted granted Critical
Publication of CN111448206B publication Critical patent/CN111448206B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The IbOr-R96H variant can remarkably improve the content of carotenoid in plants and can endow high-temperature stress resistance and high-temperature pressure resistance.

Description

源自番薯的IbOr-R96H变异体及其用途IbOr-R96H variant derived from sweet potato and use thereof

技术领域technical field

本发明涉及一种来源于番薯(Ipomoea batatas)的橘色(Orange)蛋白质的第96个氨基酸由精氨酸(arginine)被取代为组氨酸(histidine)的变异体及其用途。The present invention relates to a variant in which the 96th amino acid of orange protein derived from sweet potato (Ipomoea batatas) is substituted by arginine to histidine and use thereof.

背景技术Background technique

番薯(Ipomoea batatas L.Lam)是一种具有代表性的根作物,不仅可以在比较薄地上种植,而且每公顷产量优秀约为30吨,因此用作粮食和家畜饲料。紫色、黄色等有色番薯包含多种抗氧化物质,尤其,呈黄色的黄色番薯含有14.7~20mg/100g的β-胡萝卜素,紫色番薯含有2.28g/100g左右的花青素,因此去除促进细胞的老化及引起各种成人疾病的活性氧的抗氧化活性非常卓越。并且,自1990年代以来,番薯试图通过农杆菌(Agrobacterium)共培养进行了转化,发展了通过从顶端及侧芽分裂组织中诱导胚芽发生培养细胞以及体细胞胚芽发生的植物体再分化转化系统。Sweet potato (Ipomoea batatas L.Lam) is a representative root crop that can not only be grown on relatively thin ground, but also has an excellent yield of about 30 tons per hectare, so it is used as food and livestock feed. Purple, yellow and other colored sweet potatoes contain a variety of antioxidants. In particular, yellow sweet potatoes contain 14.7 to 20 mg/100 g of beta-carotene, and purple sweet potatoes contain about 2.28 g/100 g of anthocyanins. The antioxidant activity of reactive oxygen species that cause aging and various adult diseases is excellent. In addition, since the 1990s, sweet potato has been attempted to be transformed by Agrobacterium co-culture, and a plant redifferentiation transformation system has been developed by inducing embryogenic culture cells and somatic embryogenesis from apical and lateral bud division tissues.

类胡萝卜素(carotenoid)为光合作用体系的必需的成分、果实和花的挥发性成分、作为植物激素的叶落酸(ABA)的前体物质、作为维生素原(provitamin)A的前体,不仅对植物,而且对人类等动物非常有用的物质,因具有很强的抗氧化功效而广泛用在癌症、心脏疾病、眼科疾病等医疗产业上以及营养素的重要物质。Carotenoid is an essential component of the photosynthesis system, a volatile component of fruit and flower, a precursor of folic acid (ABA) as a plant hormone, and a precursor of provitamin A. Substances that are very useful to plants and animals such as humans are widely used in the medical industry such as cancer, heart disease, and ophthalmology because of their strong antioxidant effect, as well as an important substance of nutrients.

另一方面,韩国授权专利公告第1281071号公开了“来源于番薯的IbOr-Ins基因变异体及其用途”,韩国授权专利公报第1359308号公开了“富含类胡萝卜素及花青素的转化番薯植物体的制备方法及其植物体”,但尚未记载有关本发明的来源于番薯的IbOr-R96H变异体及其用途。On the other hand, Korean Granted Patent Publication No. 1281071 discloses "IbOr-Ins Gene Variants Derived from Sweet Potatoes and Uses thereof", and Korean Granted Patent Publication No. 1359308 discloses "Transformation rich in carotenoids and anthocyanins" Preparation method of sweet potato plant body and plant body", but the IbOr-R96H variant derived from sweet potato of the present invention and its use have not been described.

发明内容SUMMARY OF THE INVENTION

技术问题technical problem

本发明即为满足上述需求而得出的,本发明人制备了来源于番薯的橘色蛋白质的第96个氨基酸由精氨酸被取代为组氨酸的IbOr-R96H变异体,使用包含编码上述变异体的基因的重组载体转化番薯细胞的结果,确认与未转化番薯培养细胞、使用野生型IbOrange基因及IbOr-Ins变异体基因转化的番薯培养细胞相比,使用IbOr-R96H变异体转化的番薯培养细胞中的总类胡萝卜素的含量,尤其是β-胡萝卜素的含量有着显著增加,与未转化番薯植物体及野生型IbOrange基因转化的番薯植物体相比,确认使用IbOr-R96H变异体基因转化的番薯植物体的高温胁迫抗性更优秀,从而完成了本发明。The present invention is obtained to meet the above requirements. The present inventors prepared a variant of IbOr-R96H in which the 96th amino acid of the orange protein derived from sweet potato was substituted by arginine to histidine, and the 96th amino acid was substituted by arginine. As a result of the transformation of sweet potato cells with the recombinant vector of the mutant gene, it was confirmed that the sweet potato transformed with the IbOr-R96H variant was compared with the untransformed sweet potato cultured cells, and the sweet potato cultured cells transformed with the wild-type IbOrange gene and the IbOr-Ins mutant gene. The total carotenoid content in the cultured cells, especially the β-carotene content, was significantly increased. Compared with the untransformed sweet potato plant body and the sweet potato plant body transformed with the wild-type IbOrange gene, it was confirmed that the IbOr-R96H variant gene was used. The transformed sweet potato plant body is more excellent in high temperature stress resistance, thereby completing the present invention.

技术方案Technical solutions

为了解决上述问题,本发明提供一种来源于番薯的橘色蛋白质的第96个氨基酸由精氨酸(arginine,R)被取代为组氨酸(histidine,H)的由序列1的氨基酸序列组成的IbOr-R96H变异体。In order to solve the above problems, the present invention provides an amino acid sequence of SEQ ID NO: 1 in which the 96th amino acid of an orange protein derived from sweet potato is substituted with histidine (H) from arginine (R) The IbOr-R96H variant.

并且,本发明提供一种编码上述IbOr-R96H变异体的基因。Furthermore, the present invention provides a gene encoding the above-mentioned IbOr-R96H variant.

并且,本发明提供一种包含上述基因的重组载体。Furthermore, the present invention provides a recombinant vector comprising the above-mentioned gene.

并且,本发明提供一种类胡萝卜素含量增加及高温胁迫抗性提高的转化植物体,包括使用上述重组载体转化植物细胞来过表达用于编码IbOr-R96H变异体的基因的步骤。Also, the present invention provides a transformed plant body with increased carotenoid content and increased resistance to high temperature stress, comprising the step of using the above recombinant vector to transform plant cells to overexpress the gene encoding the IbOr-R96H variant.

并且,本发明提供一种通过上述方法制备的类胡萝卜素含量增加及高温胁迫抗性提高的转化植物体及其转化的种子。Furthermore, the present invention provides a transformed plant with increased carotenoid content and enhanced high temperature stress resistance prepared by the above method, and transformed seeds thereof.

并且,本发明提供一种提高植物体的高温胁迫抗性及类胡萝卜素含量的方法,包括使用上述重组载体转化植物细胞来过表达用于编码IbOr-R96H变异体的基因的步骤。Also, the present invention provides a method for improving high temperature stress resistance and carotenoid content of a plant, comprising the step of transforming plant cells with the above recombinant vector to overexpress a gene encoding the IbOr-R96H variant.

并且,本发明提供一种包含编码上述IbOr-R96H变异体的基因作为有效成分的用于提高植物体的高温胁迫抗性及类胡萝卜素含量的组合物。Furthermore, the present invention provides a composition for improving the high temperature stress resistance and carotenoid content of a plant comprising the gene encoding the above-mentioned IbOr-R96H variant as an active ingredient.

发明的效果effect of invention

使用本发明的IbOr-R96H变异体转化的植物体可富含作为功能性物质的类胡萝卜素,因此可以以多种方式用作保健食品、化妆品、饲料等的材料,可通过使用IbOr-R96H变异体来开发类胡萝卜素含量提高的高质量植物体。并且,使用本发明的IbOr-R96H变异体转化的植物体也可以栽培在普通植物体难以生长的高温地区。Plants transformed using the IbOr-R96H variant of the present invention can be rich in carotenoids as functional substances, and thus can be used in various ways as materials for health food, cosmetics, feed, etc., by using the IbOr-R96H variant to develop high-quality plant bodies with increased carotenoid content. In addition, plants transformed with the IbOr-R96H variant of the present invention can also be cultivated in high-temperature regions where ordinary plants are difficult to grow.

附图说明Description of drawings

图1为包含IbOrange蛋白质的第96个氨基酸由精氨酸(R)变为组氨酸(H)的IbOr-R96H基因变异体的重组载体的示意图。FIG. 1 is a schematic diagram of a recombinant vector containing the IbOr-R96H gene variant in which the 96th amino acid of IbOrange protein is changed from arginine (R) to histidine (H).

图2为对分别使用未转化番薯培养细胞(YM)和野生型IbOrange基因(IbOr-wt)及IbOrange基因变异体(IbOr-Ins及IbOr-R96H)转化的番薯细胞的表型进行确认的照片。Fig. 2 is a photograph of confirming the phenotype of sweet potato cells transformed with untransformed sweet potato cultured cells (YM) and wild-type IbOrange gene (IbOr-wt) and IbOrange gene variants (IbOr-Ins and IbOr-R96H), respectively.

图3示出IbOrWT或IbOrR96H过表达转化番薯植物体的制备过程,其中(a)部分为载体图,(b)部分为使用从转化植物体中提取的基因组脱氧核糖核酸(DNA)进行聚合酶链式反应(PCR)的结果,(c)部分为利用实时荧光定量聚合酶链式反应(quantitative real-timePCR)来分析每个转化的植物体中基因表达水平的结果。Figure 3 shows the preparation process of IbOrWT or IbOrR96H overexpressing and transforming sweet potato plants, wherein (a) part is a vector diagram, (b) part is a polymerase chain using genomic deoxyribonucleic acid (DNA) extracted from the transformed plant body Results of PCR, part (c) is the results of analyzing gene expression levels in each transformed plant using quantitative real-time PCR.

图4为利用IbOrWT或IbOrR96H过表达转化番薯植物体的叶盘进行高温胁迫(47℃)抗性实验的结果,其中(a)部分为3,3'-二氨基联苯胺四盐酸盐(DAB)染色的表型,(b)部分为测量每个叶盘的离子渗漏(ion leakage)的结果。Figure 4 shows the results of high temperature stress (47°C) resistance experiments on leaf discs of sweet potato plants transformed by overexpression of IbOrWT or IbOrR96H, wherein part (a) is 3,3'-diaminobenzidine tetrahydrochloride (DAB ) stained phenotype, and part (b) is the result of measuring the ion leakage of each leaf disc.

具体实施方式Detailed ways

为了实现本发明的目的,本发明提供一种来源于番薯的橘色蛋白质的第96个氨基酸由精氨酸被取代为组氨酸的由序列1的氨基酸序列组成的IbOr-R96H变异体。In order to achieve the object of the present invention, the present invention provides an IbOr-R96H variant consisting of the amino acid sequence of SEQ ID NO: 1, in which the 96th amino acid of the orange protein derived from sweet potato is substituted with histidine by arginine.

当本发明的IbOr-R96H变异体在转化的植物体内过表达时,可以显著增加植物体的总类胡萝卜素以及高温胁迫抗性。When the IbOr-R96H variant of the present invention is overexpressed in a transformed plant, the total carotenoid and high temperature stress resistance of the plant can be significantly increased.

并且,本发明还提供编码上述IbOr-R96H变异体的基因。In addition, the present invention also provides a gene encoding the above-mentioned IbOr-R96H variant.

编码本发明的IbOr-R96H变异体的基因的范围可以是精氨酸的编码碱基被组氨酸的编码碱基(CAT或CAC)取代,以使野生型IbOr蛋白质的第96个氨基酸可以被取代为组氨酸,优选地,可以为由序列2的碱基序列组成,但不限于此。The range of the gene encoding the IbOr-R96H variant of the present invention can be that the coding base of arginine is replaced by the coding base of histidine (CAT or CAC), so that the 96th amino acid of the wild type IbOr protein can be replaced by Substituted with histidine, preferably, it can be composed of the base sequence of SEQ ID NO: 2, but not limited thereto.

并且,本发明还提供一种包含编码IbOr-R96H变异体的基因的重组载体。Furthermore, the present invention also provides a recombinant vector comprising a gene encoding the IbOr-R96H variant.

术语“重组”是指细胞复制异源核酸,或者表达上述核酸,或者表达由肽、异源肽或异源核酸编码的蛋白质的细胞。重组细胞可以将上述细胞的天然形态下未发现的基因或基因片段表达为有义或反义形态中的一种。并且,重组细胞可以表达在天然状态的细胞中发现的基因,但是上述基因已被修饰并通过人工方式重新引入细胞中。The term "recombinant" refers to a cell that replicates a heterologous nucleic acid, or expresses said nucleic acid, or a cell that expresses a protein encoded by a peptide, heterologous peptide, or heterologous nucleic acid. Recombinant cells can express genes or gene fragments not found in the natural form of the above-mentioned cells as one of a sense or antisense form. Also, recombinant cells can express genes found in the cells in their native state, but which have been modified and reintroduced into the cells by artificial means.

术语“载体”用于指向细胞内传递的(多个)脱氧核糖核酸片段、核酸分子。载体复制脱氧核糖核酸,并可以在宿主细胞中独立地进行再生成。而术语“转运体”经常与“载体”互换使用。术语“表达载体”是指重组脱氧核糖核酸分子,其包含用于表达所需的编码序列和在特定宿主生物中可操作地连接的编码序列必不可少的适当核酸序列。可利用于真核细胞中的启动子、增强子、终止信号及多腺苷酸化信号时公知的。The term "vector" is used to refer to deoxyribonucleic acid fragment(s), nucleic acid molecules, for intracellular delivery. Vectors replicate deoxyribonucleic acid and can be independently regenerated in host cells. And the term "transporter" is often used interchangeably with "vector". The term "expression vector" refers to a recombinant deoxyribonucleic acid molecule comprising the appropriate nucleic acid sequences necessary for expression of the desired coding sequence and the operably linked coding sequence in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals that can be used in eukaryotic cells are known.

作为植物表达载体的优选例有Ti-质粒载体,当存在于根癌农杆菌(Agrobacterium tumefaciens)等适当的宿主中时,其能够将其自身的一部分,所谓的转移脱氧核糖核酸(T-DNA)区域转移到植物细胞。目前其他类型的Ti-质粒载体(参照EP0116718B1)被用在将杂合脱氧核糖核酸序列转移到植物细胞,或可通过将杂合脱氧核糖核酸适当插入植物的基因组来生成新植物的原生质体中。Ti-质粒载体特别优选的形态为如EP0120516B1及美国专利第4940838号所要求的所谓的二元(binary)载体。可以用于将本发明的脱氧核糖核酸引入植物宿主中的其他合适的载体为可选自双链植物病毒(例如,花椰菜花叶病毒(CaMV))、单链病毒以及可以衍生自双生病毒等的病毒载体,例如不完整的植物病毒。特别是在难以适当转化植物宿主时,此类载体的使用可能有利的。A preferable example of a plant expression vector is a Ti-plasmid vector, which can transfer a part of itself, so-called transfer deoxyribonucleic acid (T-DNA), when present in a suitable host such as Agrobacterium tumefaciens. Regions are transferred to plant cells. Currently other types of Ti-plasmid vectors (cf. EP0116718B1) are used to transfer hybrid DNA sequences into plant cells, or protoplasts of new plants can be generated by appropriate insertion of the hybrid DNA into the plant genome. A particularly preferred form of Ti-plasmid vector is the so-called binary vector as claimed in EP0120516B1 and US Pat. No. 4,940,838. Other suitable vectors that can be used to introduce the deoxyribonucleic acid of the invention into a plant host are those that can be selected from double-stranded plant viruses (eg, cauliflower mosaic virus (CaMV)), single-stranded viruses, and those that can be derived from geminiviruses and the like. Viral vectors, such as incomplete plant viruses. The use of such vectors may be advantageous especially when it is difficult to properly transform a plant host.

优选地,表达载体包含一个以上的选择性标记。上述标记是具有通常可用化学方法选择的特性的核酸序列,所有能够区分转化的细胞从未转化的细胞的基因对应于此,作为其例包括:抗除草剂基因,如甘草膦(glyphosate)、草铵膦(phosphinothricin)、草丁膦(glufosinate)等;以及抗生素内生基因,如卡那霉素(Kanamycin)、G418、博来霉素(Bleomycin)、潮霉素(Hygromycin)、氯霉素(Chloramphenicol),但不限于此。Preferably, the expression vector contains more than one selectable marker. The above-mentioned markers are nucleic acid sequences having properties that can be generally selected by chemical methods, and all genes capable of distinguishing transformed cells from untransformed cells correspond to this, and examples thereof include: herbicide resistance genes, such as glyphosate (glyphosate), grass phosphinothricin, glufosinate, etc.; and antibiotic endogenous genes, such as kanamycin, G418, bleomycin, hygromycin, chloramphenicol ( Chloramphenicol), but not limited thereto.

在本发明的植物表达载体中,启动子可以为CaMV35S、肌动蛋白、泛素、pEMU、MAS或组蛋白启动子,但不限于此。In the plant expression vector of the present invention, the promoter may be CaMV35S, actin, ubiquitin, pEMU, MAS or histone promoter, but is not limited thereto.

术语“启动子”是指从结构基因的脱氧核糖核酸的上游区域,是指为了开始转录的而与核糖核酸(RNA)聚合酶结合的脱氧核糖核酸分子。“植物启动子”是指能够在植物细胞中开始转录的启动子。“组成型(constitutive)启动子”是指在大部分环境条件及发育状态或细胞分化中具有活性的启动子。由于可以在各种阶段中通过各种组织来进行转换体的选择,在本发明中组成型启动子可能是优选的。因此,组成型启动子不限制选择的可能性。The term "promoter" refers to the upstream region of deoxyribonucleic acid from a structural gene, and refers to a deoxyribonucleic acid molecule that binds ribonucleic acid (RNA) polymerase in order to initiate transcription. "Plant promoter" refers to a promoter capable of initiating transcription in plant cells. A "constitutive promoter" refers to a promoter that is active under most environmental conditions and developmental states or cell differentiation. Constitutive promoters may be preferred in the present invention as selection of transformants can be carried out through various tissues at various stages. Therefore, constitutive promoters do not limit the possibilities of selection.

在本发明的植物表达载体中,可以使用常规的终止子,作为其例包括一氧化氮酶(NOS)、水稻α-淀粉酶RAmy1A终止子、菜豆碱(phaseoline)终止子、根癌农杆菌(Agrobacterium tumefaciens)的真蛸碱(Octopine)基因终止子等,但不限于此。关于终止子的需要,一般认为这样的区域增加在植物细胞内转录的确定性及效率。因此,终止子的使用在本发明中极为优选。In the plant expression vector of the present invention, conventional terminators can be used, and examples thereof include nitric oxide (NOS), rice α-amylase RAmy1A terminator, phaseoline terminator, Agrobacterium tumefaciens ( Agrobacterium tumefaciens), the Octopine gene terminator, etc., but not limited thereto. With regard to the need for terminators, it is generally believed that such regions increase the certainty and efficiency of transcription in plant cells. Therefore, the use of terminators is highly preferred in the present invention.

并且,本发明提供一种类胡萝卜素含量增加及高温胁迫抗性提高的转化植物体的制备方法,包括使用上述重组载体转化植物细胞,过表达编码IbOr-R96H变异体的基因的步骤。Furthermore, the present invention provides a method for preparing a transformed plant body with increased carotenoid content and enhanced high temperature stress resistance, comprising the steps of transforming plant cells with the above recombinant vector and overexpressing the gene encoding the IbOr-R96H variant.

在根据本发明的一实例的方法中,上述IbOr-R96H变异体可以由序列1的氨基酸序列组成。In the method according to an example of the present invention, the above-mentioned IbOr-R96H variant may consist of the amino acid sequence of SEQ ID NO: 1.

上述“基因过表达”是指使上述基因的以在野生型植物中的表达水平以上表达。作为向植物体内引入上述基因的方法,使用包含受启动子调节的上述基因的表达载体来转化植物体的方法。在上述方法中,对于启动子没有特别限制,只要是可以在植物体中过表达插入基因即可。The above-mentioned "gene overexpression" means that the above-mentioned gene is expressed at a level higher than the expression level in a wild-type plant. As a method of introducing the above-mentioned gene into a plant, there is a method of transforming a plant using an expression vector containing the above-mentioned gene regulated by a promoter. In the above method, the promoter is not particularly limited as long as the inserted gene can be overexpressed in a plant.

植物的转化是指将脱氧核糖核酸转移至植物的任意方法。这样的转化方法不一定具有再生和(或)组织培养期间。现在,植物的转化在包括在双子叶植物以及单子叶植物两者的植物物种中都很普遍。原则上,任意的转化方法都可使用于根据本发明的将杂合脱氧核糖核酸引入适当的祖细胞的过程中。方法可适当地选自对于原生质体的钙/聚乙二醇方法(Negrutiu et al.,1987,Plant Mol.Biol.8:363-373)、原生质体的电穿孔法(Shillitoet al.,1985,Bio/Technol.3:1099-1102)、植物因素的显微注射法(Crossway et al.,1986,Mol.Gen.Genet.202:179-185)、各种植物因素的(脱氧核糖核酸或核糖核酸编码的)粒子冲击法(Klein et al.,1987,Nature 327:70)、以通过植物的浸润或成熟花粉或小孢子转化的根癌农杆菌为媒介的基因转移(不完整)的病毒的感染(EP 0301316B1)等。根据本发明的优选方法包括以农杆菌介导的脱氧核糖核酸传递。尤其,优选地,使用如EPA120516号及美国专利第4940838号中公开的所谓二元载体技术。Transformation of a plant refers to any method of transferring deoxyribonucleic acid to a plant. Such transformation methods do not necessarily have regeneration and/or tissue culture periods. Transformation of plants is now common in plant species including both dicotyledonous as well as monocotyledonous plants. In principle, any transformation method can be used in the process of introducing hybrid deoxyribonucleic acids into suitable progenitor cells according to the invention. The method may be suitably selected from the calcium/polyethylene glycol method for protoplasts (Negrutiu et al., 1987, Plant Mol. Biol. 8:363-373), the electroporation method for protoplasts (Shillito et al., 1985, Bio/Technol. 3: 1099-1102), microinjection of plant factors (Crossway et al., 1986, Mol. Gen. Genet. 202: 179-185), various plant factors (deoxyribonucleic acid or ribose Nucleic acid encoded) particle impact (Klein et al., 1987, Nature 327:70), gene transfer (incomplete) virus mediated by Agrobacterium tumefaciens transformed by infiltration of plants or mature pollen or microspores Infection (EP 0301316B1) etc. A preferred method according to the invention comprises Agrobacterium-mediated delivery of DNA. In particular, preferably, so-called binary vector technology as disclosed in EPA 120516 and US Pat. No. 4,940,838 is used.

使用于植物的转化的“植物细胞”可以是任意植物细胞。植物细胞是培养细胞、培养组织、培养器官或植物整体。“植物组织”为分化或未分化的植物组织,例如,包括根、茎、叶、花粉、种子、瘤组织及用于培养的多种形态的细胞,即,单一细胞、原生质体(protoplast)、芽及愈伤组织,但不限于此。植物组织可处于原位(in planta)或器官培养、组织培养或细胞培养状态。A "plant cell" used for transformation of a plant can be any plant cell. Plant cells are cultured cells, cultured tissues, cultured organs or plant whole. "Plant tissue" is a differentiated or undifferentiated plant tissue, including, for example, roots, stems, leaves, pollen, seeds, tumor tissue, and cells of various forms used in culture, i.e., single cells, protoplasts, Buds and callus, but not limited thereto. Plant tissue can be in planta or in an organ culture, tissue culture or cell culture state.

并且,本发明提供一种通过上述方法制备的类胡萝卜素含量增加及高温胁迫抗性提高的转化植物体及其种子。Furthermore, the present invention provides a transformed plant body and its seeds with increased carotenoid content and improved high temperature stress resistance prepared by the above method.

相对未转化植物体,本发明转化植物体的总胡萝卜素的含量增加约34倍,尤其,β-胡萝卜素的含量可能增加了约300倍,但不限于此。Compared with the untransformed plant body, the content of total carotene in the transformed plant body of the present invention is increased by about 34 times, especially, the content of beta-carotene may be increased by about 300 times, but not limited thereto.

并且,与未转化植物体及由编码野生型IbOr的基因转化的植物体相比,可能本发明转化的植物体的高温胁迫抗性优秀。上述高温可以为40~55℃,优选地,可以为45~49℃,更为优选地,可以为47℃,但不限于此。Furthermore, it is possible that the transformed plants of the present invention are superior in high temperature stress resistance as compared with untransformed plants and plants transformed with a gene encoding wild-type IbOr. The above-mentioned high temperature may be 40-55°C, preferably, 45-49°C, more preferably, 47°C, but not limited thereto.

并且,本发明的类胡萝卜素含量增加及高温胁迫抗性提高的上述转化植物体可以为旋花科(Convolvulaceae)、豆科(Leguminosae)、五加科(Araliaceae)等双子叶植物体或禾本科(Gramineae)等单子叶植物体,优选地,可以为旋花科的双子叶植物提,更为优选地,可以为番薯,但不限于此。In addition, the above-mentioned transformed plant body with increased carotenoid content and high temperature stress resistance of the present invention may be dicotyledonous plants such as Convolvulaceae, Leguminosae, and Araliaceae, or Poaceae. (Gramineae) and other monocotyledonous plants, preferably, can be dicotyledonous plants of Convolvulaceae, more preferably, can be sweet potato, but not limited thereto.

并且,本发明提供一种提高植物体的类胡萝卜素含量及高温胁迫抗性的方法,包括使用包含编码上述IbOr-R96H变异体的基因的重组载体转化植物细胞,过表达编码IbOr-R96H变异体的基因的步骤。本发明的上述IbOr-R96H变异体可以由序列1的氨基酸序列组成,若IbOr-R96H变异体在植物体中过表达,则包括β-胡萝卜素等的植物体的总胡萝卜素的含量得以提高,植物体的高温胁迫抗性得以提高。Furthermore, the present invention provides a method for improving the carotenoid content and high temperature stress resistance of a plant, comprising transforming plant cells with a recombinant vector comprising a gene encoding the above-mentioned IbOr-R96H variant, and overexpressing the encoding IbOr-R96H variant genetic steps. The above-mentioned IbOr-R96H variant of the present invention can be composed of the amino acid sequence of SEQ ID NO: 1. If the IbOr-R96H variant is overexpressed in a plant, the total carotene content of the plant including β-carotene is increased, The high temperature stress resistance of plants is improved.

并且,本发明提供一种包含编码上述IbOr-R96H变异体的基因作为有效成分的用于提高植物体的类胡萝卜素含量及高温胁迫抗性的组合物。本发明的组合物包含编码IbOr-R96H变异体的基因作为有效成分,上述IbOr-R96H变异体为使用组氨酸(H)取代由序列1的氨基酸序列组成且来源于番薯的橘色蛋白质的第96个氨基酸由精氨酸被取代为组氨酸,可通过使用编码上述变异体的基因转化植物细胞来提高植物体的类胡萝卜素含量及高温胁迫抗性。Furthermore, the present invention provides a composition for improving the carotenoid content and high temperature stress resistance of a plant comprising the gene encoding the above-mentioned IbOr-R96H variant as an active ingredient. The composition of the present invention comprises, as an active ingredient, a gene encoding an IbOr-R96H variant, which is the first orange protein derived from sweet potato, which consists of the amino acid sequence of SEQ ID NO: 1 with histidine (H) substituted for it. 96 amino acids were substituted from arginine to histidine, and the carotenoid content and high temperature stress resistance of plants can be improved by transforming plant cells with the genes encoding the above variants.

以下,通过实施例详细说明本发明。但下述实施例仅为例示本发明,本发明的内容不限于下述实施例。Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are only for illustrating the present invention, and the content of the present invention is not limited to the following examples.

实施例1.IbOr-R96H变异体基因的克隆及碱基序列分析Example 1. Cloning and base sequence analysis of the IbOr-R96H variant gene

基于聚合酶链式反应-介导的定点诱变方法,通过使用QuickChangeTM定点诱变试剂盒试剂盒(美国安捷伦(Agilent)公司)来进行IbOr-R96H变异体基因的克隆,以克隆于pDONR207载体的IbOr野生型(WT)互补脱氧核糖核酸(cDNA)为模板并使用正向引物(5'-GAAATTCAAGACAATATTCGGAGTCACCGGAATAAAATATTTTTGCA-3',序列3)及反向引物(5'-TGCAAAAATATTTTATTCCGGTGACTCCGAATATTGTCTTGAATTTC-3',序列4)。通过对聚合酶链式反应产物的序列分析确认IbOr野生型的作为第96个氨基酸的精氨酸被组氨酸取代,将其命名为IbOr-R96H变异体。Based on the polymerase chain reaction-mediated site-directed mutagenesis method, the IbOr-R96H variant gene was cloned by using the QuickChange site-directed mutagenesis kit (Agilent, USA) to clone into the pDONR207 vector The IbOr wild-type (WT) complementary deoxyribonucleic acid (cDNA) was used as the template and the forward primer (5'-GAAATTCAAGACAATATTCGGAGTCACCGGAATAAAATATTTTTGCA-3', SEQ ID NO: 3) and the reverse primer (5'-TGCAAAAATATTTTATTCCGGTGACTCCGAATATTGTCTTGAATTTC-3', SEQ ID NO: 4) were used. It was confirmed by sequence analysis of the polymerase chain reaction product that arginine, which is the 96th amino acid of IbOr wild type, was substituted with histidine, and it was named as IbOr-R96H variant.

实施例2.包含IbOr-R96H变异体基因的重组载体的制备以及使用上述载体过表达IbOr-R96H变异体的转化体的开发Example 2. Preparation of Recombinant Vector Containing IbOr-R96H Variant Gene and Development of Transformant Overexpressing IbOr-R96H Variant Using the Vector Above

为了制备过表达IbOr-R96H变异体的转化体,使用英杰(Invitrogen)公司的gateway反应系统,制备pDONR207和作为植物表达载体的pGWB5载体和通过LR反应克隆的IbOr-R96H变异体的重组载体。重组载体使用根癌农杆菌EHA105菌株转化作为白色(米色)果肉的番薯的Yulmi培养细胞。转化的培养细胞选自包含潮霉素的MS(Murashige andSkoog)培养基。以转化的培养细胞为对象,使用BIOFACT公司的HiGeneTM基因组脱氧核糖核酸提取试剂盒(植物用)提取基因组脱氧核糖核酸后,通过聚合酶链式反应分析作为转化体的选择标记的潮霉素基因潮霉素磷酸转移酶(hygromycin phosphotransferase,HPT)的表达。In order to prepare transformants overexpressing the IbOr-R96H variant, the gateway reaction system of Invitrogen was used to prepare pDONR207 and pGWB5 vectors as plant expression vectors and recombinant vectors of the IbOr-R96H variant cloned by LR reaction. The recombinant vector was used to transform Yulmi culture cells of sweet potato as white (beige) pulp using Agrobacterium tumefaciens EHA105 strain. Transformed cultured cells were selected from MS (Murashige and Skoog) medium containing hygromycin. From the transformed cultured cells, genomic DNA was extracted using HiGene Genomic DNA Extraction Kit (for plants) from BIOFACT, and then the hygromycin gene as a selectable marker for transformants was analyzed by polymerase chain reaction. Expression of hygromycin phosphotransferase (HPT).

实施例3.使用IbOr-R96H重组载体转化的番薯培养细胞中的类胡萝卜素含量的分析Example 3. Analysis of carotenoid content in sweet potato cultured cells transformed with IbOr-R96H recombinant vector

对使用包含IbOr-R96H变异体基因的重组载体转化的番薯培养细胞的表型进行观察的结果,用肉眼确认未转化的番薯培养细胞呈米色,相反,使用野生型IbOr基因转化的番薯培养细胞呈黄色,使用以往发表(韩国授权专利公报第1281071号)的IbOr-Ins变异体转化的番薯培养细胞呈深黄色,而使用本发明的IbOr-R96H变异体转化的番薯培养细胞用肉眼具有接近橘色的颜色(图2)。As a result of observing the phenotype of the sweet potato cultured cells transformed with the recombinant vector containing the IbOr-R96H variant gene, the untransformed sweet potato cultured cells were visually confirmed to be beige, whereas the sweet potato cultured cells transformed with the wild-type IbOr gene showed a beige color. Yellow, the sweet potato cultured cells transformed with the IbOr-Ins variant published in the past (Korean Granted Patent Publication No. 1281071) are dark yellow, while the sweet potato cultured cells transformed with the IbOr-R96H variant of the present invention have an almost orange color to the naked eye. color (Figure 2).

并且,通过高效液相色谱法(HPLC,High-performance liquid chromatography)分析对每个转化的番薯培养细胞的类胡萝卜素含量进行定量(表1)。其结果,使用IbOr-R96H变异体转化的番薯培养细胞的总类胡萝卜素含量比未转化的番薯培养细胞增加约24倍以上。尤其,在β-胡萝卜素的含量的情况下,使用IbOr-R96H变异体转化的番薯培养细胞比未转化的番薯培养细胞增加约88倍以上。并且,确认与使用野生型IbOr(IbOr-WT)转化的番薯培养细胞相比,使用IbOr-R96H变异体转化的番薯培养细胞的总类胡萝卜素含量增加13倍以上,β-胡萝卜素的含量增加39倍以上,由此可知本发明的IbOr-R96H变异体提高植物体的类胡萝卜素的含量的效果非常优秀。Furthermore, the carotenoid content of each transformed sweet potato cultured cell was quantified by high-performance liquid chromatography (HPLC) analysis (Table 1). As a result, the total carotenoid content of the sweet potato cultured cells transformed with the IbOr-R96H variant was approximately 24 times or more higher than that of the untransformed sweet potato cultured cells. In particular, in the case of the content of β-carotene, the sweet potato cultured cells transformed with the IbOr-R96H variant increased by about 88 times or more than the untransformed sweet potato cultured cells. In addition, it was confirmed that the total carotenoid content and the β-carotene content of the sweet potato cultured cells transformed with the IbOr-R96H variant increased by more than 13 times compared with the sweet potato cultured cells transformed with the wild-type IbOr (IbOr-WT). 39 times or more, it can be seen that the IbOr-R96H variant of the present invention has an excellent effect of increasing the content of carotenoid in plants.

表1Table 1

Figure BDA0002523930490000091
Figure BDA0002523930490000091

实施例4.IbOr-R96H过表达转化的番薯植物体的制备Example 4. Preparation of sweet potato plants transformed by IbOr-R96H overexpression

使用番薯品种中的徐薯29(在中国北方地区栽培较多的品种中的一种)来制备过表达野生型IbOr基因(IbOrWT)或IbOr-R96H变异体基因(IbOrR96H)的转化番薯植物体。将各个上述IbOrWT或IbOrR96H克隆至具有35S启动子和C-末端具有FLAG标签的pGWB11载体来制备载体(图3的(a)部分)。在番薯转化实验中,将含有重组载体的根癌农杆菌的EHA105菌株与番薯胚性愈伤组织共培养3天后,使用MS基本培养基清洗,在选择培养基中培养,每隔3周进行传代培养后,从存活的胚性愈伤组织中诱导地上部和根部,再分化为小植物体,从而制备转化番薯的植物体。对通过在25℃的生长室中每天光照16小时的条件下培养3周的番薯植物体的第三叶或第四叶进行采样来提取基因组脱氧核糖核酸,制备正向(5'-CGCACAATCCCACTATCCTT-3',序列5)以及反向(5'-TTCCCAAGCTCAGCATTCTT-3',序列6)引物组来执行基因组脱氧核糖核酸聚合酶链式反应。聚合酶链式反应的条件如下,最初在94℃的温度下变性5分钟后,重复变性、退火、延伸过程30次,在94℃的温度下变性30秒钟,在58℃的温度下退火30秒钟,在72℃的温度下延伸60秒钟。而后最终延伸在72℃的温度下进行5分钟。通过上述结果确保了10株在基因组脱氧核糖核酸中鉴定IbOrWT或bOrR96H的转化植物体确(图3的(b)部分)。Transformed sweet potato plants overexpressing the wild-type IbOr gene (IbOr WT ) or the IbOr-R96H variant gene (IbOr R96H ) were prepared using the sweet potato variety Xushu 29 (one of the more cultivated varieties in northern China) body. Each of the above-mentioned IbOr WT or IbOr R96H was cloned into the pGWB11 vector having a 35S promoter and a FLAG tag at the C-terminus to prepare a vector (part (a) of FIG. 3 ). In the sweet potato transformation experiment, the EHA105 strain of Agrobacterium tumefaciens containing the recombinant vector was co-cultured with sweet potato embryogenic callus for 3 days, washed with MS minimal medium, cultured in selective medium, and subcultured every 3 weeks After culturing, shoots and roots were induced from the surviving embryogenic callus and redifferentiated into plantlets to prepare transformed sweet potato plants. Forward (5'-CGCACAATCCCCACTATCCTT-3) was prepared by sampling the third or fourth leaf of sweet potato plants grown for 3 weeks in a growth chamber at 25°C under the condition of 16 hours of light per day. ', SEQ ID NO: 5) and reverse (5'-TTCCCAAGCTCAGCATTCTT-3', SEQ ID NO: 6) primer sets to perform genomic DNA polymerase chain reaction. The conditions of the polymerase chain reaction are as follows. After initial denaturation at a temperature of 94°C for 5 minutes, the process of denaturation, annealing, and extension was repeated 30 times, denaturation at a temperature of 94°C for 30 seconds, and annealing at a temperature of 58°C for 30 times. seconds and extended for 60 seconds at a temperature of 72°C. The final extension was then carried out at a temperature of 72°C for 5 minutes. From the above results, it was ensured that 10 transformed plants in which IbOr WT or bOr R96H were identified in genomic deoxyribonucleic acid were confirmed (part (b) of FIG. 3 ).

使用RibospinTM Plant试剂盒(韩国GeneAll公司)从以与上述相同的方式采样的叶子中提取总核糖核酸。通过处理不含核糖核酸酶的脱氧核糖核酸酶I(RNase-free DNaseI)(韩国GeneAll公司)来去除基因组脱氧核糖核酸污染,使用TOPscriptTM RT DryMIX(dT18)(韩国Enzynomics公司),并用1000μg的总核糖核酸合成互补脱氧核糖核酸。聚合酶链式反应条件如下,最初在42℃的温度下进行5分钟后,在50℃的温度下进行60分钟、在95℃的温度下进行5分钟。用于比较基因表达的实时定量(quantitative real-time)聚合酶链式反应的引物制备为正向(5'-GCACTGGATCACTAGTCCTT-3',序列7)及反向(5'-GTCAATTCGTGGGTCATGCT-3',序列8)。实时定量聚合酶链式反应使用96孔培养板通过CFXreal-time PCR system(Bio-Rad公司,美国)来进行。每个反应(最终20μl)通过添加2μl的稀释的互补脱氧核糖核酸和10μl的EvaGreen PCR Master Mix(韩国Solgent公司)以及各1μl的引物来进行。聚合酶链式反应的条件如下,最初在95℃的温度下进行15分钟后,在95℃的温度下进行20秒钟、在60℃的温度下进行40秒钟、在72℃的温度下进行20秒钟并重复40次。分析结果,选择IbOrWT或IbOrR96H的基因表达高的3株(图3的(c)部分)。Total RNA was extracted from leaves sampled in the same manner as above using Ribospin Plant kit (GeneAll, Korea). Genomic DNA contamination was removed by treatment with RNase-free DNaseI (GeneAll, Korea), using TOPscript RT DryMIX (dT18) (Enzynomics, Korea), and 1000 μg of total ribonucleic acid synthesizes complementary deoxyribonucleic acid. The polymerase chain reaction conditions were as follows, initially at a temperature of 42°C for 5 minutes, then at a temperature of 50°C for 60 minutes and at a temperature of 95°C for 5 minutes. Primers for quantitative real-time PCR for comparing gene expression were prepared as forward (5'-GCACTGGATCACTAGTCCTT-3', sequence 7) and reverse (5'-GTCAATTCGTGGGTCATGCT-3', sequence 8). Real-time quantitative polymerase chain reaction was performed by CFX real-time PCR system (Bio-Rad, USA) using a 96-well culture plate. Each reaction (20 μl final) was performed by adding 2 μl of diluted complementary DNA and 10 μl of EvaGreen PCR Master Mix (Solgent, Korea) and 1 μl of each primer. The conditions of the polymerase chain reaction are as follows, initially at a temperature of 95°C for 15 minutes, then at a temperature of 95°C for 20 seconds, at a temperature of 60°C for 40 seconds, and at a temperature of 72°C 20 seconds and repeat 40 times. As a result of the analysis, three strains with high gene expression of IbOr WT or IbOr R96H were selected (part (c) of FIG. 3 ).

实施例5.IbOr-R96H过表达的转化番薯植物体的环境胁迫抗性评价Example 5. Evaluation of Environmental Stress Resistance of IbOr-R96H Overexpressed Transformed Sweet Potato Plants

在过去的研究中,确认与未转化番薯植物体相比,IbOr过表达的转化番薯植物体(cv.Sinzami)在高温胁迫条件下具有抗性。本发明人基于过去的研究结果,对IbOrR96H过表达转化番薯植物体和IbOrWT过表达转化的番薯植物体对高温胁迫抗性进行比较分析。在土壤中繁殖IbOrWT或IbOrR96H过表达转化番薯植物体,在25℃、每天光照16小时的条件下生长室中生长4周后,切割植物体的(从上数第3、4个)叶子来制备叶盘(leaf disc)。以5个叶盘为1次重复,共进行3次重复。首先,将叶盘置于高温(47℃)下12小时后进行3,3'-二氨基联苯胺四盐酸盐(DAB)染色并测量离子渗漏(ion leakage)。为了观察承受胁迫诱导细胞凋亡时产生的活性氧的产生程度,进行了3,3'-二氨基联苯胺四盐酸盐染色,使用离子电导率仪(ion conductivity meter)以6小时为单位在0~12小时内测量由于胁迫导致的细胞的离子损失,以12小时后将试样在80℃的温度下处理2小时以完全破坏细胞来测量的离子损失值为100%来计算每个检测值。其结果,确认IbOr过表达转化植物体的叶盘的损伤比未转化的番薯植物体(NT)轻,可知其对高温具有抗性,尤其可知,IbOrR96H过表达转化番薯植物体比IbOrWT过表达转化的番薯植物体具有更强的高温抗性(图4)。In a past study, it was confirmed that IbOr-overexpressing transformed sweet potato plants (cv. Sinzami) were resistant to high temperature stress conditions compared to untransformed sweet potato plants. Based on previous research results, the present inventors conducted a comparative analysis of the high temperature stress resistance of IbOr R96H overexpressed and transformed sweet potato plants and IbOr WT overexpressed and transformed sweet potato plants. IbOr WT or IbOr R96H overexpression transformed sweet potato plants were propagated in soil, and after 4 weeks of growth in a growth chamber at 25°C and 16 hours of light per day, the (3rd and 4th from the top) leaves of the plants were cut. to prepare leaf discs. 5 leaf disks were used as one repetition, and a total of 3 repetitions were carried out. First, 3,3'-diaminobenzidine tetrahydrochloride (DAB) staining was performed and ion leakage was measured after leaf discs were exposed to high temperature (47°C) for 12 hours. In order to observe the generation degree of reactive oxygen species generated when cells undergo stress-induced apoptosis, 3,3'-diaminobenzidine tetrahydrochloride was stained, and the ion conductivity meter was used for 6 hours in units of 6 hours. The ion loss of cells due to stress was measured within 0 to 12 hours, and each assay value was calculated as 100% of the ion loss measured by treating the sample at a temperature of 80°C for 2 hours after 12 hours to completely destroy the cells . As a result, it was confirmed that the damage to the leaf discs of the IbOr overexpression-transformed plants was lighter than that of the untransformed sweet potato plants (NT), and it was found that they had resistance to high temperature. In particular, it was found that the IbOrR96H overexpression-transformed sweet potato plants were more transformed than the IbOrWT overexpression-transformed plants. The sweet potato plants had stronger high temperature resistance (Fig. 4).

<110> 韩国生命工学研究院<110> Korea Biotechnology Research Institute

<120> 源自番薯的IbOr-R96H变异体及其用途<120> IbOr-R96H variant derived from sweet potato and its use

<130> P20112485WP<130> P20112485WP

<160> 8<160> 8

<170> KoPatentIn 3.0<170> KoPatentIn 3.0

<210> 1<210> 1

<211> 313<211> 313

<212> PRT<212> PRT

<213> 人工序列<213> Artificial sequences

<220><220>

<223> IbOr-R96H<223> IbOr-R96H

<400> 1<400> 1

Met Val Tyr Ser Gly Arg Ile Leu Ser Leu Ser Ser Ser Thr Thr ProMet Val Tyr Ser Gly Arg Ile Leu Ser Leu Ser Ser Ser Thr Thr Pro

1 5 10 151 5 10 15

Phe His Leu Ser Thr Ser Pro Phe His Ser Ser Arg Tyr His Leu HisPhe His Leu Ser Thr Ser Pro Phe His Ser Ser Arg Tyr His Leu His

20 25 30 20 25 30

Gly Arg Leu Lys Ser Arg Val Arg Leu Arg Pro Met Ala Ala Asp AlaGly Arg Leu Lys Ser Arg Val Arg Leu Arg Pro Met Ala Ala Asp Ala

35 40 45 35 40 45

Asp Ser Ser Ser Phe Ser Ser Ser Val Asp Thr Glu Ala Pro Asp LysAsp Ser Ser Ser Phe Ser Ser Ser Val Asp Thr Glu Ala Pro Asp Lys

50 55 60 50 55 60

Asn Ala Ala Gly Phe Cys Ile Ile Glu Gly Pro Glu Thr Val Gln AspAsn Ala Ala Gly Phe Cys Ile Ile Glu Gly Pro Glu Thr Val Gln Asp

65 70 75 8065 70 75 80

Phe Ala Gln Met Glu Leu Lys Glu Ile Gln Asp Asn Ile Arg Ser HisPhe Ala Gln Met Glu Leu Lys Glu Ile Gln Asp Asn Ile Arg Ser His

85 90 95 85 90 95

Arg Asn Lys Ile Phe Leu His Met Glu Glu Val Arg Arg Leu Arg IleArg Asn Lys Ile Phe Leu His Met Glu Glu Val Arg Arg Leu Arg Ile

100 105 110 100 105 110

Gln Gln Arg Ile Lys Asn Ala Glu Leu Gly Asn Leu Asn Glu Lys GlnGln Gln Arg Ile Lys Asn Ala Glu Leu Gly Asn Leu Asn Glu Lys Gln

115 120 125 115 120 125

Glu Asn Lys Leu Pro Asn Phe Pro Ser Phe Ile Pro Phe Leu Pro ProGlu Asn Lys Leu Pro Asn Phe Pro Ser Phe Ile Pro Phe Leu Pro Pro

130 135 140 130 135 140

Leu Thr Ser Ala Asn Leu Lys Gln Tyr Tyr Ala Thr Cys Phe Ser LeuLeu Thr Ser Ala Asn Leu Lys Gln Tyr Tyr Ala Thr Cys Phe Ser Leu

145 150 155 160145 150 155 160

Ile Ala Gly Val Met Leu Phe Gly Gly Leu Leu Ala Pro Thr Leu GluIle Ala Gly Val Met Leu Phe Gly Gly Leu Leu Ala Pro Thr Leu Glu

165 170 175 165 170 175

Leu Lys Leu Gly Leu Gly Gly Thr Ser Tyr Ala Asp Phe Ile Arg SerLeu Lys Leu Gly Leu Gly Gly Thr Ser Tyr Ala Asp Phe Ile Arg Ser

180 185 190 180 185 190

Met His Leu Pro Met Gln Leu Ser Asp Val Asp Pro Ile Val Ala SerMet His Leu Pro Met Gln Leu Ser Asp Val Asp Pro Ile Val Ala Ser

195 200 205 195 200 205

Phe Ser Gly Gly Ala Val Gly Val Ile Ser Ala Leu Met Val Val GluPhe Ser Gly Gly Ala Val Gly Val Ile Ser Ala Leu Met Val Val Glu

210 215 220 210 215 220

Ile Asn Asn Val Lys Gln Gln Glu His Lys Arg Cys Lys Tyr Cys LeuIle Asn Asn Val Lys Gln Gln Glu His Lys Arg Cys Lys Tyr Cys Leu

225 230 235 240225 230 235 240

Gly Thr Gly Tyr Leu Ala Cys Ala Arg Cys Ser Ser Thr Gly Ser LeuGly Thr Gly Tyr Leu Ala Cys Ala Arg Cys Ser Ser Thr Gly Ser Leu

245 250 255 245 250 255

Val Leu Ile Glu Pro Val Ser Thr Val Asn Arg Gly Asp Gln Pro LeuVal Leu Ile Glu Pro Val Ser Thr Val Asn Arg Gly Asp Gln Pro Leu

260 265 270 260 265 270

Ser Pro Pro Lys Thr Glu Arg Cys Thr Asn Cys Ser Gly Ser Gly LysSer Pro Pro Lys Thr Glu Arg Cys Thr Asn Cys Ser Gly Ser Gly Lys

275 280 285 275 280 285

Val Met Cys Pro Thr Cys Leu Cys Thr Gly Met Ala Met Ala Ser GluVal Met Cys Pro Thr Cys Leu Cys Thr Gly Met Ala Met Ala Ser Glu

290 295 300 290 295 300

His Asp Pro Arg Ile Asp Pro Phe AspHis Asp Pro Arg Ile Asp Pro Phe Asp

305 310305 310

<210> 2<210> 2

<211> 942<211> 942

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<223> IbOr-R96H<223> IbOr-R96H

<400> 2<400> 2

atggtatatt caggtagaat cttgtcgctc tcgtcctcca cgacgccgtt tcatctctcc 60atggtatatt caggtagaat cttgtcgctc tcgtcctcca cgacgccgtt tcatctctcc 60

acttcgccgt tccacagttc ccggtatcat ctccatggaa ggctcaaatc cagagtcaga 120acttcgccgt tccacagttc ccggtatcat ctccatggaa ggctcaaatc cagagtcaga 120

ttgcgtccta tggccgccga tgccgattcc tcctcctttt cttcatccgt cgacaccgaa 180ttgcgtccta tggccgccga tgccgattcc tcctcctttt cttcatccgt cgacaccgaa 180

gcacccgata aaaacgcagc cgggttttgt attatagaag ggcctgagac agtgcaggac 240gcacccgata aaaacgcagc cgggttttgt attatagaag ggcctgagac agtgcaggac 240

tttgctcaaa tggaattgaa agaaattcaa gacaatattc ggagtcaccg gaataaaata 300tttgctcaaa tggaattgaa agaaattcaa gacaatattc ggagtcaccg gaataaaata 300

tttttgcata tggaagaggt tcgtaggctg agaatacagc aacgaattaa gaatgctgag 360ttttttgcata tggaagaggt tcgtaggctg agaatacagc aacgaattaa gaatgctgag 360

cttgggaatc ttaatgaaaa gcaagaaaat aaacttccga attttccttc gttcattcct 420cttgggaatc ttaatgaaaa gcaagaaaat aaacttccga attttccttc gttcattcct 420

tttttgcctc ctctgacatc cgcaaatctt aaacaatatt atgccacttg tttctctctc 480ttttttgcctc ctctgacatc cgcaaatctt aaacaatatt atgccacttg tttctctctc 480

atagccggag ttatgctttt tggcggactg ctagcaccta ctttggaact aaaattgggc 540atagccggag ttatgctttt tggcggactg ctagcaccta ctttggaact aaaattgggc 540

ttaggaggta catcgtacgc tgatttcatt cgcagcatgc accttccgat gcaattaagt 600ttaggaggta catcgtacgc tgatttcatt cgcagcatgc accttccgat gcaattaagt 600

gatgtggacc ccattgtggc gtccttctcc ggtggagcag tcggggtaat ctctgccttg 660gatgtggacc ccattgtggc gtccttctcc ggtggagcag tcggggtaat ctctgccttg 660

atggtagttg aaataaacaa tgtgaaacag caggagcata agaggtgcaa gtactgttta 720atggtagttg aaataaacaa tgtgaaacag caggagcata agaggtgcaa gtactgttta 720

ggaacagggt atcttgcatg tgctcgctgt tcaagcactg gatcactagt ccttatcgaa 780ggaacagggt atcttgcatg tgctcgctgt tcaagcactg gatcactagt ccttatcgaa 780

cctgtctcca cagttaatcg tggagatcag ccactatcac cacctaaaac agaaagatgc 840cctgtctcca cagttaatcg tggagatcag ccactatcac cacctaaaac agaaagatgc 840

acaaactgct cgggttcagg gaaggtcatg tgccctacat gtctttgtac tgggatggct 900acaaactgct cgggttcagg gaaggtcatg tgccctacat gtctttgtac tgggatggct 900

atggcaagcg agcatgaccc acgaattgac ccatttgatt aa 942atggcaagcg agcatgaccc acgaattgac ccatttgatt aa 942

<210> 3<210> 3

<211> 47<211> 47

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<223> 引物<223> primers

<400> 3<400> 3

gaaattcaag acaatattcg gagtcaccgg aataaaatat ttttgca 47gaaattcaag acaatattcg gagtcaccgg aataaaatat ttttgca 47

<210> 4<210> 4

<211> 47<211> 47

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<223> 引物<223> primers

<400> 4<400> 4

tgcaaaaata ttttattccg gtgactccga atattgtctt gaatttc 47tgcaaaaata ttttattccg gtgactccga atattgtctt gaatttc 47

<210> 5<210> 5

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<223> 引物<223> primers

<400> 5<400> 5

cgcacaatcc cactatcctt 20cgcacaatcc cactatcctt 20

<210> 6<210> 6

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<223> 引物<223> primers

<400> 6<400> 6

ttcccaagct cagcattctt 20ttcccaagct cagcattctt 20

<210> 7<210> 7

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<223> 引物<223> primers

<400> 7<400> 7

gcactggatc actagtcctt 20gcactggatc actagtcctt 20

<210> 8<210> 8

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<220><220>

<223> 引物<223> primers

<400> 8<400> 8

gtcaattcgt gggtcatgct 20gtcaattcgt gggtcatgct 20

Claims (8)

1. An IbOr-R96H variant, consisting of the amino acid sequence of SEQ ID No. 1, wherein the 96 th amino acid of an orange protein from sweet potato is histidine substituted with arginine.
2. A gene encoding the IbOr-R96H variant of claim 1.
3. A recombinant vector comprising the gene of claim 2.
4. A method for producing a transformed plant having an increased carotenoid content and an improved high-temperature stress resistance, comprising the step of transforming a plant cell with the recombinant vector of claim 3 to overexpress a gene encoding the IbOr-R96H variant.
5. A transformed plant having an increased carotenoid content and improved high-temperature stress resistance, which is produced by the method for producing a transformed plant having an increased carotenoid content and improved high-temperature stress resistance according to claim 4.
6. A seed transformed with the plant body of claim 5, which has an increased carotenoid content and an increased resistance to high-temperature stress.
7. A method for increasing carotenoid content and high temperature stress resistance in a plant, comprising the step of transforming a plant cell with the recombinant vector of claim 3 to overexpress a gene encoding the IbOr-R96H variant.
8. A composition for increasing the carotenoid content and high temperature stress resistance of a plant, comprising the gene of claim 2 as an active ingredient.
CN201880078459.XA 2017-12-19 2018-12-17 IbOr-R96H variant derived from sweet potato and application thereof Active CN111448206B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2017-0175023 2017-12-19
KR20170175023 2017-12-19
PCT/KR2018/015992 WO2019124899A1 (en) 2017-12-19 2018-12-17 Ipomoea batatas-derived ibor-r96h mutant and use thereof

Publications (2)

Publication Number Publication Date
CN111448206A true CN111448206A (en) 2020-07-24
CN111448206B CN111448206B (en) 2022-11-29

Family

ID=66994875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880078459.XA Active CN111448206B (en) 2017-12-19 2018-12-17 IbOr-R96H variant derived from sweet potato and application thereof

Country Status (3)

Country Link
KR (1) KR102110870B1 (en)
CN (1) CN111448206B (en)
WO (1) WO2019124899A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154334A1 (en) * 2008-06-20 2009-12-23 Korea Research Institute Of Bioscience And Biotechnology Iborange gene involved in carotenoid accumulation from ipomoea batatas
WO2012070795A2 (en) * 2010-11-22 2012-05-31 한국생명공학연구원 Ipomoea batatas-derived ibor-ins gene mutation, and use thereof
WO2013022149A1 (en) * 2011-08-05 2013-02-14 한국생명공학연구원 Method for obtaining a transformed ipomoea batatas plant body including highly accumulated carotenoid and anthocyanin, and plant body obtained by same
KR20140028277A (en) * 2012-08-28 2014-03-10 한국생명공학연구원 Iborange gene increasing heat stress resistance from ipomoea batatas and uses thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154334A1 (en) * 2008-06-20 2009-12-23 Korea Research Institute Of Bioscience And Biotechnology Iborange gene involved in carotenoid accumulation from ipomoea batatas
CN102083985A (en) * 2008-06-20 2011-06-01 韩国生命工学研究院 IbOrange gene involved in carotenoid accumulation from ipomoea batatas
WO2012070795A2 (en) * 2010-11-22 2012-05-31 한국생명공학연구원 Ipomoea batatas-derived ibor-ins gene mutation, and use thereof
CN103269578A (en) * 2010-11-22 2013-08-28 韩国生命工学研究院 IbOr-Ins gene mutant derived from sweet potato and use thereof
WO2013022149A1 (en) * 2011-08-05 2013-02-14 한국생명공학연구원 Method for obtaining a transformed ipomoea batatas plant body including highly accumulated carotenoid and anthocyanin, and plant body obtained by same
CN103917087A (en) * 2011-08-05 2014-07-09 韩国生命工学研究院 Method for obtaining a transformed ipomoea batatas plant body including highly accumulated carotenoid and anthocyanin, and plant body obtained by same
KR20140028277A (en) * 2012-08-28 2014-03-10 한국생명공학연구원 Iborange gene increasing heat stress resistance from ipomoea batatas and uses thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUI YUAN: "A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis", 《PANT PHYSIOLOGY》 *
SUN HA KIM: "Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures", 《PLANT PHYSIOLOGY AND BIOCHEMISTRY》 *
常景玲: "《天然生物活性物质及其制备技术》", 31 August 2007, 河南科学技术出版社 *

Also Published As

Publication number Publication date
KR102110870B1 (en) 2020-05-15
KR20190074229A (en) 2019-06-27
CN111448206B (en) 2022-11-29
WO2019124899A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
CN113621039B (en) Anthocyanin synthesis related protein IbMYB113 and coding gene and application thereof
CN106868018A (en) White birch BpSPL9 genes and its encoding proteins and application
CN111944829A (en) A peach chloroplast development gene PpGLK1 and its application
CN102690341A (en) Plant tillering related protein and coding gene thereof
Lu et al. Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis
CN110904067B (en) Tobacco chlorogenic acid synthetic gene NtHQT and application thereof
US20170183680A1 (en) Dominant negative mutant krp-related proteins (krp) in zea mays and methods of their use
KR20210062588A (en) Antibody produced by using afucosylated n.benthamiana and uses thereof
CN103917087B (en) The preparation method accumulating the Transformation of sweet potato plants of carotenoid and anthocyanidin in a large number and the plant thus prepared
CN111448206B (en) IbOr-R96H variant derived from sweet potato and application thereof
WO2023081731A1 (en) Improved genetic transformation by improving de-novo shoot regeneration in adult plants and during in-vitro tissue culture
CN112521475B (en) Wheat TaLAX1-A gene and application thereof in improving wheat immature embryo regeneration efficiency
CN105316297B (en) A kind of blackberry, blueberry CAD genoids and its improved application to prickle
KR102265780B1 (en) EFG1 gene for regulating flowering date of plantbody and uses thereof
KR20220147361A (en) IbFAD8 gene from sweetpotato for improving cold storage stability and increasing omega-3 fatty acid content in tuberous root of sweetpotato and uses thereof
CN108977414B (en) A synthetic mutant of β-carotene ketolase and its coding sequence and application
KR101785101B1 (en) OsDWD1 gene and use thereof
CN112724215B (en) Gene and method for changing flowering period of corn
CN118834902B (en) Method and application of CsERF39 gene to improve resistance to citrus canker
CN114524868B (en) Sweet potato leaf development and flavonoid enhancement related protein IbBBX29 and its coding gene and application
CN114231538B (en) Radix rehmanniae RcMYB3 gene and application thereof in improving anthocyanin content of plants
CN102690838A (en) Application of OsMADS57 protein or coding gene thereof in promotion of rice tillering
KR100996667B1 (en) Promoters and transcription factors of genes that are specifically expressed in callus or differentiated callus of rice
KR101849151B1 (en) pTAC10 gene from Arabidopsis thaliana for increasing biomass or seed productivity of plant and uses thereof
JP4885736B2 (en) Peptide migrating to petal colored body and method for producing plant having yellow petal using the peptide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant