CN111440045B - Separation method of carbon-pentaene mixture - Google Patents
Separation method of carbon-pentaene mixture Download PDFInfo
- Publication number
- CN111440045B CN111440045B CN202010310841.8A CN202010310841A CN111440045B CN 111440045 B CN111440045 B CN 111440045B CN 202010310841 A CN202010310841 A CN 202010310841A CN 111440045 B CN111440045 B CN 111440045B
- Authority
- CN
- China
- Prior art keywords
- separation
- isoprene
- carbon
- fluorine
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 67
- 239000000203 mixture Substances 0.000 title claims abstract description 29
- MIMFUSIYQURABA-UHFFFAOYSA-N C=CCCC.[C] Chemical compound C=CCCC.[C] MIMFUSIYQURABA-UHFFFAOYSA-N 0.000 title 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims abstract description 108
- 239000011148 porous material Substances 0.000 claims abstract description 47
- 150000001450 anions Chemical class 0.000 claims abstract description 41
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 37
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000011737 fluorine Substances 0.000 claims abstract description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 23
- 239000003463 adsorbent Substances 0.000 claims abstract description 15
- OPQIJJIIYSMPOE-UHFFFAOYSA-N 2-(2-pyridin-2-ylethynyl)pyridine Chemical group N1=CC=CC=C1C#CC1=CC=CC=N1 OPQIJJIIYSMPOE-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 11
- 239000013110 organic ligand Substances 0.000 claims abstract description 10
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 claims description 64
- 238000001179 sorption measurement Methods 0.000 claims description 64
- QMMOXUPEWRXHJS-HWKANZROSA-N (e)-pent-2-ene Chemical compound CC\C=C\C QMMOXUPEWRXHJS-HWKANZROSA-N 0.000 claims description 23
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 claims description 23
- 238000003795 desorption Methods 0.000 claims description 9
- 230000008929 regeneration Effects 0.000 claims description 8
- 238000011069 regeneration method Methods 0.000 claims description 8
- 238000010926 purge Methods 0.000 claims description 7
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 claims description 5
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 claims description 5
- QMMOXUPEWRXHJS-HYXAFXHYSA-N (z)-pent-2-ene Chemical compound CC\C=C/C QMMOXUPEWRXHJS-HYXAFXHYSA-N 0.000 claims description 4
- 150000001993 dienes Chemical class 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 claims 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 19
- 239000000463 material Substances 0.000 description 40
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 39
- 150000001336 alkenes Chemical class 0.000 description 24
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 14
- 125000000129 anionic group Chemical group 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 150000001335 aliphatic alkanes Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000002808 molecular sieve Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000000746 purification Methods 0.000 description 4
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000012621 metal-organic framework Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000013147 Cu3(BTC)2 Substances 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000000895 extractive distillation Methods 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 150000005673 monoalkenes Chemical class 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000010689 synthetic lubricating oil Substances 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/12—Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种碳五烯烃混合物的分离方法,所述碳五烯烃混合物含有异戊二烯;所述分离方法以具有柔性功能的含氟阴离子杂化多孔材料为分离吸附剂,将所述碳五烯烃混合物与所述分离吸附剂接触吸附,实现异戊二烯与其它碳五烯烃的分离;所述含氟阴离子杂化多孔材料具有两重穿插结构,结构通式为A‑(C12H8N2)‑M,其中:M为金属离子,选自Cu2+、Zn2+、Co2+或Ni2+;A为无机含氟阴离子,选自SiF6 2‑、TiF6 2‑、GeF6 2‑或NbOF5 2‑;C12H8N2为有机配体1,2‑二吡啶乙炔。
The invention discloses a method for separating a mixture of carbon pentaolefins, the mixture of carbon pentaolefins contains isoprene; the separation method uses a fluorine-containing anion hybrid porous material with a flexible function as a separation adsorbent, and the The carbon pentaolefin mixture is contacted and adsorbed with the separation adsorbent to realize the separation of isoprene and other carbon pentaolefins; the fluorine-containing anion hybrid porous material has a double interspersed structure, and the general structure formula is A-(C 12 H 8 N 2 )-M, wherein: M is a metal ion selected from Cu 2+ , Zn 2+ , Co 2+ or Ni 2+ ; A is an inorganic fluorine-containing anion selected from SiF 6 2- , TiF 6 2 ‑ , GeF 6 2‑ or NbOF 5 2‑ ; C 12 H 8 N 2 is the organic ligand 1,2-dipyridylacetylene.
Description
技术领域technical field
本发明涉及化学工程技术领域,具体涉及一种碳五烯烃混合物的分离方法。The invention relates to the technical field of chemical engineering, in particular to a method for separating a carbonpentaolefin mixture.
背景技术Background technique
碳五(C5)烯烃的深度分离纯化具有重要的工业价值,其中利用价值较高且含量较高的组分包括异戊二烯、环戊二烯和间戊二烯,三者约占C5总组分的40%-60%。这些二烯烃分子结构特殊,化学性质活泼,是很有价值的基本化工原料。而异戊二烯(聚合级和化学级)在合成橡胶、医药农药中间体以及合成润滑油添加剂、橡胶硫化剂的生产方面具有广泛的用途,开发利用前景十分广阔。The deep separation and purification of carbon five (C5) olefins has important industrial value, and the components with high utilization value and high content include isoprene, cyclopentadiene and piperylene, and the three account for about C5 total. 40%-60% of the components. These dienes have special molecular structures and lively chemical properties, and are valuable basic chemical raw materials. Isoprene (polymerization grade and chemical grade) has a wide range of uses in the production of synthetic rubber, pharmaceutical and pesticide intermediates, synthetic lubricating oil additives, and rubber vulcanizing agents, and its development and utilization prospects are very broad.
异戊二烯分离纯化难点在于碳五馏分中含有烷烃、单烯烃、二烯烃、环烷烃、环烯烃等几十种组分,各组分之间沸点相近,相对挥发度小,有些组分之间还能形成共沸物(如异戊二烯和正戊烷),而且双烯烃化学性质易发生自聚或共聚(如环戊二烯),因此采取普通精馏的方法难以得到高纯度的产品。目前工业上普遍采取的方法是用热二聚法首先将环戊二烯聚合成固态的双环戊二烯将其从碳五馏分中分离出来,再用加热解聚的方法从双环戊二烯中分离聚合级环戊二烯,其他组分采取多步萃取精馏法分离,最后得到聚合级异戊二烯,如US4570029A,US4438289A,US4147848A,US3510405A。采用萃取精馏的方法普遍存在分离能耗高、设备投资高、流程复杂以及溶剂的回收和污染等问题。The difficulty in the separation and purification of isoprene is that the C5 fraction contains dozens of components such as alkanes, monoolefins, dienes, cycloalkanes, and cycloalkenes. The boiling points of each component are similar, and the relative volatility is small. Azeotropes (such as isoprene and n-pentane) can also be formed between them, and the chemical properties of diolefins are prone to self-polymerization or copolymerization (such as cyclopentadiene), so it is difficult to obtain high-purity products by ordinary distillation methods . The method generally adopted in the industry is to use the thermal dimerization method to first polymerize cyclopentadiene into solid dicyclopentadiene to separate it from the carbon five fraction, and then use the method of thermal depolymerization to separate dicyclopentadiene from dicyclopentadiene. Polymerization-grade cyclopentadiene is separated, and other components are separated by multi-step extraction and rectification, and finally polymerization-grade isoprene is obtained, such as US4570029A, US4438289A, US4147848A, and US3510405A. The method of extractive distillation generally has problems such as high separation energy consumption, high equipment investment, complicated process, solvent recovery and pollution.
随着吸附分离材料的发展和研究,吸附技术被认为最有潜力的分离技术之一。传统材料如活性炭、分子筛、多孔聚合物等作为吸附材料得到了广泛研究并取得重要进展。但是,传统材料对尺寸存在微小差别的分子辨识度不高,效率低。如专利CN102329179A和CN102351630A,改性后的5A分子筛可选择性地吸附分子尺寸较小的正构烯烃,但5A分子筛存在对于正构烯烃的吸附容量小、分离选择性低等问题。With the development and research of adsorption separation materials, adsorption technology is considered to be one of the most potential separation technologies. Traditional materials such as activated carbon, molecular sieves, porous polymers, etc. have been widely studied and made important progress as adsorption materials. However, traditional materials do not have a high degree of recognition of molecules with small differences in size, and the efficiency is low. For example, in patents CN102329179A and CN102351630A, the modified 5A molecular sieve can selectively adsorb normal olefins with smaller molecular sizes, but the 5A molecular sieve has problems such as small adsorption capacity for normal olefins and low separation selectivity.
近年来较多研究者考察了金属有机框架材料在正异构烃类中的分离性能,研究普遍集中在C2~C4烯烃分离及C5~C8烷烃分离。尽管烷烃的正异构分离材料很多,但是针对C5及其以上的液态烯烃分离的材料却很少。而烯烃因其含有双键结构分子尺寸较烷烃稍小且化学性质活泼,与烷烃分离相比对材料的化学性质稳定性和再生性能要求更为严苛。2010年Michael Maes等人考察了MIL-96、[Cu3(BTC)2]、菱沸石和5A分子筛对C5混合物的分离性能。其中[Cu3(BTC)2]对1-戊烯和异戊二烯的吸附容量相差无几,并不具备正异构烯烃的分离性能且文中也并未过多提及这四种材料的再生性能(Separation of C5-Hydrocarbons on Microporous Materials:Complementary Performance of MOFs andZeolites[J].J.AM.CHEM.SOC.2010,132,2284–2292)。2018年黄飞鹤等人研究了柱状EtP5α材料对C5单烯烃异构体的分离,该材料可以识别α和β烯烃异构体,化学性质稳定可再生,但是吸附容量不高(Linear Positional Isomer Sorting in Nonporous AdaptiveCrystals of a Pillar[5]arene[J].J.AM.CHEM.SOC.2018,140-9,3190-3193)。In recent years, many researchers have investigated the separation performance of metal-organic framework materials in normal isomeric hydrocarbons, and the research generally focuses on the separation of C2-C4 olefins and C5-C8 alkanes. Although there are many materials for the normal isomerization separation of alkanes, there are few materials for the separation of C5 and above liquid olefins. Olefins have a slightly smaller molecular size and more active chemical properties than alkanes because of their double bond structure. Compared with the separation of alkanes, the requirements for the chemical stability and regeneration performance of materials are more stringent. In 2010, Michael Maes et al investigated the separation performance of MIL-96, [Cu 3 (BTC) 2 ], chabazite and 5A molecular sieve for C5 mixture. Among them, [Cu 3 (BTC) 2 ] has almost the same adsorption capacity for 1-pentene and isoprene, and does not have the separation performance of normal isomerized olefins, and the article does not mention the regeneration of these four materials too much. Performance (Separation of C5-Hydrocarbons on Microporous Materials: Complementary Performance of MOFs and Zeolites[J].J.AM.CHEM.SOC.2010,132,2284–2292). In 2018, Huang Feihe et al. studied the separation of C5 monoolefin isomers by columnar EtP5α materials. This material can identify α and β olefin isomers, and has stable and reproducible chemical properties, but the adsorption capacity is not high (Linear Positional Isomer Sorting in Nonporous AdaptiveCrystals of a Pillar[5]arene[J].J.AM.CHEM.SOC.2018,140-9,3190-3193).
可见现有MOFs材料对C5烯烃分离存在选择性和吸附容量不可同时兼得的现象,亟需发展新的分离材料和分离方法。It can be seen that the selectivity and adsorption capacity of the existing MOFs materials for the separation of C5 olefins cannot be achieved at the same time, and it is urgent to develop new separation materials and separation methods.
发明内容Contents of the invention
针对本领域存在的不足之处,本发明提供了一种碳五烯烃混合物的分离方法,采用具有柔性结构的含氟阴离子杂化多孔材料,实现碳五烯烃中异戊二烯的高效分离和纯化。Aiming at the deficiencies in this field, the present invention provides a method for separating a mixture of carbopentaolefins, using a fluorine-containing anion hybrid porous material with a flexible structure to achieve efficient separation and purification of isoprene in carbopentaolefins .
一种碳五烯烃混合物的分离方法,所述碳五烯烃混合物含有异戊二烯;A method for separating a mixture of carbon pentaolefins, the mixture of carbon pentaolefins contains isoprene;
所述分离方法以具有柔性功能的含氟阴离子杂化多孔材料为分离吸附剂,将所述碳五烯烃混合物与所述分离吸附剂接触吸附,实现异戊二烯与其它碳五烯烃的分离;The separation method uses a fluorine-containing anion hybrid porous material with a flexible function as a separation adsorbent, and the mixture of carbon pentaolefins is contacted and adsorbed with the separation adsorbent to realize the separation of isoprene from other carbon pentaolefins;
所述含氟阴离子杂化多孔材料具有两重穿插结构,结构通式为A-(C12H8N2)-M,其中:The fluorine-containing anion hybrid porous material has a double interspersed structure, and the general structural formula is A-(C 12 H 8 N 2 )-M, wherein:
M为金属离子,选自Cu2+、Zn2+、Co2+或Ni2+;M is a metal ion, selected from Cu 2+ , Zn 2+ , Co 2+ or Ni 2+ ;
A为无机含氟阴离子,选自SiF6 2-、TiF6 2-、GeF6 2-或NbOF5 2-,三维结构式为:其中黑球代表F或O;A is an inorganic fluorine-containing anion, selected from SiF 6 2- , TiF 6 2- , GeF 6 2- or NbOF 5 2- , and the three-dimensional structural formula is: Among them, the black ball represents F or O;
C12H8N2为有机配体1,2-二吡啶乙炔,三维结构式为: C 12 H 8 N 2 is an
本发明所用的含氟阴离子杂化多孔材料由金属离子、无机阴离子和有机配体制备得到,三维结构如图1所示。该材料与含有异戊二烯的C5烯烃混合物接触后,对异戊二烯吸附能力较弱,对混合物中其它组分吸附较强,从而实现从C5混合物中分离出高纯度的异戊二烯。所述C5烯烃混合物含有异戊二烯,同时还可含有1-戊烯、反-2-戊烯、顺-2-戊烯、间戊二烯、环戊二烯中的至少一种。The fluorine-containing anion hybrid porous material used in the present invention is prepared from metal ions, inorganic anions and organic ligands, and its three-dimensional structure is shown in FIG. 1 . After the material is in contact with the C5 olefin mixture containing isoprene, it has weak adsorption capacity for isoprene and strong adsorption for other components in the mixture, so as to realize the separation of high-purity isoprene from the C5 mixture . The C5 olefin mixture contains isoprene, and may also contain at least one of 1-pentene, trans-2-pentene, cis-2-pentene, piperylene and cyclopentadiene.
所述的含氟阴离子杂化多孔材料的平均孔径在框架中的吡啶环具有一定的柔性,可随吸附的过程发生不同程度的偏转。The average pore diameter of the fluorine-containing anion hybrid porous material is The pyridine ring in the framework is flexible and can be deflected to varying degrees during the adsorption process.
本发明通过选用不同的无机含氟阴离子和金属离子实现对此类具有柔性功能的含氟阴离子杂化多孔材料孔径大小的调节,并对孔道内的化学环境进行修饰。合适的孔径使得该材料对不同尺寸的碳五组分实现不同程度的分子排阻,尺寸较大的烯烃不易进入孔道中。材料中的阴离子和气体分子静电相互作用强度不同,表现出不同的分离选择性,从而实现C5烯烃的高效分离。因此,该类材料表现出高的分离选择性和吸附容量,作为C5烯烃分离和异戊二烯纯化的吸附剂,具有非常好的应用前景。The invention realizes the adjustment of the pore size of the fluorine-containing anion hybrid porous material with flexible functions by selecting different inorganic fluorine-containing anions and metal ions, and modifies the chemical environment in the pores. Appropriate pore size enables the material to achieve different degrees of molecular exclusion for carbon five components of different sizes, and larger olefins are not easy to enter the pores. The anions and gas molecules in the material have different electrostatic interaction strengths, showing different separation selectivities, thereby achieving efficient separation of C5 olefins. Therefore, this type of material exhibits high separation selectivity and adsorption capacity, and has a very promising application prospect as an adsorbent for the separation of C5 olefins and the purification of isoprene.
本发明中所述的含氟阴离子杂化多孔材料由含氟阴离子A、金属离子M和有机配体1,2-二吡啶乙炔(C12H8N2)通过配位键构建而成,其结构单元如图2所示。The fluorine-containing anion hybrid porous material described in the present invention is constructed by a fluorine-containing anion A, a metal ion M and an
本发明中所述的含氟阴离子杂化多孔材料的合成可采用现有技术,如室温共沉淀方法、水热合成方法、湿法机械研磨方法以及慢扩散界面合成方法,合成条件温和,易批量合成。The synthesis of the fluorine-containing anion hybrid porous material described in the present invention can adopt the existing technology, such as room temperature co-precipitation method, hydrothermal synthesis method, wet mechanical grinding method and slow diffusion interface synthesis method, the synthesis conditions are mild, easy to batch synthesis.
作为优选,所述碳五烯烃混合物还含有1-戊烯、反-2-戊烯、顺-2-戊烯、间戊二烯、环戊二烯中的至少一种。Preferably, the carbon pentaolefin mixture further contains at least one of 1-pentene, trans-2-pentene, cis-2-pentene, piperylene and cyclopentadiene.
作为优选,所述碳五烯烃混合物中异戊二烯摩尔百分含量为10%~98%。Preferably, the mole percentage of isoprene in the carbon pentaolefin mixture is 10%-98%.
本发明所述的分离方法,分离得到的异戊二烯纯度大于99.9%(摩尔百分数)。According to the separation method of the present invention, the purity of the separated isoprene is greater than 99.9% (mole percentage).
为了得到更好的分离效果,本发明所述的分离方法,吸附温度优选为-20~70℃,进一步优选为-5~50℃,吸附压力优选为0~10bar,进一步优选为0.5~2bar。In order to obtain better separation effect, in the separation method of the present invention, the adsorption temperature is preferably -20-70°C, more preferably -5-50°C, and the adsorption pressure is preferably 0-10bar, more preferably 0.5-2bar.
本发明所述的分离方法,所述碳五烯烃混合物与所述分离吸附剂接触吸附结束后,对所述分离吸附剂进行脱附,实现所述分离吸附剂的再生。In the separation method of the present invention, after the contact and adsorption between the carbon pentaolefin mixture and the separation adsorbent is completed, the separation adsorbent is desorbed to realize the regeneration of the separation adsorbent.
所述脱附可采用惰性气体吹扫、解吸剂解吸或真空解吸。所述惰性气体为稀有气体和/或氮气。The desorption can be carried out by purging with inert gas, desorption with desorbent or vacuum desorption. The inert gas is rare gas and/or nitrogen.
所述脱附的温度优选为0~150℃,进一步优选为20~50℃,压力优选为0~1bar,进一步优选为0~0.2bar。The desorption temperature is preferably 0-150°C, more preferably 20-50°C, and the pressure is preferably 0-1 bar, more preferably 0-0.2 bar.
本发明所述的分离方法,可采用固定床吸附或模拟移动床吸附。所述碳五烯烃混合物可以是液相状态,也可以是气相状态。The separation method of the present invention can adopt fixed bed adsorption or simulated moving bed adsorption. The carbon pentaolefin mixture may be in a liquid phase or a gas phase.
在一优选例中,所述的无机含氟阴离子A为TiF6 2-、有机配体为1,2-二吡啶乙炔,金属离子为Cu2+,组成的柔性含氟阴离子杂化多孔材料为TIFSIX-2-Cu-i。TIFSIX-2-Cu-i在45kPa、298K条件下对反-2-戊烯、1-戊烯的吸附容量分别高达为3.1mmol/g和2.7mmol/g,对异戊二烯的吸附容量仅为1.7mmo/g;在8.5kPa、298K条件下对反-2-戊烯、1-戊烯的吸附容量分别为2.5mmol/g和2.0mmol/g,对异戊二烯的吸附容量仅为0.6mmo/g。In a preferred example, the inorganic fluorine-containing anion A is TiF 6 2- , the organic ligand is 1,2-dipyridylacetylene, the metal ion is Cu 2+ , and the flexible fluorine-containing anion hybrid porous material is TIFSIX-2-Cu-i. The adsorption capacities of TIFSIX-2-Cu-i for trans-2-pentene and 1-pentene are as high as 3.1mmol/g and 2.7mmol/g respectively at 45kPa and 298K, and the adsorption capacity for isoprene is only It is 1.7mmol/g; under the conditions of 8.5kPa and 298K, the adsorption capacities of trans-2-pentene and 1-pentene are 2.5mmol/g and 2.0mmol/g respectively, and the adsorption capacity of isoprene is only 0.6mmo/g.
在另一优选例中,所述的无机含氟阴离子A为NbOF5 2-、有机配体为1,2-二吡啶乙炔,金属离子为Cu2+,组成的柔性含氟阴离子杂化多孔材料为NbOFFIVE-2-Cu-i。NbOFFIVE-2-Cu-i在8.5kPa、298K条件下对反-2-戊烯、1-戊烯的吸附容量分别高达为2.2mmol/g和1.6mmol/g,而对异戊二烯几乎不吸附。可从C5烯烃混合物中分离出聚合级异戊二烯。In another preferred example, the inorganic fluorine-containing anion A is NbOF 5 2- , the organic ligand is 1,2-dipyridylacetylene, and the metal ion is Cu 2+ , the flexible fluorine-containing anion hybrid porous material is NbOFFIVE-2-Cu-i. The adsorption capacity of NbOFFIVE-2-Cu-i is as high as 2.2mmol/g and 1.6mmol/g for trans-2-pentene and 1-pentene respectively under the conditions of 8.5kPa and 298K, but almost no for isoprene. adsorption. Polymer grade isoprene can be separated from a mixture of C5 olefins.
本发明还提供了所述的具有柔性功能的含氟阴离子杂化多孔材料在选择性吸附碳五烯烃中的应用。The invention also provides the application of the fluorine-containing anion hybrid porous material with flexible function in the selective adsorption of carbopentaolefins.
作为优选,所述碳五烯烃选自异戊二烯、1-戊烯、反-2-戊烯、顺-2-戊烯、间戊二烯、环戊二烯中的至少一种。Preferably, the carbon pentaolefin is selected from at least one of isoprene, 1-pentene, trans-2-pentene, cis-2-pentene, piperylene and cyclopentadiene.
本发明与现有技术相比,主要优点包括:Compared with the prior art, the present invention has main advantages including:
(1)本发明提供了柔性阴离子杂化多孔材料吸附分离C5烯烃的方法,通过精准调控阴离子杂化多孔材料的孔径,将烯烃进行分离,从而得到高纯度的异戊二烯;(1) The present invention provides a method for the adsorption and separation of C5 olefins by flexible anion hybrid porous materials, by precisely regulating the pore size of the anion hybrid porous materials, the olefins are separated, thereby obtaining high-purity isoprene;
(2)本发明采用的柔性阴离子杂化多孔材料相比传统吸附剂具有孔结构可调、孔容大、与吸附质分子作用力可调等优点,可实现C5烯烃的择形分离,同时兼具高容量和高选择性;(2) Compared with traditional adsorbents, the flexible anion hybrid porous material used in the present invention has the advantages of adjustable pore structure, large pore volume, and adjustable interaction force with adsorbate molecules, and can realize the shape-selective separation of C5 olefins, and at the same time With high capacity and high selectivity;
(3)本发明采用的工艺为固定床单柱法或模拟移动床工艺,所提供的分离方法与传统的萃取精馏法相比,具备设备投资小,能耗低等优势。(3) The technology adopted in the present invention is a fixed bed single column method or a simulated moving bed technology. Compared with the traditional extractive distillation method, the separation method provided has the advantages of small equipment investment and low energy consumption.
(4)本发明所提供的方法最终可根据工业要求得到聚合级异戊二烯,纯度可达99.9%(摩尔百分比)。(4) The method provided by the present invention can finally obtain polymer grade isoprene according to industrial requirements, and the purity can reach 99.9% (mol percentage).
(5)本发明所采用的柔性阴离子杂化多孔材料与常规吸附剂相比,具有再生条件温和,使用寿命长,制备简单,合成条件温和,易批量合成,具备广阔的工业化应用前景等优势;(5) Compared with conventional adsorbents, the flexible anionic hybrid porous material used in the present invention has the advantages of mild regeneration conditions, long service life, simple preparation, mild synthesis conditions, easy batch synthesis, and broad industrial application prospects;
(6)本发明所采用的柔性阴离子杂化多孔材料与5A分子筛材料相比具备更加优异的再生性能,无需加热,在常温下即可通过惰性气体吹扫完成再生。(6) Compared with the 5A molecular sieve material, the flexible anionic hybrid porous material used in the present invention has better regeneration performance, and can be regenerated by purging with inert gas at room temperature without heating.
附图说明Description of drawings
图1为由无机含氟阴离子A、金属离子M以及有机配体1,2-二吡啶乙炔(C12H8N2)通过配位键构建而成的具有柔性功能的含氟阴离子杂化多孔材料的三维结构示意图;Figure 1 shows the fluorine-containing anion hybrid porous structure with flexible functions constructed by inorganic fluorine-containing anion A, metal ion M and
图2为由无机含氟阴离子A、金属离子M以及有机配体1,2-二吡啶乙炔(C12H8N2)通过配位键构建而成的具有柔性功能的含氟阴离子杂化多孔材料的结构单元示意图;Figure 2 shows the fluorine-containing anion hybrid porous structure with flexible functions constructed by inorganic fluorine-containing anion A, metal ion M and
图3为实施例1所得阴离子杂化多孔材料TIFSIX-2-Ni-i材料在298K下对1-戊烯、反-2-戊烯、异戊二烯的吸附等温线;Fig. 3 is the adsorption isotherm of the anion hybrid porous material TIFSIX-2-Ni-i material obtained in Example 1 to 1-pentene, trans-2-pentene and isoprene at 298K;
图4为实施例2所得阴离子杂化多孔材料GeFSIX-2-Cu-i材料在298K下对1-戊烯、反-2-戊烯、异戊二烯的吸附等温线;Fig. 4 is the adsorption isotherm of the anionic hybrid porous material GeFSIX-2-Cu-i material obtained in Example 2 to 1-pentene, trans-2-pentene and isoprene at 298K;
图5为实施例3所得阴离子杂化多孔材料SIFSIX-2-Cu-i材料在298K下对1-戊烯、反-2-戊烯、异戊二烯的吸附等温线;Fig. 5 is the adsorption isotherm of the anionic hybrid porous material SIFSIX-2-Cu-i material obtained in Example 3 to 1-pentene, trans-2-pentene and isoprene at 298K;
图6为实施例4所得阴离子杂化多孔材料TIFSIX-2-Cu-i材料在298K下对1-戊烯、反-2-戊烯、异戊二烯的吸附等温线;Fig. 6 is the adsorption isotherm of the anionic hybrid porous material TIFSIX-2-Cu-i material obtained in Example 4 to 1-pentene, trans-2-pentene and isoprene at 298K;
图7为实施例5所得阴离子杂化多孔材料NbOFFIVE-2-Cu-i材料在298K下对1-戊烯、反-2-戊烯、异戊二烯的吸附等温线;Fig. 7 is the adsorption isotherm of the anionic hybrid porous material NbOFFIVE-2-Cu-i material obtained in Example 5 to 1-pentene, trans-2-pentene and isoprene at 298K;
图8为实施例6所得阴离子杂化多孔材料NbOFFIVE-2-Zn-i材料在298K下对1-戊烯、异戊二烯的吸附等温线;Fig. 8 is the adsorption isotherm of the anionic hybrid porous material NbOFFIVE-2-Zn-i material obtained in Example 6 to 1-pentene and isoprene at 298K;
图9为实施例7的阴离子杂化多孔材料TIFSIX-2-Cu-i材料在298K下对1-戊烯、异戊二烯混合气的穿透曲线;Fig. 9 is the breakthrough curve of the anionic hybrid porous material TIFSIX-2-Cu-i material of Example 7 to 1-pentene and isoprene mixed gas at 298K;
图10为实施例7的阴离子杂化多孔材料TIFSIX-2-Cu-i材料在298K下对1-戊烯、反-2-戊烯、异戊二烯混合气的穿透曲线;Fig. 10 is the penetration curve of the anionic hybrid porous material TIFSIX-2-Cu-i material of Example 7 to 1-pentene, trans-2-pentene and isoprene mixed gas at 298K;
图11为实施例8的阴离子杂化多孔材料NbOFFIVE-2-Cu-i材料在298K下对1-戊烯、异戊二烯混合气的穿透曲线;Fig. 11 is the breakthrough curve of the anionic hybrid porous material NbOFFIVE-2-Cu-i material of Example 8 to 1-pentene and isoprene mixed gas at 298K;
图12为实施例8的阴离子杂化多孔材料NbOFFIVE-2-Cu-i材料在298K下对1-戊烯、反-2-戊烯、异戊二烯混合气的穿透曲线;Fig. 12 is the breakthrough curve of the anionic hybrid porous material NbOFFIVE-2-Cu-i material of Example 8 to 1-pentene, trans-2-pentene and isoprene mixed gas at 298K;
图13为实施例9中TIFSIX-2-Cu-i和NbOFFIVE-2-Cu-i对1-戊烯的循环吸附性能图。Figure 13 is a graph of the cycle adsorption performance of TIFSIX-2-Cu-i and NbOFFIVE-2-Cu-i on 1-pentene in Example 9.
具体实施方式detailed description
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. The operating methods not indicated in the following examples are generally in accordance with conventional conditions, or in accordance with the conditions suggested by the manufacturer.
实施例1Example 1
将1.0mmol Ni(BF4)2、1.0mmol(NH4)2TiF6溶于10mL无水甲醇,将1.5mmol的1,2-二吡啶乙炔溶于10mL甲醇,两者溶液在20~85℃混合搅拌。反应结束抽滤得到产物,将产物用甲醇洗涤3~4次后浸泡在甲醇中活化1天。85℃下抽真空活化24h,得到具有柔性功能的含氟阴离子杂化多孔材料TIFSIX-2-Ni-i。Dissolve 1.0mmol Ni(BF 4 ) 2 , 1.0mmol (NH4) 2 TiF 6 in 10mL of anhydrous methanol, dissolve 1.5mmol of 1,2-dipyridylacetylene in 10mL of methanol, and mix the two solutions at 20~85℃ Stir. After the reaction is completed, the product is obtained by suction filtration. The product is washed with methanol for 3 to 4 times and then soaked in methanol for activation for 1 day. Vacuum activation at 85°C for 24 hours yielded a fluorine-containing anion hybrid porous material TIFSIX-2-Ni-i with flexible functions.
测量TIFSIX-2-Ni-i在298K下对1-戊烯、反-2-戊烯、异戊二烯的单组份吸附等温线,结果如图3所示,显示该材料可实现上述C5烯烃组分的分离。The single-component adsorption isotherm of TIFSIX-2-Ni-i was measured at 298K for 1-pentene, trans-2-pentene, and isoprene. The results are shown in Figure 3, showing that the material can achieve the above C5 Separation of olefin components.
实施例2Example 2
将1.0mmol Cu(BF4)2·H2O、1.0mmol(NH4)2GeF6溶于10mL水,将1.5mmol的1,2-二吡啶乙炔溶于10mL甲醇,两者在65℃下混合搅拌24h,所的材料抽滤、甲醇洗涤3~4次,室温真空活化24h,得到具有柔性功能的含氟阴离子杂化多孔材料GeFSIX-2-Cu-i。Dissolve 1.0mmol Cu(BF 4 ) 2 H2O, 1.0mmol (NH 4 ) 2 GeF 6 in 10mL water, and 1.5mmol 1,2-dipyridylacetylene in 10mL methanol, mix and stir at 65°C After 24 hours, the obtained material was suction-filtered, washed with methanol for 3 to 4 times, and vacuum activated at room temperature for 24 hours to obtain a fluorine-containing anion hybrid porous material GeFSIX-2-Cu-i with flexible functions.
测量GeFSIX-2-Cu-i在298K下对1-戊烯、反-2-戊烯、异戊二烯的单组份吸附等温线,结果如图4所示,显示该材料可实现上述C5烯烃组分的分离。The single-component adsorption isotherms of GeFSIX-2-Cu-i at 298K for 1-pentene, trans-2-pentene, and isoprene were measured, and the results are shown in Figure 4, showing that this material can achieve the above C5 Separation of olefin components.
实施例3Example 3
将1.0mmol Cu(BF4)2·H2O、1.0mmol(NH4)2SiF6溶于10mL水,将1.5mmol的1,2-二吡啶乙炔溶于10mL甲醇,两者在85℃下混合搅拌12h,所的材料抽滤、甲醇洗涤3~4次,65℃真空活化24h,得到具有柔性功能的含氟阴离子杂化多孔材料SIFSIX-2-Cu-i。Dissolve 1.0mmol Cu(BF 4 ) 2 H2O, 1.0mmol (NH 4 ) 2 SiF 6 in 10mL water, and 1.5mmol 1,2-dipyridylacetylene in 10mL methanol, mix and stir at 85°C After 12 hours, the obtained material was suction-filtered, washed with methanol for 3-4 times, and vacuum activated at 65°C for 24 hours to obtain the fluorine-containing anion hybrid porous material SIFSIX-2-Cu-i with flexible functions.
测量SIFSIX-2-Cu-i在298K下对1-戊烯、反-2-戊烯、异戊二烯的单组份吸附等温线,结果如图5所示,显示该材料可实现上述C5烯烃组分的分离。The single-component adsorption isotherm of SIFSIX-2-Cu-i was measured at 298K for 1-pentene, trans-2-pentene, and isoprene. The results are shown in Figure 5, showing that the material can achieve the above C5 Separation of olefin components.
实施例4Example 4
将1.0mmol Cu(BF4)2·H2O、1.0mmol(NH4)2TiF6溶于10mL水,将1.5mmol的1,2-二吡啶乙炔溶于10mL甲醇,两者在85℃下混合搅拌12h,所得料浆抽滤后在80℃下抽真空条件下活化24h,得到具有柔性功能的含氟阴离子杂化多孔材料TIFSIX-2-Cu-i。Dissolve 1.0mmol Cu(BF 4 ) 2 ·H2O, 1.0mmol (NH4) 2 TiF 6 in 10mL water, dissolve 1.5mmol 1,2-dipyridineacetylene in 10mL methanol, mix and stir at 85°C for 12h , the resulting slurry was activated under vacuum at 80°C for 24 hours after suction filtration, and a fluorine-containing anion hybrid porous material TIFSIX-2-Cu-i with flexible functions was obtained.
测量TIFSIX-2-Cu-i在298K下对1-戊烯、反-2-戊烯、异戊二烯的单组份吸附等温线,结果如图6所示,显示该材料可实现上述C5烯烃组分的分离。The single-component adsorption isotherm of TIFSIX-2-Cu-i was measured at 298K for 1-pentene, trans-2-pentene, and isoprene. The results are shown in Figure 6, showing that this material can achieve the above C5 Separation of olefin components.
实施例5Example 5
将1.0mmol CuNbOF5溶于10mL水中,将1.5mmol的1,2-二吡啶乙炔溶于10mL甲醇,将配体溶液滴加至磁力搅拌的无机盐溶液中,然后80℃加热反应24h,产物抽滤并用甲醇洗涤3~4次,于室温活化24h,得到具有柔性功能的含氟阴离子杂化多孔材料NbOFFIVE-2-Cu-i。Dissolve 1.0mmol CuNbOF 5 in 10mL water, dissolve 1.5mmol 1,2-dipyridylacetylene in 10mL methanol, add the ligand solution dropwise to the magnetically stirred inorganic salt solution, then heat the reaction at 80°C for 24h, and the product is extracted Filter and wash with methanol for 3 to 4 times, and activate at room temperature for 24 hours to obtain the fluorine-containing anion hybrid porous material NbOFFIVE-2-Cu-i with flexible functions.
测量NbOFFIVE-2-Cu-i在298K下对1-戊烯、反-2-戊烯、异戊二烯的单组份吸附等温线,结果如图7所示,显示该材料可实现上述C5烯烃组分的分离。The single-component adsorption isotherm of NbOFFIVE-2-Cu-i was measured at 298K for 1-pentene, trans-2-pentene, and isoprene. The results are shown in Figure 7, showing that this material can achieve the above C5 Separation of olefin components.
实施例6Example 6
将1.0mmol ZnNbOF5溶于10mL水中,将1.5mmol的1,2-二吡啶乙炔溶于10mL甲醇,将配体溶液滴加至磁力搅拌的无机盐溶液中,然后80℃加热反应24h,产物抽滤并用甲醇洗涤3~4次,于室温活化24h,得到具有柔性功能的含氟阴离子杂化多孔材料NbOFFIVE-2-Zn-i。Dissolve 1.0mmol ZnNbOF 5 in 10mL water, dissolve 1.5mmol 1,2-dipyridylacetylene in 10mL methanol, add the ligand solution dropwise to the magnetically stirred inorganic salt solution, then heat the reaction at 80°C for 24h, and the product is pumped out. Filter and wash with methanol for 3 to 4 times, and activate at room temperature for 24 hours to obtain the fluorine-containing anion hybrid porous material NbOFFIVE-2-Zn-i with flexible functions.
测量NbOFFIVE-2-Zn-i在298K下对1-戊烯、异戊二烯的单组份吸附等温线,结果如图8所示,显示该材料可实现上述C5烯烃组分的分离。The single-component adsorption isotherm of NbOFFIVE-2-Zn-i at 298K for 1-pentene and isoprene was measured, and the results are shown in Figure 8, showing that this material can achieve the separation of the above-mentioned C5 olefin components.
实施例7Example 7
将实施例4的TIFSIX-2-Cu-i装填入5cm吸附柱中,25℃下将0.1MPa的1-戊烯、异戊二烯(摩尔比1:1)混合蒸汽以1mL/min通入吸附柱,穿透曲线如图9所示,流出气体中可获得高纯度异戊二烯,当1-戊烯穿透时停止吸附。后切换氮气室温吹扫吸附柱,吸附柱可循环使用。Pack the TIFSIX-2-Cu-i of Example 4 into a 5cm adsorption column, and pass 0.1MPa of 1-pentene and isoprene (molar ratio 1:1) mixed steam at 1mL/min at 25°C. into the adsorption column, the breakthrough curve is shown in Figure 9, high-purity isoprene can be obtained in the effluent gas, and the adsorption stops when 1-pentene breaks through. Afterwards, switch to nitrogen to purge the adsorption column at room temperature, and the adsorption column can be recycled.
将实施例4的TIFSIX-2-Cu-i装填入5cm吸附柱中,25℃下将0.1MPa的1-戊烯、反-2-戊烯、异戊二烯(摩尔比1:1:1)混合蒸汽以1mL/min通入吸附柱,穿透曲线如图10所示,流出气体中可获得高纯度异戊二烯,当反-2-戊烯穿透时停止吸附。后切换氮气室温吹扫吸附柱,吸附柱可循环使用。The TIFSIX-2-Cu-i of Example 4 was packed into a 5cm adsorption column, and 0.1MPa of 1-pentene, trans-2-pentene, isoprene (molar ratio 1:1: 1) The mixed steam is passed into the adsorption column at 1mL/min, the breakthrough curve is shown in Figure 10, high-purity isoprene can be obtained in the outflow gas, and the adsorption stops when trans-2-pentene breaks through. Afterwards, switch to nitrogen to purge the adsorption column at room temperature, and the adsorption column can be recycled.
实施例8Example 8
将实施例5的NbOFFIVE-2-Cu-i装填入5cm吸附柱中,25℃下将0.1MPa的1-戊烯、异戊二烯(摩尔比1:1)混合蒸汽以1mL/min通入吸附柱,穿透曲线如图11所示,流出气体中可获得高纯度异戊二烯(图11中空心圆),当1-戊烯(图11中实心圆)穿透时停止吸附。后切换氮气室温吹扫吸附柱,吸附柱可循环使用。Pack the NbOFFIVE-2-Cu-i of Example 5 into a 5cm adsorption column, and pass 0.1MPa of 1-pentene and isoprene (molar ratio 1:1) mixed steam at 1mL/min at 25°C into the adsorption column, the breakthrough curve is as shown in Figure 11, and high-purity isoprene (hollow circle in Figure 11) can be obtained in the effluent gas, and the adsorption stops when 1-pentene (solid circle in Figure 11) breaks through. Afterwards, switch to nitrogen to purge the adsorption column at room temperature, and the adsorption column can be recycled.
将实施例5的NbOFFIVE-2-Cu-i装填入5cm吸附柱中,25℃下将0.1MPa的1-戊烯、反-2-戊烯、异戊二烯(摩尔比1:1:1)混合蒸汽以1mL/min通入吸附柱,穿透曲线如图12所示,流出气体中可获得高纯度异戊二烯,当反-2-戊烯穿透时停止吸附。后切换氮气室温吹扫吸附柱,吸附柱可循环使用。The NbOFFIVE-2-Cu-i of Example 5 was packed into a 5cm adsorption column, and 0.1MPa of 1-pentene, trans-2-pentene, isoprene (molar ratio 1:1: 1) The mixed steam is passed into the adsorption column at 1mL/min. The breakthrough curve is shown in Figure 12. High-purity isoprene can be obtained in the effluent gas, and the adsorption stops when trans-2-pentene breaks through. Afterwards, switch to nitrogen to purge the adsorption column at room temperature, and the adsorption column can be recycled.
实施例9Example 9
将实施例4和5中制备的材料在常温下进行1-戊烯吸附循环再生性能测试,得到的结果如图13所示,证明材料循环再生稳定性优异。The materials prepared in Examples 4 and 5 were tested for 1-pentene adsorption cycle regeneration performance at room temperature, and the results obtained are shown in Figure 13, which proves that the materials have excellent cycle regeneration stability.
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。In addition, it should be understood that after reading the above description of the present invention, those skilled in the art may make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010310841.8A CN111440045B (en) | 2020-04-20 | 2020-04-20 | Separation method of carbon-pentaene mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010310841.8A CN111440045B (en) | 2020-04-20 | 2020-04-20 | Separation method of carbon-pentaene mixture |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111440045A CN111440045A (en) | 2020-07-24 |
CN111440045B true CN111440045B (en) | 2022-12-13 |
Family
ID=71655817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010310841.8A Active CN111440045B (en) | 2020-04-20 | 2020-04-20 | Separation method of carbon-pentaene mixture |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111440045B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113004114B (en) * | 2021-02-04 | 2022-05-17 | 浙江大学 | A kind of separation method of mixture containing carbon five diolefins |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101472842A (en) * | 2006-06-20 | 2009-07-01 | 西巴控股有限公司 | Process for removing ethene from biological sources using metal exchanged titanium zeolites |
CN108017500A (en) * | 2016-10-28 | 2018-05-11 | 中国石油化工股份有限公司 | The removal methods of pentone in C5 fraction |
CN109721457A (en) * | 2017-10-27 | 2019-05-07 | 中国石油化工股份有限公司 | A kind of method of pentone in removing C5 fraction |
-
2020
- 2020-04-20 CN CN202010310841.8A patent/CN111440045B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101472842A (en) * | 2006-06-20 | 2009-07-01 | 西巴控股有限公司 | Process for removing ethene from biological sources using metal exchanged titanium zeolites |
CN108017500A (en) * | 2016-10-28 | 2018-05-11 | 中国石油化工股份有限公司 | The removal methods of pentone in C5 fraction |
CN109721457A (en) * | 2017-10-27 | 2019-05-07 | 中国石油化工股份有限公司 | A kind of method of pentone in removing C5 fraction |
Also Published As
Publication number | Publication date |
---|---|
CN111440045A (en) | 2020-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104395268B (en) | 1,3-butadiene separation material and separation method using same | |
CN108671893A (en) | A kind of separation method for detaching the metal-organic framework material and ethylene acetylene of ethylene and acetylene | |
CN109776252B (en) | A kind of separation method of propylene propane | |
US11285455B2 (en) | Organic-inorganic hybrid nanoporous material containing intramolecular acid anhydride functional group, composition for adsorption comprising the same, and use thereof for separation of hydrocarbon gas mixture | |
CN107805260B (en) | Metal complex, adsorbing material, separating material, and method for separating 1, 3-butadiene | |
CN111410596A (en) | A kind of separation method of carbon eight aromatic hydrocarbon isomer mixture | |
CN109420480B (en) | A kind of separation method of carbon tetraolefin mixture | |
US6468329B2 (en) | Adsorbents and methods for the separation of ethylene and propylene and/or unsaturated hydrocarbons from mixed gases | |
CN112844321B (en) | Synthesis and preparation of a series of pillared metal-organic frameworks and their applications in the separation of low-carbon hydrocarbons | |
CN111575047A (en) | A kind of separation method of isomerized oil | |
CN114452938B (en) | Alkane preferential adsorption microporous material and preparation method and application thereof | |
CN111440045B (en) | Separation method of carbon-pentaene mixture | |
CN108440235B (en) | A kind of method for separating 1,3-butadiene from four-carbon hydrocarbon gas mixture | |
CN114433028B (en) | Adsorbent for separating normal isomerism hydrocarbon mixture, preparation method thereof and method for separating normal isomerism hydrocarbon mixture by adsorption | |
CN113527030B (en) | A kind of method for adsorption separation of cyclopentane and new hexane | |
WO2020156423A1 (en) | Method for separating ethylene from ethane | |
CN114181403B (en) | Anion pillared metal organic framework material constructed by four-tooth ligand and application thereof | |
CN113004114B (en) | A kind of separation method of mixture containing carbon five diolefins | |
CN114682231B (en) | Cyano MOFs adsorbent for selectively adsorbing acetylene, preparation method and application | |
KR101725756B1 (en) | Separation method of olefin and paraffin using organic-inorganic hybrid nanoporous materials having breathing behavior | |
CN115947949A (en) | A kind of porous metal organic framework material and its synthesis method, adsorbent and method for purifying ethylene | |
CN109422616B (en) | A method for separating C4 olefins from ultra-microporous ion-hybrid porous materials | |
CN115418001B (en) | A kind of metal organic framework material and its preparation method, application | |
CN114907183B (en) | Method for adsorbing and separating chloropropene and chloropropane mixed gas | |
CN114602437B (en) | Adsorbent for obtaining high-octane component from C6 hydrocarbon and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |