[go: up one dir, main page]

CN111437670B - air purifier - Google Patents

air purifier Download PDF

Info

Publication number
CN111437670B
CN111437670B CN201910045854.4A CN201910045854A CN111437670B CN 111437670 B CN111437670 B CN 111437670B CN 201910045854 A CN201910045854 A CN 201910045854A CN 111437670 B CN111437670 B CN 111437670B
Authority
CN
China
Prior art keywords
air
laminar flow
flow fan
annular
filter element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910045854.4A
Other languages
Chinese (zh)
Other versions
CN111437670A (en
Inventor
尹晓英
王永涛
戴现伟
闫宝升
张蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd, Haier Smart Home Co Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Priority to CN201910045854.4A priority Critical patent/CN111437670B/en
Publication of CN111437670A publication Critical patent/CN111437670A/en
Application granted granted Critical
Publication of CN111437670B publication Critical patent/CN111437670B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • B01D46/106Ring-shaped filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • B01D46/12Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces in multiple arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/50Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for air conditioning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

本发明提供了一种空气净化器,包括:壳体,其上设置有室内进风口和出风口;滤芯,设置于所述壳体内,室内空气自所述室内进风口进入所述壳体后到达所述滤芯进行过滤;新风系统,与所述壳体相连,具有室外进风口,室外空气经所述室外进风口进入所述壳体;以及层流风机,设置于所述壳体内,其形成有进风通道,经所述滤芯过滤后的所述室内空气和/或进入所述壳体的所述室外空气到达所述进风通道,所述层流风机通过流体粘性效应扰动到达所述进风通道的空气形成层流风,所述层流风自所述出风口排出所述壳体。本发明的空气净化器通过在壳体内设置层流风机,同时还设置了新风系统,有效提升用户的使用体验。

Figure 201910045854

The present invention provides an air purifier, comprising: a casing, on which an indoor air inlet and an air outlet are arranged; a filter element, arranged in the casing, and indoor air enters the casing from the indoor air inlet and reaches The filter element is used for filtering; the fresh air system is connected to the housing and has an outdoor air inlet through which outdoor air enters the housing; and a laminar flow fan is arranged in the housing and forms a The air inlet passage, the indoor air filtered by the filter element and/or the outdoor air entering the housing reaches the air inlet passage, and the laminar flow fan reaches the air inlet through the disturbance of the fluid viscosity effect The air in the channel forms a laminar flow, and the laminar flow is discharged from the casing through the air outlet. In the air purifier of the present invention, a laminar flow fan and a fresh air system are provided in the casing, thereby effectively improving user experience.

Figure 201910045854

Description

空气净化器air purifier

技术领域technical field

本发明涉及空气净化技术领域,特别是涉及一种空气净化器。The invention relates to the technical field of air purification, in particular to an air purifier.

背景技术Background technique

随着经济的飞速发展,能源的大量消耗产生大量的有害物质,人们生活的地球上充斥着颗粒物、硫氧化物、氮氧化物和碳氢化物,严重威胁着人们的健康。为了使空气变得清新,需要空气净化器来净化空气。目前空气净化器主要是使用离心风扇或轴流风扇单向送风,导致送风噪音高,在性能指标的限制下,噪音值接近极限。同时,现有的空气净化器一般只对室内空气进行处理,没有补充新风的功能。此外,大部分用户认为现有的空气净化器产生的清洁空气在房间或密闭的空间内不能均匀分布,具有一定的分布局限性。With the rapid development of the economy, the massive consumption of energy produces a large amount of harmful substances. The earth where people live is full of particulate matter, sulfur oxides, nitrogen oxides and hydrocarbons, which seriously threaten people's health. In order to make the air fresh, an air purifier is needed to purify the air. At present, air purifiers mainly use centrifugal fans or axial fans to supply air in one direction, resulting in high air supply noise. Under the limitation of performance indicators, the noise value is close to the limit. At the same time, the existing air purifiers generally only process indoor air, without the function of supplementing fresh air. In addition, most users think that the clean air generated by existing air purifiers cannot be evenly distributed in a room or a closed space, which has a certain distribution limitation.

发明内容Contents of the invention

本发明的一个目的是要提供一种利用层流风机送风,同时利用室内空气和室外空气,噪音小、风量高、风压大的空气净化器。One object of the present invention is to provide an air purifier which utilizes laminar flow fan to supply air, utilizes both indoor air and outdoor air, has low noise, high air volume and high wind pressure.

本发明一个进一步的目的是对室外空气进行过滤处理后再利用层流风机送风。A further object of the present invention is to use a laminar flow fan to supply air after filtering the outdoor air.

本发明又一个进一步的目的是避免空气净化器出风直吹用户,提升用户的使用体验。A further object of the present invention is to prevent the air from the air purifier from blowing directly to the user, so as to improve the user experience.

本发明提供以下技术方案:The invention provides the following technical solutions:

一种空气净化器,包括:An air purifier comprising:

壳体,其上设置有室内进风口和出风口;The housing is provided with an indoor air inlet and an air outlet;

滤芯,设置于壳体内,室内空气自室内进风口进入壳体后到达滤芯进行过滤;The filter element is set in the casing, and the indoor air enters the casing from the indoor air inlet and then reaches the filter element for filtering;

新风系统,与壳体相连,具有室外进风口,室外空气经室外进风口进入壳体;以及The fresh air system is connected to the housing and has an outdoor air inlet through which outdoor air enters the housing; and

层流风机,设置于壳体内,其形成有进风通道,经滤芯过滤后的室内空气和/或进入壳体的室外空气到达进风通道,层流风机通过流体粘性效应扰动到达进风通道的空气形成层流风,层流风自出风口排出壳体。The laminar flow fan is set in the housing, which forms an air inlet channel, the indoor air filtered by the filter element and/or the outdoor air entering the housing reaches the air inlet channel, and the laminar flow fan reaches the air inlet channel through the disturbance of the fluid viscosity effect The air forms a laminar wind, and the laminar wind is discharged from the housing through the air outlet.

可选地,新风系统包括:新风管道,其第一端位于室外,设置室外进风口,其第二端延伸至壳体内;和离心风机,室外空气经室外进风口进入新风管道由离心风机带动移动进入壳体。Optionally, the fresh air system includes: a fresh air duct, the first end of which is located outdoors, an outdoor air inlet is provided, and the second end extends into the casing; and a centrifugal fan, outdoor air enters the fresh air duct through the outdoor air inlet and is driven by the centrifugal fan to move into the case.

可选地,新风系统还包括:蜗壳,具有入口和出口;离心风机设置于蜗壳内,其带动室外空气自入口进入蜗壳并在蜗壳内转向后从出口进入壳体。Optionally, the fresh air system further includes: a volute with an inlet and an outlet; a centrifugal fan is arranged in the volute, which drives outdoor air into the volute from the inlet, turns around in the volute, and enters the casing from the outlet.

可选地,新风系统还包括:新风滤芯,设置于新风管道内,离心风机带动自新风滤芯过滤后的室外空气自入口进入蜗壳。Optionally, the fresh air system further includes: a fresh air filter element arranged in the fresh air duct, and the centrifugal fan drives the outdoor air filtered by the fresh air filter element into the volute from the inlet.

可选地,壳体内设置有风道板,风道板配置成与滤芯的至少一部分之间形成风道;蜗壳的出口与风道连通,从而使得室外空气从出口排出后进入风道并经滤芯过滤后再到达进风通道。Optionally, an air channel plate is provided in the housing, and the air channel plate is configured to form an air channel with at least a part of the filter element; the outlet of the volute is communicated with the air channel, so that the outdoor air enters the air channel after being discharged from the outlet and passes through the air channel. After filtering by the filter element, it reaches the air inlet channel.

可选地,层流风机包括:Optionally, laminar flow fans include:

层流风扇,包括多个环形盘片,多个环形盘片彼此间隔地平行设置,具有相同的中心轴线且中心共同形成进风通道,进入进风通道的空气到达多个环形盘片之间的间隙;以及The laminar flow fan includes a plurality of annular disks, which are arranged in parallel with each other at intervals, have the same central axis and form an air inlet channel in the center, and the air entering the air inlet channel reaches the space between the plurality of annular disks. clearance; and

电机,与层流风扇连接,配置成驱动多个环形盘片旋转,进而使得靠近多个环形盘片表面的空气边界层被旋转的多个环形盘片带动由内向外旋转移动形成层流风。The motor is connected to the laminar flow fan and is configured to drive a plurality of annular disks to rotate, so that the air boundary layer close to the surface of the plurality of annular disks is driven by the rotating plurality of annular disks to rotate from inside to outside to form a laminar flow.

可选地,壳体内的上部设置层流风扇和电机;壳体在其上部对应于层流风扇的位置处设置出风口;滤芯为环形滤芯,竖直地设置于层流风扇下方;壳体在滤芯的下方形成有容纳腔,离心风机和蜗壳设置于容纳腔内,且蜗壳的出口的开口向上。Optionally, a laminar fan and a motor are arranged in the upper part of the housing; an air outlet is provided on the upper part of the housing corresponding to the position of the laminar fan; the filter element is an annular filter element, which is vertically arranged below the laminar fan; An accommodating cavity is formed below the filter element, and the centrifugal fan and the volute are arranged in the accommodating cavity, and the opening of the outlet of the volute is upward.

可选地,层流风扇还包括:驱动圆盘,与多个环形盘片间隔地平行设置;以及连接件,贯穿驱动圆盘和多个环形盘片,以将多个环形盘片连接至驱动圆盘;电机配置成直接驱动驱动圆盘旋转,进而由驱动圆盘带动多个环形盘片旋转。Optionally, the laminar flow fan further includes: a driving disc, arranged in parallel with the plurality of annular discs at intervals; Disc; the motor is configured to directly drive the disc to rotate, and then the drive disc drives a plurality of annular discs to rotate.

可选地,驱动圆盘在其中心朝向多个环形盘片形成有凹陷部;空气净化器还包括:固定机构,设置于壳体内,其包括固定板和固定架,电机设置于固定板和固定架之间;其中固定架具有本体部和自本体部朝向固定板延伸的卡爪部;本体部上设置有通孔,电机的输出轴自通孔伸出固定架后与层流风扇连接;卡爪部用于与固定板固定,且与凹陷部匹配设置。Optionally, the driving disc is formed with a recessed portion toward a plurality of annular discs at its center; the air cleaner also includes: a fixing mechanism, arranged in the housing, which includes a fixing plate and a fixing frame, and the motor is arranged on the fixing plate and the fixing frame. Between the frames; wherein the fixed frame has a main body and a claw extending from the main body toward the fixed plate; the main body is provided with a through hole, and the output shaft of the motor extends out of the fixed frame through the through hole and is connected with the laminar flow fan; The claws are used for fixing with the fixing plate and matched with the recesses.

可选地,连接件为叶片,叶片的横截面具有朝环形盘片旋转的方向凸起的双圆弧,包括沿环形盘片旋转的方向依次设置的内弧和背弧;其中,内弧和背弧具有不同的圆心且两端均相交,或者内弧和背弧具有相同的圆心且平行设置。Optionally, the connecting part is a blade, and the cross section of the blade has double circular arcs protruding toward the direction of rotation of the annular disc, including inner arcs and back arcs arranged in sequence along the direction of rotation of the annular disc; wherein, the inner arc and The back arcs have different centers and both ends intersect, or the inner arcs and back arcs have the same center and are arranged in parallel.

可选地,环形盘片依照下列结构中的一种或几种设置:Optionally, the annular disc is arranged according to one or more of the following structures:

相邻两个环形盘片之间的间距沿着气流在进风通道中流动的方向逐渐增大;The distance between two adjacent annular disks gradually increases along the direction of air flow in the air inlet channel;

多个环形盘片的内径沿着气流在进风通道中流动的方向逐渐缩小;The inner diameters of the plurality of annular disks are gradually reduced along the direction of the airflow flowing in the air inlet channel;

每个环形盘片均为由内侧至外侧逐渐靠近驱动圆盘的弧形盘片。Each annular disc is an arc-shaped disc gradually approaching the driving disc from the inner side to the outer side.

本发明的空气净化器通过在壳体内设置层流风机,同时还设置了新风系统,将经滤芯过滤的室内空气和新风系统引入的室外空气均进入层流风机的进风通道,层流风机通过流体粘性效应对空气进行扰动实现层流送风,送风效率高,噪音小、风量高、风压大,有效提升空气净化器用户的使用体验。The air purifier of the present invention is provided with a laminar flow fan in the casing, and a fresh air system is also provided at the same time, the indoor air filtered through the filter element and the outdoor air introduced by the fresh air system enter the air inlet channel of the laminar flow fan, and the laminar flow fan passes through The fluid viscosity effect disturbs the air to achieve laminar air supply, with high air supply efficiency, low noise, high air volume, and high wind pressure, which effectively improves the user experience of the air purifier.

进一步地,本发明的空气净化器通过设置新风滤芯或者风道来对室外空气进行过滤后再被层流风机送风,对用户更友好。Furthermore, the air purifier of the present invention is provided with a fresh air filter element or an air duct to filter the outdoor air before being blown by a laminar flow fan, which is more user-friendly.

进一步地,本发明的空气净化器通过将层流风机和出风口设置在上部,将环形滤芯和新风系统设置于层流风扇下方,实现从上部送风,避免出风直吹用户,提升用户的使用体验,在优选条件下能实现360°均匀送风。Further, the air purifier of the present invention arranges the laminar flow fan and the air outlet on the upper part, and arranges the annular filter element and the fresh air system under the laminar flow fan, so as to realize air supply from the upper part, avoid direct blowing of the air to the user, and improve the user's safety. Using experience, it can achieve 360° uniform air supply under optimal conditions.

根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。Those skilled in the art will be more aware of the above and other objects, advantages and features of the present invention according to the following detailed description of specific embodiments of the present invention in conjunction with the accompanying drawings.

附图说明Description of drawings

后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:Hereinafter, some specific embodiments of the present invention will be described in detail by way of illustration and not limitation with reference to the accompanying drawings. The same reference numerals in the drawings designate the same or similar parts or parts. Those skilled in the art will appreciate that the drawings are not necessarily drawn to scale. In the attached picture:

图1是根据本发明一个实施例的空气净化器的示意性立体图。FIG. 1 is a schematic perspective view of an air cleaner according to an embodiment of the present invention.

图2是图1所示空气净化器的示意性爆炸图。Fig. 2 is a schematic exploded view of the air purifier shown in Fig. 1 .

图3是图1所示空气净化器的示意性剖视图。Fig. 3 is a schematic cross-sectional view of the air cleaner shown in Fig. 1 .

图4是根据本发明另一个实施例的空气净化器的示意性爆炸图。Fig. 4 is a schematic exploded view of an air purifier according to another embodiment of the present invention.

图5是图4所示空气净化器的一个示意性剖视图。Fig. 5 is a schematic sectional view of the air cleaner shown in Fig. 4 .

图6是根据本发明一个实施例的空气净化器的另一个示意性剖视图。Fig. 6 is another schematic cross-sectional view of an air cleaner according to an embodiment of the present invention.

图7是根据本发明一个实施例的空气净化器的滤芯的示意性立体图。Fig. 7 is a schematic perspective view of a filter element of an air purifier according to an embodiment of the present invention.

图8是根据本发明一个实施例的空气净化器的滤芯的示意性立体图。Fig. 8 is a schematic perspective view of a filter element of an air purifier according to an embodiment of the present invention.

图9是根据本发明一个实施例的空气净化器的壳体的示意性立体图。Fig. 9 is a schematic perspective view of a housing of an air cleaner according to an embodiment of the present invention.

图10是适用于图9所示的空气净化器的挡风件的示意性立体图。FIG. 10 is a schematic perspective view of a windshield suitable for the air cleaner shown in FIG. 9 .

图11是根据本发明一个实施例的空气净化器的隔板的示意性立体图。Fig. 11 is a schematic perspective view of a partition of an air cleaner according to an embodiment of the present invention.

图12是根据本发明一个实施例的空气净化器的固定板的示意性立体图。Fig. 12 is a schematic perspective view of a fixing plate of an air cleaner according to an embodiment of the present invention.

图13是根据本发明一个实施例的空气净化器的层流风机的层流风扇的示意性立体图。Fig. 13 is a schematic perspective view of a laminar flow fan of a laminar flow fan of an air purifier according to an embodiment of the present invention.

图14是图1所示空气净化器的层流风机的送风原理示意图。Fig. 14 is a schematic diagram of the air supply principle of the laminar flow fan of the air purifier shown in Fig. 1 .

图15是图1所示空气净化器的层流风机的速度分布和受力分布图。Fig. 15 is a diagram showing the velocity distribution and force distribution of the laminar flow fan of the air cleaner shown in Fig. 1 .

图16是图13所示的层流风扇的示意性剖视图。Fig. 16 is a schematic cross-sectional view of the laminar flow fan shown in Fig. 13 .

图17是图13所示的层流风扇的另一视角的示意性立体图。Fig. 17 is a schematic perspective view of another viewing angle of the laminar flow fan shown in Fig. 13 .

图18是图13所示的层流风扇的又一视角的示意性立体图。Fig. 18 is a schematic perspective view of another viewing angle of the laminar flow fan shown in Fig. 13 .

图19是根据本发明一个实施例的空气净化器的固定机构、电机和层流风扇配合的示意性剖视图。Fig. 19 is a schematic cross-sectional view of the cooperation of the fixing mechanism, the motor and the laminar flow fan of the air cleaner according to one embodiment of the present invention.

图20是根据本发明一个实施例的空气净化器的电机和固定机构的示意性爆炸图。Fig. 20 is a schematic exploded view of a motor and a fixing mechanism of an air purifier according to an embodiment of the present invention.

图21是根据本发明一个实施例的空气净化器的层流风机的示意性主视图。Fig. 21 is a schematic front view of a laminar flow fan of an air cleaner according to an embodiment of the present invention.

图22是图21所示的层流风机的另一视角的示意性立体图。Fig. 22 is a schematic perspective view of another viewing angle of the laminar flow fan shown in Fig. 21 .

图23是图21所示的层流风机的空气循环示意图。Fig. 23 is a schematic diagram of the air circulation of the laminar flow fan shown in Fig. 21 .

图24是图21所示的层流风机的横截面示意图。Fig. 24 is a schematic cross-sectional view of the laminar flow fan shown in Fig. 21 .

图25是图21所示的层流风机的层流风扇的叶片的弦线长度与风量和风压的关系示意图。FIG. 25 is a schematic diagram showing the relationship between the chord length of the blade of the laminar flow fan shown in FIG. 21 and the air volume and wind pressure.

图26是根据本发明一个实施例的空气净化器的层流风扇具有双圆弧叶片的层流风机的横截面示意图。Fig. 26 is a schematic cross-sectional view of a laminar flow fan of an air purifier with double arc blades according to an embodiment of the present invention.

图27是双圆弧叶片的安装角度与风量和风压的关系示意图。Fig. 27 is a schematic diagram of the relationship between the installation angle of the double-arc blades and the air volume and air pressure.

图28是根据本发明一个实施例的空气净化器的层流风扇具有航空叶片的层流风机的横截面示意图。Fig. 28 is a schematic cross-sectional view of a laminar flow fan of an air purifier having aviation blades according to an embodiment of the present invention.

图29是航空叶片的安装角度与风量和风压的关系示意图。Fig. 29 is a schematic diagram of the relationship between the installation angle of the aviation blade and the air volume and wind pressure.

图30是根据本发明一个实施例的空气净化器的层流风扇的环形盘片间距逐渐改变的层流风机的示意性主视图。Fig. 30 is a schematic front view of the laminar flow fan of the laminar flow fan of the air purifier according to an embodiment of the present invention, in which the pitch of the annular disks changes gradually.

图31是图30所示的层流风机的示意性立体图。Fig. 31 is a schematic perspective view of the laminar flow fan shown in Fig. 30 .

图32是图30所示的层流风机的多个环形盘片间距渐变与风量和风压的关系示意图。FIG. 32 is a schematic diagram of the relationship between the gradual change of the pitch of multiple annular disks and the air volume and wind pressure of the laminar flow fan shown in FIG. 30 .

图33是根据本发明一个实施例的空气净化器的层流风机的环形盘片内径渐变的层流风扇的示意性剖视图。Fig. 33 is a schematic cross-sectional view of the laminar flow fan of the laminar flow fan of the air cleaner according to an embodiment of the present invention, the inner diameter of the annular disk gradually changes.

图34是图33所示的层流风机的多个环形盘片内径渐变与风量和风压的关系示意图。Fig. 34 is a schematic diagram of the relationship between the gradual change of inner diameters of the multiple annular disks and the air volume and air pressure of the laminar flow fan shown in Fig. 33 .

图35是根据本发明一个实施例的空气净化器的层流风机的环形盘片为弧形盘片的层流风扇的多个环形盘片在经过中心轴线的同一纵截面上的内外径连线的圆心角示意图。Fig. 35 is a line connecting the inner and outer diameters of multiple annular disks of the laminar flow fan of the air purifier according to an embodiment of the present invention, which is an arc-shaped laminar flow fan, on the same longitudinal section passing through the central axis A schematic diagram of the central angle of a circle.

图36是图35所示的层流风机的圆心角与风量和风压的关系示意图。FIG. 36 is a schematic diagram of the relationship between the central angle of the laminar flow fan shown in FIG. 35 and the air volume and wind pressure.

具体实施方式Detailed ways

图1是根据本发明一个实施例的空气净化器100的示意性立体图。图2是图1所示空气净化器100的示意性爆炸图。图3是图1所示空气净化器100的示意性剖视图。本发明实施例的空气净化器100一般性地可包括壳体200、滤芯120、新风系统900、层流风机110。壳体200上设置有室内进风口201和出风口202。滤芯120设置于壳体200内,室内空气自室内进风口201进入壳体200后到达滤芯120进行过滤。新风系统900与壳体200相连,具有室外进风口203,室外空气经室外进风口203进入壳体200。层流风机110设置于壳体200内,其中心形成有进风通道302,经滤芯120过滤的室内空气和/或进入壳体200的室外空气到达进风通道302,层流风机110通过流体粘性效应扰动到达进风通道302的空气形成层流风,层流风自出风口202排出壳体200。FIG. 1 is a schematic perspective view of an air purifier 100 according to an embodiment of the present invention. FIG. 2 is a schematic exploded view of the air cleaner 100 shown in FIG. 1 . FIG. 3 is a schematic cross-sectional view of the air cleaner 100 shown in FIG. 1 . The air purifier 100 of the embodiment of the present invention may generally include a housing 200 , a filter element 120 , a fresh air system 900 , and a laminar flow fan 110 . The housing 200 is provided with an indoor air inlet 201 and an air outlet 202 . The filter element 120 is disposed in the housing 200 , and indoor air enters the housing 200 from the indoor air inlet 201 and reaches the filter element 120 for filtering. The fresh air system 900 is connected to the housing 200 and has an outdoor air inlet 203 through which outdoor air enters the housing 200 . The laminar flow fan 110 is arranged in the casing 200, and an air inlet passage 302 is formed at the center thereof, the indoor air filtered by the filter element 120 and/or the outdoor air entering the casing 200 reaches the air inlet passage 302, and the laminar flow fan 110 passes the fluid viscosity The effect disturbs the air reaching the air inlet channel 302 to form a laminar flow, and the laminar flow is discharged from the casing 200 through the air outlet 202 .

本发明实施例的空气净化器100通过在壳体200内设置层流风机110,同时还设置了新风系统900,将经滤芯120过滤的室内空气和新风系统900引入的室外空气均可以进入层流风机110的进风通道302,层流风机110通过流体粘性效应对空气进行扰动实现层流送风,送风效率高,噪音小、风量高、风压大,有效提升空气净化器110用户的使用体验,且外观新颖,功能良好,品质优秀。The air purifier 100 of the embodiment of the present invention is provided with the laminar flow fan 110 in the casing 200, and the fresh air system 900 is also set at the same time, the indoor air filtered by the filter element 120 and the outdoor air introduced by the fresh air system 900 can enter the laminar flow In the air inlet channel 302 of the fan 110, the laminar flow fan 110 disturbs the air through the fluid viscosity effect to achieve laminar air supply, with high air supply efficiency, low noise, high air volume, and high wind pressure, which effectively improves the use of the air purifier 110 users. Experience, and the appearance is novel, the function is good, and the quality is excellent.

本发明实施例的空气净化器100的新风系统900是可关闭的系统,即当室外空气良好时,新风系统900开启,室外空气进入壳体200内后由层流风机110作用形成层流风。当室外空气污染或者其他无需新风的情形时,新风系统900关闭。The fresh air system 900 of the air purifier 100 of the embodiment of the present invention is a system that can be closed, that is, when the outdoor air is good, the fresh air system 900 is turned on, and after the outdoor air enters the housing 200, the laminar flow fan 110 acts to form a laminar flow. When the outdoor air is polluted or other situations that do not require fresh air, the fresh air system 900 is turned off.

在一些实施例中,本发明实施例的空气净化器100的新风系统900包括:新风管道901和离心风机902。新风管道901的第一端位于室外,设置室外进风口203,第二端延伸至壳体200内。室外空气经室外进风口203进入新风管道901由离心风机902带动移动进入壳体200。离心风机902包括离心风扇和电机,可以选用现有的离心风扇和电机来装配得到,在此对其结构不进行详述。In some embodiments, the fresh air system 900 of the air purifier 100 of the embodiment of the present invention includes: a fresh air duct 901 and a centrifugal fan 902 . The first end of the fresh air duct 901 is located outdoors and is provided with an outdoor air inlet 203 , and the second end extends into the casing 200 . Outdoor air enters the fresh air duct 901 through the outdoor air inlet 203 and is driven by the centrifugal fan 902 to move into the casing 200 . The centrifugal fan 902 includes a centrifugal fan and a motor, which can be assembled from existing centrifugal fans and motors, and its structure will not be described in detail here.

在一些实施例中,本发明实施例的空气净化器100的新风系统900还包括:蜗壳903,具有入口和出口。离心风机902设置于蜗壳903内,其带动室外空气自入口进入蜗壳903并在蜗壳903内转向后从出口进入壳体200。在一个实施例中,蜗壳903的入口和出口配置成自入口进入的空气转向90°后从出口排出。In some embodiments, the fresh air system 900 of the air cleaner 100 of the embodiment of the present invention further includes: a volute 903 having an inlet and an outlet. The centrifugal fan 902 is arranged in the volute 903 , and it drives the outdoor air to enter the volute 903 from the inlet, turn around in the volute 903 and then enter the housing 200 from the outlet. In one embodiment, the inlet and outlet of the volute 903 are configured such that the air entering from the inlet is turned 90° and then discharged from the outlet.

为了避免室外空气污染室内空气,将室外空气在过滤后再到达进风通道302。In order to prevent the outdoor air from polluting the indoor air, the outdoor air reaches the air inlet channel 302 after being filtered.

在一些实施例中,新风系统900还包括:新风滤芯905,设置于新风管道901内,离心风机902带动自新风滤芯905过滤后的室外空气自蜗壳903的入口进入蜗壳903。新风滤芯905可以具有与新风管道901的内部形状相匹配的外形。例如,新风管道901为中空圆柱形,新风滤芯905为实心圆柱形且外径略小于新风管道901的内径。再如,新风管道901为纵截面为长方形的中空长方体,新风滤芯905为实心长方体且长宽略小于新风管道901的纵截面的长方形的长宽。新风滤芯905的具体结构组成例如材质、制备工艺等可选用现有技术中已公开的材质和工艺,在此不进行详述。In some embodiments, the fresh air system 900 further includes: a fresh air filter element 905 disposed in the fresh air duct 901 , and the centrifugal fan 902 drives outdoor air filtered by the fresh air filter element 905 into the volute 903 from the inlet of the volute 903 . The fresh air filter element 905 may have a shape matching the inner shape of the fresh air duct 901 . For example, the fresh air duct 901 is a hollow cylinder, and the fresh air filter element 905 is a solid cylinder with an outer diameter slightly smaller than an inner diameter of the fresh air duct 901 . For another example, the fresh air duct 901 is a hollow cuboid with a rectangular longitudinal section, and the fresh air filter element 905 is a solid cuboid whose length and width are slightly smaller than the length and width of the rectangle in the longitudinal section of the fresh air duct 901 . The specific structural components of the fresh air filter element 905 such as materials and manufacturing processes can be selected from the materials and processes disclosed in the prior art, and will not be described in detail here.

在另一些实施例中,壳体200内设置有风道板904,风道板904配置成与滤芯120的至少一部分之间形成风道941;蜗壳903的出口与风道941连通,从而使得室外空气从蜗壳903的出口排出后进入风道941并经滤芯120过滤后再到达进风通道302。In some other embodiments, an air channel plate 904 is disposed inside the casing 200, and the air channel plate 904 is configured to form an air channel 941 with at least a part of the filter element 120; the outlet of the volute 903 communicates with the air channel 941, so that The outdoor air is discharged from the outlet of the volute 903 and then enters the air channel 941 and is filtered by the filter element 120 before reaching the air inlet channel 302 .

在一些实施例中,层流风机110包括层流风扇300和电机400。图13是层流风扇300的一个示意性立体图。层流风扇300包括多个环形盘片301,多个环形盘片301彼此间隔地平行设置,具有相同的中心轴线且中心共同形成进风通道302,进入进风通道302到达多个环形盘片301之间的间隙。电机400与层流风扇300连接,配置成驱动多个环形盘片301旋转,进而使得靠近多个环形盘片301表面的空气边界层304被旋转的多个环形盘片301带动由内向外旋转移动形成层流风。其中空气边界层304是靠近各盘片表面的很薄的空气层。In some embodiments, the laminar flow fan 110 includes a laminar flow fan 300 and a motor 400 . FIG. 13 is a schematic perspective view of the laminar flow fan 300 . The laminar flow fan 300 includes a plurality of annular disks 301, which are arranged in parallel at intervals from each other, have the same central axis and form an air inlet channel 302 in the center, and enter the air inlet channel 302 to reach the plurality of annular disks 301 gap between. The motor 400 is connected to the laminar flow fan 300 and is configured to drive a plurality of annular disks 301 to rotate, so that the air boundary layer 304 close to the surface of the plurality of annular disks 301 is driven by the rotating plurality of annular disks 301 to rotate from inside to outside. Laminar winds are formed. The air boundary layer 304 is a very thin air layer close to the surface of each disc.

图14是层流风机110的送风原理示意图。电机400驱动多个环形盘片301高速旋转,各环形盘片301间隔内的空气接触并发生相互运动,则靠近各环形盘片301表面的空气边界层304因受粘性剪切力τ作用,被旋转的环形盘片301带动由内向外旋转移动形成层流风。图15是本发明实施例的空气净化器100的层流风机110的速度分布和受力分布图,是空气边界层304受到的粘性剪切力分布τ(y)和速度分布u(y)的示意图。空气边界层304受到的粘性剪切力实际上是各盘片对空气边界层304产生的阻力。图15中的横坐标轴指的是空气边界层304的移动方向上的距离,纵坐标轴指的是空气边界层304在与移动方向垂直的方向上的高度。ve为空气边界层304内每一点的气流速度,δ为空气边界层304的厚度,τw为环形盘片301表面处的粘性剪切力。τ(y)和u(y)中的变量y指的是空气边界层304在与移动方向垂直的方向上截面的高度,L为环形盘片301内圆周的某一点与环形盘片301表面某一点之间的距离。则τ(y)是在该距离L处,空气边界层304截面的高度为y时受到的粘性剪切力分布;u(y)是在该距离L处,空气边界层304截面的高度为y时的速度分布。FIG. 14 is a schematic diagram of the air supply principle of the laminar flow fan 110 . The motor 400 drives a plurality of annular disks 301 to rotate at high speed, and the air in the intervals of each annular disk 301 contacts and moves with each other, and the air boundary layer 304 close to the surface of each annular disk 301 is affected by the viscous shear force τ. The rotating annular disc 301 is driven to rotate from inside to outside to form laminar wind. Fig. 15 is the speed distribution and the force distribution diagram of the laminar flow fan 110 of the air purifier 100 of the embodiment of the present invention, it is the viscous shear force distribution τ (y) and the speed distribution u (y) that the air boundary layer 304 is subjected to schematic diagram. The viscous shearing force experienced by the air boundary layer 304 is actually the resistance produced by each disc to the air boundary layer 304 . The axis of abscissa in FIG. 15 refers to the distance in the moving direction of the air boundary layer 304 , and the axis of ordinate refers to the height of the air boundary layer 304 in the direction perpendicular to the moving direction. v e is the air velocity at each point in the air boundary layer 304 , δ is the thickness of the air boundary layer 304 , and τ w is the viscous shear force at the surface of the annular disc 301 . The variable y in τ(y) and u(y) refers to the height of the cross-section of the air boundary layer 304 in the direction perpendicular to the moving direction, and L is a certain point on the inner circumference of the annular disc 301 and a certain point on the surface of the annular disc 301. the distance between points. Then τ(y) is at the distance L, the viscous shear force distribution received when the height of the air boundary layer 304 section is y; u(y) is at the distance L, the height of the air boundary layer 304 section is y speed distribution at time.

本发明实施例的空气净化器100的壳体200的整体形状可以依照实际需要来设计,例如为圆柱体、长方体、正方体、以及其他异形体。在一些实施例中,壳体200为长方体结构,具有四个侧面和上下底面。可以选取四个侧面中的一个侧面或多个侧面设置室内进风口201,形成进风侧。滤芯120可以是环形滤芯600、平板滤芯700等等。图7是根据本发明一个实施例的空气净化器100的环形滤芯600的示意性立体图。环形滤芯600的横截面为环形,中心具有中空通道。图8是根据本发明一个实施例的空气净化器100的平板滤芯700的示意性立体图。平板滤芯700是整体呈长方体的滤芯。使用不同类型的滤芯的空气净化器100在壳体200上的进风侧的数量、新风系统900的位置、室外空气过滤所采用的方式、风道板904的设置位置等等均应有适当地调整。The overall shape of the housing 200 of the air purifier 100 in the embodiment of the present invention can be designed according to actual needs, such as a cylinder, a cuboid, a cube, and other irregular shapes. In some embodiments, the housing 200 is a cuboid structure with four sides and upper and lower bottom surfaces. One or more of the four sides can be selected to set the indoor air inlet 201 to form the air inlet side. The filter element 120 may be a ring filter element 600, a flat filter element 700, and the like. Fig. 7 is a schematic perspective view of the annular filter element 600 of the air cleaner 100 according to an embodiment of the present invention. The cross section of the annular filter element 600 is annular, with a hollow channel in the center. Fig. 8 is a schematic perspective view of the flat filter element 700 of the air purifier 100 according to an embodiment of the present invention. The flat filter element 700 is a rectangular parallelepiped filter element as a whole. The number of air intake sides of the air cleaner 100 using different types of filter elements on the housing 200, the location of the fresh air system 900, the way the outdoor air is filtered, the location of the air duct plate 904, etc. should be properly arranged. Adjustment.

在一些实施例中,壳体200内的上部设置层流风扇300和电机400;壳体200在其上部对应于层流风扇300的位置处设置出风口202;滤芯120竖直地设置于层流风扇300下方;壳体200在滤芯120的下方形成有容纳腔,离心风机902和蜗壳903设置于容纳腔内,且蜗壳903的出口的开口向上。为了使经滤芯120过滤的室内空气和/或室外空气或者经新风滤芯905过滤的室外空气均能尽可能地移动到进风通道302内,在一些实施例中,本发明实施例的空气净化器100还包括:两个隔板101,一个设置于层流风扇300和滤芯120之间,另一个设置于蜗壳903与壳体200之间或者蜗壳903与风道板904和滤芯120之间。图11是根据本发明一个实施例的空气净化器100的隔板101的示意性立体图。两个隔板101的形状可以相同,也可以不相同,其具体形状可以对照层流风扇300、滤芯120、风道板904、蜗壳903以及壳体200的结构来设计。例如,在一个实施例中,壳体200为长方体形状,隔板101的横截面也为方形,在其中心部分为中空结构;设置在上部的隔板101的中空结构的一侧与环形滤芯600的中空通道对接,另一侧与进风通道302对接;设置在下部的隔板101的中空结构的一侧与环形滤芯600的中空通道对接,另一侧与蜗壳903的出口对接。In some embodiments, a laminar flow fan 300 and a motor 400 are arranged in the upper part of the casing 200; an air outlet 202 is arranged in the upper part of the casing 200 corresponding to the position of the laminar flow fan 300; the filter element 120 is vertically arranged in the laminar flow Below the fan 300 ; the casing 200 forms an accommodation chamber below the filter element 120 , the centrifugal fan 902 and the volute 903 are arranged in the accommodation chamber, and the opening of the outlet of the volute 903 is upward. In order to make the indoor air and/or outdoor air filtered by the filter element 120 or the outdoor air filtered by the fresh air filter element 905 move into the air inlet channel 302 as much as possible, in some embodiments, the air purifier of the embodiment of the present invention 100 also includes: two partitions 101, one is arranged between the laminar flow fan 300 and the filter element 120, and the other is arranged between the volute 903 and the casing 200 or between the volute 903 and the air channel plate 904 and the filter element 120 . FIG. 11 is a schematic perspective view of a partition 101 of an air cleaner 100 according to an embodiment of the present invention. The shapes of the two partitions 101 can be the same or different, and their specific shapes can be designed according to the structures of the laminar flow fan 300 , the filter element 120 , the air duct plate 904 , the volute 903 and the housing 200 . For example, in one embodiment, the housing 200 is in the shape of a cuboid, and the cross-section of the partition 101 is also a square, with a hollow structure in its central part; One side of the hollow structure of the lower partition 101 is docked with the hollow channel of the annular filter element 600, and the other side is docked with the outlet of the volute 903.

在一个实施例中,壳体200在其上部对应于层流风扇300的位置处环绕设置出风口202,以实现360°送风。In one embodiment, an air outlet 202 is arranged around the upper part of the housing 200 at a position corresponding to the laminar flow fan 300 , so as to realize 360° air supply.

如图2和3所示,在一个实施例中,壳体200内的上部设置层流风扇300和电机400,壳体200的中部设置多个室内进风口201形成相对的两个进风侧,滤芯120为环形滤芯600,壳体200在环形滤芯600的下方还形成有容纳腔,离心风机902和蜗壳903均设置于容纳腔内,且蜗壳903的出口的开口向上,在新风管道901内设置有新风滤芯905。图6是根据本发明一个实施例的空气净化器100的另一个示意性剖视图。参考图3和图6,分别示出了室外空气和室内空气的流向。室外空气经室外进风口203进入新风管道901内,到达新风滤芯905被过滤后,通过蜗壳903的入口和出口到达环形滤芯600的中空通道。室内空气则是从壳体200的两个相对设置的进风侧到达环形滤芯600被过滤后到达环形滤芯600的中空通道。As shown in Figures 2 and 3, in one embodiment, a laminar flow fan 300 and a motor 400 are arranged in the upper part of the casing 200, and a plurality of indoor air inlets 201 are arranged in the middle of the casing 200 to form two opposite air inlet sides, The filter element 120 is an annular filter element 600, and the casing 200 also forms an accommodation cavity below the annular filter element 600. The centrifugal fan 902 and the volute 903 are both arranged in the accommodation cavity, and the opening of the outlet of the volute 903 is upward, and the fresh air duct 901 A fresh air filter element 905 is arranged inside. FIG. 6 is another schematic cross-sectional view of the air cleaner 100 according to one embodiment of the present invention. Referring to FIG. 3 and FIG. 6 , the flow directions of outdoor air and indoor air are shown, respectively. Outdoor air enters the fresh air duct 901 through the outdoor air inlet 203 , reaches the fresh air filter element 905 after being filtered, and then reaches the hollow channel of the annular filter element 600 through the inlet and outlet of the volute 903 . The indoor air reaches the annular filter element 600 from two opposite air intake sides of the housing 200 and then reaches the hollow channel of the annular filter element 600 after being filtered.

图4是根据本发明另一个实施例的空气净化器100的示意性爆炸图。图5是图4所示空气净化器100的一个示意性剖视图。在一个实施例中,壳体200内的上部设置层流风扇300和电机400,壳体200的中部设置多个室内进风口201形成相对的两个进风侧,滤芯120为环形滤芯600,壳体200在环形滤芯600的下方还形成有容纳腔,离心风机902和蜗壳903均设置于容纳腔内,蜗壳903的出口的开口向上,并且同时在壳体200内部的非进风侧与环形滤芯600之间还设置有风道板904,风道板904与处于非进风侧部分的环形滤芯600之间形成风道941。图6是根据本发明一个实施例的空气净化器100的另一个示意性剖视图。参考图5和图6,分别示出了室外空气和室内空气的流向。室外空气经室外进风口203进入新风管道901内,通过蜗壳903的入口和出口到达风道941,之后被形成风道941的该部分环形滤芯600过滤后到达环形滤芯600的中空通道。室内空气则是从壳体200的两个进风侧到达环形滤芯600被过滤后到达环形滤芯600的中空通道。FIG. 4 is a schematic exploded view of an air purifier 100 according to another embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of the air cleaner 100 shown in FIG. 4 . In one embodiment, a laminar fan 300 and a motor 400 are arranged in the upper part of the casing 200, and a plurality of indoor air inlets 201 are arranged in the middle of the casing 200 to form two opposite air inlet sides, and the filter element 120 is an annular filter element 600. The body 200 is also formed with an accommodation chamber below the annular filter element 600, and the centrifugal fan 902 and the volute 903 are both arranged in the accommodation chamber, and the opening of the outlet of the volute 903 is upward, and at the same time, the non-inlet side inside the housing 200 and the An air channel plate 904 is also arranged between the annular filter elements 600 , and an air channel 941 is formed between the air channel plate 904 and the annular filter element 600 at the non-inlet side part. FIG. 6 is another schematic cross-sectional view of the air cleaner 100 according to one embodiment of the present invention. Referring to FIG. 5 and FIG. 6 , flow directions of outdoor air and indoor air are shown, respectively. Outdoor air enters the fresh air duct 901 through the outdoor air inlet 203 , passes through the inlet and outlet of the volute 903 to the air duct 941 , and is filtered by the part of the annular filter element 600 forming the air duct 941 to reach the hollow passage of the annular filter element 600 . The indoor air is filtered from the two air intake sides of the casing 200 to the annular filter element 600 and then reaches the hollow channel of the annular filter element 600 .

图9是根据本发明一个实施例的空气净化器100的壳体200的示意性立体图。图10是适用于图9所示的空气净化器100的挡风件500的示意性立体图。本发明实施例的空气净化器100还包括:挡风件500,设置于层流风扇300外部,位于壳体200和层流风扇300之间,其上具有缺口501;壳体200在其对应于缺口501的位置处设置出风口202,层流风依次经缺口501和出风口202流出壳体200。例如,当空气净化器100的安装位置是两墙面垂直的墙角处时,将挡风件500设置成在其背离墙面的侧面具有缺口501,在壳体200相应侧面位置处设置出风口202,同时使缺口501的高度略高于出风口202的高度,宽度略大于出风口202的宽度,这样层流风扇300产生的层流风受挡风件500的作用,仅从缺口501处经位于其前端的出风口202吹出空气净化器100,不浪费层流风。在一个实施例中,挡风件500为横截面大致为方形、中心具有可容纳层流风扇300的空腔的结构,在其一个或多个侧面设置有缺口501,以满足用户对不同形状壳体200、不同安装位置、不同供风需求的空气净化器100的需求。FIG. 9 is a schematic perspective view of the housing 200 of the air cleaner 100 according to one embodiment of the present invention. FIG. 10 is a schematic perspective view of a windshield 500 suitable for the air cleaner 100 shown in FIG. 9 . The air purifier 100 of the embodiment of the present invention also includes: a windshield 500, which is arranged outside the laminar flow fan 300, between the casing 200 and the laminar flow fan 300, and has a gap 501 on it; An air outlet 202 is provided at the position of the notch 501 , and laminar air flows out of the casing 200 through the notch 501 and the air outlet 202 in sequence. For example, when the installation position of the air cleaner 100 is at the corner where two walls are perpendicular, the windshield 500 is set to have a notch 501 on its side facing away from the wall, and the air outlet 202 is set at the corresponding side of the housing 200 At the same time, the height of the gap 501 is slightly higher than the height of the air outlet 202, and the width is slightly larger than the width of the air outlet 202, so that the laminar flow wind generated by the laminar flow fan 300 is affected by the windshield 500, only from the gap 501 through the position The air outlet 202 at the front end blows out the air purifier 100, without wasting laminar air. In one embodiment, the windshield 500 has a roughly square cross-section and a cavity in the center that can accommodate the laminar flow fan 300, and a gap 501 is provided on one or more sides of the structure to meet the needs of users for shells of different shapes. Body 200, different installation locations, and air purifiers 100 with different air supply requirements.

在一些实施例中,层流风扇300还包括:驱动圆盘305和连接件306。驱动圆盘305与多个环形盘片301间隔地平行设置。连接件306贯穿驱动圆盘305和多个环形盘片301,以将多个环形盘片301连接至驱动圆盘305。电机400配置成直接驱动驱动圆盘305旋转,进而由驱动圆盘305带动多个环形盘片301旋转。In some embodiments, the laminar flow fan 300 further includes: a driving disk 305 and a connecting piece 306 . The driving disc 305 is arranged in parallel with the plurality of annular discs 301 at intervals. The connecting piece 306 runs through the driving disc 305 and the plurality of annular discs 301 to connect the plurality of annular discs 301 to the driving disc 305 . The motor 400 is configured to directly drive the driving disc 305 to rotate, and then the driving disc 305 drives the plurality of annular discs 301 to rotate.

在一些实施例中,层流风扇300的驱动圆盘305在其中心朝向多个环形盘片301形成有凹陷部351,电机400固定设置于凹陷部351内。图13是层流风扇300的一个示意性立体图。图16是图13所示的层流风扇300的示意性剖视图。图17是图13所示的层流风扇300的另一视角的示意性立体图。图18是图13所示的层流风扇300的又一视角的示意性立体图。本发明实施例的空气净化器100还可以包括:固定机构401,设置于壳体200内,用于固定电机400。图19是固定机构401、电机400和层流风扇300配合的示意性剖视图。图20是电机400和固定机构401的示意性爆炸图。固定机构401包括固定板411和固定架412,电机400设置于固定板411和固定架412之间。固定架412具有本体部421和自本体部421朝向固定板411延伸的卡爪部422。本体部421上设置有通孔423,电机400的输出轴自通孔423伸出固定架412后与层流风扇300连接。卡爪部422用于与固定板411固定,且与凹陷部351匹配设置。在凹陷部351中心处设置有连接孔352,电机400的输出轴伸入连接孔352中后与驱动圆盘305固定。固定板411上设置有板连接孔414,卡爪部422上设置有爪连接孔424,通过使用螺栓等来将卡爪部422与固定板411固定。图12是根据本发明一个实施例的空气净化器100的固定板411的示意性立体图,固定板411上还设置有加强筋415。In some embodiments, the driving disk 305 of the laminar flow fan 300 has a recessed portion 351 formed at its center facing the plurality of annular disks 301 , and the motor 400 is fixedly disposed in the recessed portion 351 . FIG. 13 is a schematic perspective view of the laminar flow fan 300 . FIG. 16 is a schematic cross-sectional view of the laminar flow fan 300 shown in FIG. 13 . FIG. 17 is a schematic perspective view of another viewing angle of the laminar flow fan 300 shown in FIG. 13 . FIG. 18 is a schematic perspective view of another viewing angle of the laminar flow fan 300 shown in FIG. 13 . The air cleaner 100 of the embodiment of the present invention may further include: a fixing mechanism 401 disposed in the housing 200 for fixing the motor 400 . FIG. 19 is a schematic cross-sectional view of the cooperation of the fixing mechanism 401 , the motor 400 and the laminar flow fan 300 . FIG. 20 is a schematic exploded view of the motor 400 and the fixing mechanism 401 . The fixing mechanism 401 includes a fixing plate 411 and a fixing frame 412 , and the motor 400 is arranged between the fixing plate 411 and the fixing frame 412 . The fixing frame 412 has a body portion 421 and a claw portion 422 extending from the body portion 421 toward the fixing plate 411 . The main body 421 is provided with a through hole 423 , and the output shaft of the motor 400 protrudes from the fixing frame 412 through the through hole 423 and is connected with the laminar flow fan 300 . The claw portion 422 is used for fixing with the fixing plate 411 and matched with the recessed portion 351 . A connecting hole 352 is provided at the center of the recessed portion 351 , and the output shaft of the motor 400 is inserted into the connecting hole 352 and fixed with the driving disc 305 . The fixing plate 411 is provided with a plate connecting hole 414 , and the claw portion 422 is provided with a claw connecting hole 424 , and the claw portion 422 is fixed to the fixing plate 411 by using a bolt or the like. Fig. 12 is a schematic perspective view of the fixing plate 411 of the air cleaner 100 according to an embodiment of the present invention, and the fixing plate 411 is also provided with reinforcing ribs 415.

在另一些实施例中,层流风扇300的驱动圆盘305具有平面,电机400固定设置于驱动圆盘305的平面。图21是驱动圆盘305具有平面的层流风机110的示意性主视图。图22是图21所示的层流风机110的另一视角的示意性立体图。在一个优选实施例中,在驱动圆盘305的下表面还具有倒圆锥的凸起353,倒圆锥的凸起353可以有效引导通过进风通道302进入层流风扇300的空气进入各盘片之间的间隙,进而提高形成层流风的效率。In some other embodiments, the driving disc 305 of the laminar flow fan 300 has a plane, and the motor 400 is fixedly arranged on the plane of the driving disc 305 . FIG. 21 is a schematic front view of a laminar flow fan 110 with a drive disc 305 having a flat surface. FIG. 22 is a schematic perspective view of another viewing angle of the laminar flow fan 110 shown in FIG. 21 . In a preferred embodiment, the lower surface of the driving disk 305 also has an inverted conical protrusion 353, the inverted conical protrusion 353 can effectively guide the air entering the laminar flow fan 300 through the air inlet channel 302 into between the discs The gap between them improves the efficiency of forming laminar wind.

图23是图21所示的层流风机110的空气循环示意图,多个环形盘片301的中心共同形成有进风通道302,以使层流风扇300外部的空气进入;多个环形盘片301彼此之间的间隙形成有多个排出口303,以供层流风吹出。FIG. 23 is a schematic diagram of the air circulation of the laminar flow fan 110 shown in FIG. 21. The centers of multiple annular disks 301 are jointly formed with an air inlet channel 302, so that the air outside the laminar flow fan 300 enters; multiple annular disks 301 A plurality of outlets 303 are formed in the gaps between them for blowing out the laminar wind.

层流风扇300的连接件306可以是叶片361、连接杆362等等。The connecting part 306 of the laminar flow fan 300 may be a blade 361, a connecting rod 362 and the like.

图24是图21所示的层流风机110的横截面示意图。在本实施例中,连接件306为叶片361,其横截面具有沿环形盘片301旋转的方向依次设置的两段曲线,两段曲线的弦线373的长度与层流风机110的风量为线性关系,这样通过增加弦线373的长度可以极大地提升层流风机110的风量,从而促进层流空气循环。需要说明的是,两段曲线可以是圆弧、非圆弧的弧线、直线等线条,直线可以作为一种特殊的曲线。在两段曲线的两端点之间的距离相同时,弦线373的长度可以是两段曲线的两端点之间的距离。在两段曲线的两端点之间的距离不同时,若两段曲线的两端均不相交,则弦线373的长度可以是叶片361的横截面除这两段曲线之外的曲线中点的连线长度;若两段曲线只有一端相交,则弦线373的长度可以是叶片361的横截面除这两段曲线之外的曲线中点与这两段曲线的相交的端点的连线长度。FIG. 24 is a schematic cross-sectional view of the laminar flow fan 110 shown in FIG. 21 . In this embodiment, the connecting piece 306 is a blade 361, the cross section of which has two sections of curves arranged sequentially along the direction of rotation of the annular disk 301, the length of the chord line 373 of the two sections of curves is linear to the air volume of the laminar flow fan 110 In this way, the air volume of the laminar flow fan 110 can be greatly improved by increasing the length of the string 373, thereby promoting laminar air circulation. It should be noted that the two curves can be circular arcs, non-circular arcs, straight lines, etc., and the straight line can be regarded as a special curve. When the distances between the two end points of the two curves are the same, the length of the chord line 373 may be the distance between the two end points of the two curves. When the distance between the two ends of the two curves is different, if the two ends of the two curves do not intersect, the length of the chord line 373 can be the midpoint of the cross section of the blade 361 except the two curves. Line length; if two sections of curves only intersect at one end, then the length of chord line 373 can be the line length of the cross section of blade 361 except the curve midpoint of these two sections of curves and the intersecting endpoint of these two sections of curves.

在一种优选的实施例中,叶片361为多个,且均匀间隔地贯穿驱动圆盘305和多个环形盘片301。多个叶片361均匀间隔地贯穿驱动圆盘305和多个环形盘片301,可以保证驱动圆盘305和多个环形盘片301的连接关系稳固,进而保证在电机400驱动驱动圆盘305旋转时,驱动圆盘305可以稳定地带动多个环形盘片301旋转,提高层流风机110的工作可靠性。In a preferred embodiment, there are a plurality of blades 361 , and evenly spaced through the driving disc 305 and the plurality of annular discs 301 . A plurality of vanes 361 evenly spaced through the drive disc 305 and the plurality of annular discs 301 can ensure that the connection relationship between the drive disc 305 and the plurality of annular discs 301 is stable, thereby ensuring that when the motor 400 drives the drive disc 305 to rotate , the driving disk 305 can stably drive a plurality of annular disks 301 to rotate, improving the working reliability of the laminar flow fan 110 .

图25示出的是图21所示的层流风机110在环形盘片301的外径、内径、层数、间距、厚度、叶片361的安装角度、电机400的转速均保持不变时,弦线373的长度与风量和风压的关系示意图,图中横坐标轴指的是叶片361的弦线373的长度,风压指的是排出口303与进风通道302进口处的压力差。需要说明的是,环形盘片301的外径是其外圆周的半径,内径是其内圆周的半径。空气边界层304由内向外旋转移动形成层流风的过程是离心运动,因而离开排出口303时的速度要大于进入进风通道302时的速度。排出口303与进风通道302进口处的压力差为风压,弦线373的长度与风压也为线性关系。通过增加弦线373的长度还可以极大地提升层流风机110的风压,有效保障层流风机110的综合性能。What Fig. 25 shows is that the laminar fan 110 shown in Fig. 21 is when the outer diameter, inner diameter, number of layers, pitch, thickness, blade 361 installation angle, and the rotating speed of the motor 400 of the annular disc 301 are all kept constant, the chord The schematic diagram of the relationship between the length of the line 373 and the air volume and wind pressure, the axis of abscissa in the figure refers to the length of the chord line 373 of the blade 361, and the wind pressure refers to the pressure difference between the outlet 303 and the inlet of the air inlet channel 302. It should be noted that the outer diameter of the annular disk 301 is the radius of its outer circumference, and the inner diameter is the radius of its inner circumference. The process in which the air boundary layer 304 rotates and moves from inside to outside to form laminar wind is a centrifugal motion, so the speed when it leaves the outlet 303 is greater than the speed when it enters the air inlet channel 302 . The pressure difference between the outlet 303 and the inlet of the air inlet channel 302 is the wind pressure, and the length of the string 373 is also linearly related to the wind pressure. The wind pressure of the laminar flow fan 110 can also be greatly increased by increasing the length of the string 373 , effectively ensuring the comprehensive performance of the laminar flow fan 110 .

考虑到空气净化器100的内在空间有限,对层流风机110的整体占用体积需要有一定约束。具体地,考虑到层流风机110的厚度不要过大,可以对环形盘片301的数量、相邻两个环形盘片301之间的间距、环形盘片301的厚度进行相应的约束;考虑到层流风机110的横向占用体积不要过大,可以对环形盘片301的外径进行相应的约束。例如,可以设置每个环形盘片301的外径为170mm至180mm,配合每个环形盘片301的内径为110mm至120mm,可以有效增大风量,保证层流风机110的出风满足用户的使用需求。在环形盘片301的外径和内径一定的情况下,虽然弦线373越长,层流风机110的风量和风压越大,但是也要对弦线373的长度进行一定的约束,避免叶片361过度贯穿环形盘片301,导致层流风机110的稳定性下降。总而言之,可以将弦线373的长度设置为可达到的最大范围,使得层流风机110的风量和风压能够满足用户的使用需求。在一种优选实施例中,环形盘片301外径为175mm,内径为115mm,层数为8层,间距为13.75mm,厚度为2mm,叶片361的安装角度为25.5°,电机400的转速为1000rpm,可以发现增加弦线373的长度之后,风量和风压均有大幅度的提高,且基本呈线性。在保证层流风机110的稳定度的前提下,将弦线373的长度设置为可达到的最大范围为40mm至42mm。并且,在将弦线373的长度设置为42mm时,层流风机110的风量可以达到1741m3/h,风压可以达到118.9Pa,完全可以满足用户的使用需求。Considering the limited internal space of the air purifier 100 , the overall occupied volume of the laminar flow fan 110 needs to be restricted to a certain extent. Specifically, considering that the thickness of the laminar flow fan 110 should not be too large, the number of annular disks 301, the distance between two adjacent annular disks 301, and the thickness of the annular disks 301 can be restricted accordingly; considering The lateral occupied volume of the laminar flow fan 110 should not be too large, and the outer diameter of the annular disc 301 can be restricted accordingly. For example, the outer diameter of each annular disk 301 can be set to 170mm to 180mm, and the inner diameter of each annular disk 301 can be set to 110mm to 120mm, which can effectively increase the air volume and ensure that the air output of the laminar flow fan 110 meets the needs of users need. When the outer diameter and inner diameter of the annular disk 301 are constant, although the longer the chord 373 is, the greater the air volume and wind pressure of the laminar flow fan 110 will be, but the length of the chord 373 must be restricted to avoid blades 361 Excessive penetration of the annular disk 301 will result in a decrease in the stability of the laminar flow fan 110 . All in all, the length of the string 373 can be set to the maximum reachable range, so that the air volume and air pressure of the laminar flow fan 110 can meet the needs of users. In a preferred embodiment, the outer diameter of the annular disc 301 is 175mm, the inner diameter is 115mm, the number of layers is 8, the spacing is 13.75mm, the thickness is 2mm, the installation angle of the blades 361 is 25.5°, and the rotating speed of the motor 400 is 1000rpm, it can be found that after increasing the length of the string 373, both the air volume and the air pressure are greatly improved, and they are basically linear. On the premise of ensuring the stability of the laminar flow fan 110 , the length of the string 373 is set to a maximum reachable range of 40 mm to 42 mm. Moreover, when the length of the string 373 is set to 42mm, the air volume of the laminar flow fan 110 can reach 1741m 3 /h, and the wind pressure can reach 118.9Pa, which can fully meet the needs of users.

在一些实施例中,叶片361可以为双圆弧叶片310,其横截面具有朝环形盘片301旋转的方向凸起的双圆弧,包括沿环形盘片301旋转的方向依次设置的内弧371和背弧372,且内弧371和背弧372具有相同的圆心且平行设置。In some embodiments, the blade 361 can be a double-arc blade 310, the cross section of which has a double-arc protruding toward the direction of rotation of the annular disk 301, including inner arcs 371 sequentially arranged along the direction of rotation of the annular disk 301 and the back arc 372, and the inner arc 371 and the back arc 372 have the same center of circle and are arranged in parallel.

图26是具有双圆弧叶片310的层流风机110的横截面示意图。在一个优选实施例中,每个环形盘片301的外径为170mm至180mm,每个环形盘片301的内径为110mm至120mm,环形盘片301的外径与内径之差为60mm左右,内弧371的两端点之间的距离和背弧372的两端点之间的距离相同,弦线373的长度是内弧371或背弧372的两端点之间的距离,且设置为40mm至42mm,使得内弧371和背弧372的两端与环形盘片301的内圆周和外圆周分别有10mm左右的距离,在保证层流风机110的稳定性的前提下,将弦线373的长度设置为可达到的最大范围,使得层流风机110的风量和风压能够满足用户的使用需求。FIG. 26 is a schematic cross-sectional view of a laminar flow fan 110 with double arc blades 310 . In a preferred embodiment, the outer diameter of each annular disc 301 is 170 mm to 180 mm, the inner diameter of each annular disc 301 is 110 mm to 120 mm, and the difference between the outer diameter and inner diameter of the annular disc 301 is about 60 mm. The distance between the two ends of the arc 371 is the same as the distance between the two ends of the back arc 372, the length of the string 373 is the distance between the two ends of the inner arc 371 or the back arc 372, and is set to 40mm to 42mm, Make the two ends of the inner arc 371 and the back arc 372 have a distance of about 10mm from the inner circumference and the outer circumference of the annular disk 301, and under the premise of ensuring the stability of the laminar flow fan 110, the length of the string 373 is set as The maximum reachable range enables the air volume and air pressure of the laminar flow fan 110 to meet the needs of users.

图27是在环形盘片301的外径、内径、层数、间距、厚度、双圆弧叶片310的弦长、电机400的转速均保持不变时,双圆弧叶片310的安装角度α与风量和风压的关系示意图,横坐标轴指的是双圆弧叶片310的安装角度,即在双圆弧叶片310和环形盘片301的同一横截面上,内弧371的两端点之间的弦线373与经过弦线373的中点和环形盘片301的中心轴的连接线374形成的夹角。在一种优选实施例中,环形盘片301外径为175mm,内径为115mm,层数为8层,间距为13.75mm,厚度为2mm,双圆弧叶片310的弦长为35mm,电机400的转速为1000rpm,此时综合风量和风压考虑,双圆弧叶片310的安装角度α可以设置为-5°至55°。需要说明的是,在沿环形盘片301旋转的方向上依次为弦线373、连接线374时,安装角度α为正数;在沿环形盘片301旋转的方向上依次为连接线374、弦线373时,安装角度α为负数。该安装角度兼顾层流风机110的风量和风压,有效保障层流风机110的综合性能,在风压大的同时使得层流风机110的出风也能够满足用户的使用需求,进一步提升用户的使用体验。Fig. 27 shows the installation angle α and Schematic diagram of the relationship between air volume and wind pressure. The axis of abscissa refers to the installation angle of the double-arc blade 310, that is, the chord between the two ends of the inner arc 371 on the same cross section of the double-arc blade 310 and the annular disc 301 The angle formed by the line 373 and the connecting line 374 passing through the midpoint of the chord line 373 and the central axis of the annular disc 301 . In a preferred embodiment, the outer diameter of the annular disc 301 is 175 mm, the inner diameter is 115 mm, the number of layers is 8 layers, the pitch is 13.75 mm, the thickness is 2 mm, the chord length of the double arc blades 310 is 35 mm, and the motor 400 The rotating speed is 1000rpm, considering the air volume and air pressure, the installation angle α of the double-arc blades 310 can be set from -5° to 55°. It should be noted that when the rotation direction of the annular disc 301 is followed by the chord line 373 and the connecting line 374, the installation angle α is a positive number; When the line 373, the installation angle α is a negative number. This installation angle takes both the air volume and wind pressure of the laminar flow fan 110 into consideration, effectively guaranteeing the comprehensive performance of the laminar flow fan 110, making the air output of the laminar flow fan 110 meet the needs of users while the wind pressure is high, and further improving the use of users experience.

在另一些实施例中,叶片361可以为航空叶片320,其横截面具有朝环形盘片301旋转的方向凸起的双圆弧,包括沿环形盘片301旋转的方向依次设置的内弧371和背弧372,且内弧371和背弧372具有不同的圆心且两端均相交。图28是具有航空叶片320的层流风机110的横截面示意图。In some other embodiments, the blade 361 can be an aviation blade 320, and its cross section has a double circular arc protruding toward the direction of rotation of the annular disk 301, including inner arcs 371 and The back arc 372, and the inner arc 371 and the back arc 372 have different centers and both ends intersect. FIG. 28 is a schematic cross-sectional view of a laminar flow fan 110 with aeronautical blades 320 .

图29是图28所示的层流风机110在环形盘片301的外径、内径、层数、间距、厚度、航空叶片320的弦长、电机400的转速均保持不变时,航空叶片320的安装角度α与风量和风压的关系示意图,横坐标轴指的是航空叶片320的安装角度,即在航空叶片320和环形盘片301的同一横截面上,内弧371或背弧372的两端点之间的弦线373与经过弦线373中点和环形盘片301的中心轴的连接线374形成的夹角。在一种优选的实施例中,环形盘片301外径为175mm,内径为115mm,层数为8层,间距为13.75mm,厚度为2mm,航空叶片320的弦长为35mm,电机400的转速为1000rpm,此时综合风量和风压考虑,航空叶片320的安装角度α可以设置为-50°至15°。该安装角度兼顾层流风机110的风量和风压,有效保障层流风机110的综合性能,在风压大的同时使得层流风机110的出风也能够满足用户的使用需求,进一步提升用户的使用体验。Fig. 29 is the laminar fan 110 shown in Fig. 28 when the outer diameter, inner diameter, number of layers, pitch, thickness, chord length of the aviation blade 320, and the rotating speed of the motor 400 of the annular disk 301 are all kept constant. The schematic diagram of the relationship between the installation angle α and the air volume and wind pressure, the axis of abscissa refers to the installation angle of the aviation blade 320, that is, on the same cross section of the aviation blade 320 and the annular disk 301, the two sides of the inner arc 371 or the back arc 372 The included angle formed by the chord line 373 between the end points and the connecting line 374 passing through the middle point of the chord line 373 and the central axis of the annular disc 301 . In a preferred embodiment, the outer diameter of the annular disc 301 is 175 mm, the inner diameter is 115 mm, the number of layers is 8 layers, the pitch is 13.75 mm, the thickness is 2 mm, the chord length of the aviation blade 320 is 35 mm, and the rotating speed of the motor 400 is 1000rpm, considering the wind volume and wind pressure, the installation angle α of the aviation blade 320 can be set to -50° to 15°. This installation angle takes both the air volume and wind pressure of the laminar flow fan 110 into consideration, effectively guaranteeing the comprehensive performance of the laminar flow fan 110, making the air output of the laminar flow fan 110 meet the needs of users while the wind pressure is high, and further improving the use of users experience.

层流风扇300的环形盘片301还可以依照下列结构中的一种或几种设置:相邻两个环形盘片301之间的间距沿着空气在进风通道302中流动的方向逐渐增大;多个环形盘片301的内径沿着气流在进风通道302中流动的方向逐渐缩小;每个环形盘片301均为由内侧至外侧逐渐靠近驱动圆盘305的弧形盘片。The annular disc 301 of the laminar flow fan 300 can also be arranged according to one or more of the following structures: the distance between two adjacent annular discs 301 gradually increases along the direction of air flow in the air inlet channel 302 The inner diameters of the plurality of annular disks 301 are gradually reduced along the direction of air flow in the air inlet channel 302; each annular disk 301 is an arc-shaped disk that gradually approaches the driving disk 305 from the inside to the outside.

在一些实施例中,层流风扇300的多个环形盘片301彼此间隔地平行设置,具有相同的中心轴线,且相邻两个环形盘片301之间的间距沿着空气在进风通道302中流动的方向逐渐增大。图30是环形盘片301间距逐渐改变的层流风机110的示意性主视图。发明人经过多次实验发现,随着相邻两个环形盘片301之间的间距沿着空气在进风通道302中流动的方向逐渐增大,会有效提升层流风机110的风量,使得层流风机110的出风满足用户的使用需求。In some embodiments, the plurality of annular disks 301 of the laminar flow fan 300 are arranged parallel to each other at intervals and have the same central axis, and the distance between two adjacent annular disks 301 is along the air inlet channel 302 The direction of flow gradually increases. FIG. 30 is a schematic front view of the laminar flow fan 110 in which the pitch of the annular discs 301 changes gradually. The inventor found through many experiments that as the distance between two adjacent annular disks 301 gradually increases along the direction of air flow in the air inlet passage 302, the air volume of the laminar flow fan 110 will be effectively increased, so that the laminar flow The air output from the flow fan 110 meets the user's requirements.

以设置在壳体200内上部的层流风机110为例,图32是图30所示的层流风机110在环形盘片301外径、内径、数量、厚度、电机400的转速均保持不变时,多个环形盘片301间距渐变与风量和风压的关系示意图,其中横坐标轴指的是沿着由下至上的方向相邻两个环形盘片301之间的间距的变化量。如图32所示,在上述提及的各参数均保持不变时,多个环形盘片301中每两个相邻的环形盘片301之间的间距由下至上逐渐变化对风量影响较大,对风压影响很小;当横坐标轴表示的沿着由下至上的方向相邻两个环形盘片301之间的间距的变化量为正数时,说明多个环形盘片301中每两个相邻的环形盘片301之间的间距由下至上逐渐增大;当横坐标轴表示的沿着由下至上的方向相邻两个环形盘片301之间的间距的变化量为负数时,说明多个环形盘片301中每两个相邻的环形盘片301之间的间距由下至上逐渐缩小。因此,由图32可知,多个环形盘片301中每两个相邻的环形盘片301之间的间距变化量为-1mm、1mm和2mm时,层流风机110的风量和风压均有很大的改善。Taking the laminar flow fan 110 arranged in the upper part of the housing 200 as an example, Fig. 32 shows that the outer diameter, inner diameter, quantity, thickness, and rotational speed of the motor 400 of the annular disk 301 of the laminar flow fan 110 shown in Fig. 30 remain unchanged. , a schematic diagram of the relationship between the gradual change of the pitch of multiple annular discs 301 and the air volume and wind pressure, where the axis of abscissa refers to the variation of the pitch between two adjacent annular discs 301 along the direction from bottom to top. As shown in Figure 32, when the above-mentioned parameters are kept constant, the distance between every two adjacent annular disks 301 in the plurality of annular disks 301 gradually changes from bottom to top, which has a great influence on the air volume , has little effect on the wind pressure; when the amount of change in the distance between two adjacent annular disks 301 along the direction from bottom to top represented by the axis of abscissa is a positive number, it means that each of the plurality of annular disks 301 The distance between two adjacent annular discs 301 gradually increases from bottom to top; when the variation of the distance between two adjacent annular discs 301 along the direction from bottom to top indicated by the axis of abscissa is a negative number , it shows that the distance between every two adjacent annular disks 301 among the plurality of annular disks 301 gradually decreases from bottom to top. Therefore, as can be seen from FIG. 32, when the variation of the spacing between every two adjacent annular disks 301 among the plurality of annular disks 301 is -1mm, 1mm and 2mm, the air volume and wind pressure of the laminar flow fan 110 are very different. Big improvement.

前文提及,本发明实施例中的层流风扇300的连接件306可以是连接杆362。图31是图30所示的层流风机110的示意性立体图。连接杆362可以为多根,且均匀间隔地贯穿于驱动圆盘305和多个环形盘片301的边缘部分。多根连接杆362均匀间隔地贯穿于驱动圆盘305和多个环形盘片301的边缘部分,可以保证驱动圆盘305和多个环形盘片301的连接关系稳固,进而保证在电机400驱动驱动圆盘305旋转时,驱动圆盘305可以稳定地带动多个环形盘片301旋转,提高层流风机110的工作可靠性。同时,当连接件306为连接杆362时,电机400的转速与层流风机110的风量大致呈线性关系,因而在一种优选实施例中,电机400还可以配置成:电机400的转速根据获取到的层流风机110的目标风量确定。也就是说,可以首先获取层流风机110的目标风量,再根据其与电机400的转速之间的线性关系确定电机400的转速。需要说明的是,该目标风量可以通过用户的输入操作获取。在一种优选的实施例中,环形盘片301的外径为175mm,内径为115mm,层数为8层,相邻两个环形盘片301之间的间距由下至上依次设置为:13.75mm、14.75mm、15.75mm、16.75mm、17.75mm、18.75mm、19.75mm,厚度为2mm时,电机400的转速与层流风机110的风量呈线性关系更加明显。As mentioned above, the connecting piece 306 of the laminar flow fan 300 in the embodiment of the present invention may be the connecting rod 362 . FIG. 31 is a schematic perspective view of the laminar flow fan 110 shown in FIG. 30 . There may be a plurality of connecting rods 362 , and evenly spaced through the driving disk 305 and edge portions of the plurality of annular disks 301 . A plurality of connecting rods 362 run through the edge portions of the drive disc 305 and the plurality of annular discs 301 at even intervals, which can ensure that the connection relationship between the drive disc 305 and the plurality of annular discs 301 is stable, thereby ensuring that the motor 400 drives When the disk 305 rotates, the driving disk 305 can stably drive the rotation of multiple annular disks 301 , improving the working reliability of the laminar flow fan 110 . At the same time, when the connecting piece 306 is the connecting rod 362, the rotational speed of the motor 400 is approximately linearly related to the air volume of the laminar flow fan 110, so in a preferred embodiment, the motor 400 can also be configured as follows: the rotational speed of the motor 400 is obtained according to The target air volume of the laminar flow fan 110 is determined. That is to say, the target air volume of the laminar flow fan 110 can be obtained first, and then the rotational speed of the motor 400 can be determined according to the linear relationship between it and the rotational speed of the motor 400 . It should be noted that the target air volume can be obtained through user input operations. In a preferred embodiment, the outer diameter of the annular disk 301 is 175 mm, the inner diameter is 115 mm, and the number of layers is 8 layers. The distance between two adjacent annular disks 301 is set as follows from bottom to top: 13.75 mm .

在一些实施例中,本发明实施例的层流风扇300的多个环形盘片301的内径沿着气流在进风通道302中流动的方向逐渐缩小。以设置在壳体200内上部的层流风扇300为例,图33是环形盘片301内径渐变的层流风扇300的示意性剖视图。图34是具有如图33所示的层流风扇300的层流风机110在环形盘片301的外径、间距、数量、厚度、电机400的转速均保持不变时,多个环形盘片301内径渐变与风量和风压的关系示意图,其中横坐标轴指的是每一个环形盘片301的内径与下方相邻的环形盘片301的内径的变化量。如图34所示,在上述提及的各参数均保持不变时,多个环形盘片301的内径由下至上逐渐变化对风量影响较大,对风压影响很小。当横坐标轴表示的每一个环形盘片301的内径与下方相邻的环形盘片301的内径的变化量为正数时,说明多个环形盘片301的内径由下至上逐渐增加;当横坐标轴表示的每一个环形盘片301的内径与下方相邻的环形盘片301的内径的变化量为负数时,说明多个环形盘片301的内径由下至上逐渐缩小。由图34可知,多个环形盘片301的内径由下至上逐渐缩小时,风量有所增加,风压稍有减小;多个环形盘片301的内径由下至上逐渐增加时,风压稍有增加,风量减小很多。在一种优选的实施例中,环形盘片301外径为175mm,环形盘片301的最大内径为115mm,间距为13.75mm,数量为8个,厚度为2mm,电机400的转速为1000rpm,此时综合风量与风压的全面考虑,可以设置每一个环形盘片301的内径与下方相邻的环形盘片301的内径的变化量为-5mm,也就是说8个环形盘片301的内径分别为:115mm、110mm、105mm、100mm、95mm、90mm、85mm、80mm。In some embodiments, the inner diameters of the plurality of annular disks 301 of the laminar flow fan 300 of the embodiment of the present invention are gradually reduced along the direction of air flow in the air inlet channel 302 . Taking the laminar flow fan 300 disposed in the upper part of the casing 200 as an example, FIG. 33 is a schematic cross-sectional view of the laminar flow fan 300 with a gradually changing inner diameter of the annular disc 301 . Fig. 34 is a laminar flow fan 110 having a laminar flow fan 300 as shown in Fig. 33 when the outer diameter, spacing, quantity, thickness, and the rotating speed of the motor 400 of the annular disk 301 are kept constant, a plurality of annular disks 301 A schematic diagram of the relationship between the inner diameter gradient and the air volume and wind pressure, wherein the axis of abscissa refers to the amount of change between the inner diameter of each annular disk 301 and the inner diameter of the adjacent annular disk 301 below. As shown in FIG. 34 , when the above-mentioned parameters are kept constant, the gradual change of the inner diameters of the plurality of annular disks 301 from bottom to top has a greater impact on the air volume, but little impact on the air pressure. When the amount of change between the inner diameter of each annular disc 301 represented by the abscissa axis and the inner diameter of the adjacent annular disc 301 below is a positive number, it means that the inner diameters of a plurality of annular discs 301 gradually increase from bottom to top; When the change amount of the inner diameter of each annular disc 301 represented by the coordinate axis and the inner diameter of the adjacent annular disc 301 below is a negative number, it means that the inner diameters of the plurality of annular discs 301 gradually decrease from bottom to top. It can be seen from Fig. 34 that when the inner diameters of multiple annular discs 301 gradually decrease from bottom to top, the air volume increases and the wind pressure decreases slightly; when the inner diameters of multiple annular discs 301 gradually increase from bottom to top, the wind pressure decreases slightly. There is an increase, and the air volume decreases a lot. In a preferred embodiment, the outer diameter of the annular disc 301 is 175 mm, the maximum inner diameter of the annular disc 301 is 115 mm, the pitch is 13.75 mm, the number is 8, the thickness is 2 mm, and the rotating speed of the motor 400 is 1000 rpm. In consideration of comprehensive air volume and wind pressure, the variation between the inner diameter of each annular disc 301 and the inner diameter of the adjacent annular disc 301 below can be set to -5mm, that is to say, the inner diameters of the eight annular discs 301 are respectively For: 115mm, 110mm, 105mm, 100mm, 95mm, 90mm, 85mm, 80mm.

在一些实施例中,层流风扇300的环形盘片301为由内侧至外侧逐渐靠近驱动圆盘305的弧形盘片。以设置在壳体200内上部的层流风扇300为例,每个环形盘片301均设置成由内至外逐渐升高且向上凸起的弧形盘片,使得外部空气进入层流风扇300的角度更加符合流体流动,从而更利于外部的空气进入层流风扇300,有效减少风量损失,保证层流风机110的出风满足用户的使用需求。图35是多个环形盘片301在经过中心轴线的同一纵截面上的内外径连线的圆心角θ示意图。图36是在环形盘片301外径、层数、间距、厚度、电机400的转速均保持不变时,圆心角θ与风量和风压的关系示意图。如图36所示,在上述提及的各参数均保持不变时,随着圆心角θ逐渐增大,风量先增大后减小,而风压有少许上升。在一种优选实施例中,环形盘片301外径为175mm,层数为10层,间距为13.75mm,厚度为2mm,电机400的转速为1000rpm,此时综合风量和风压考虑,圆心角θ可以设置为9°至30°。并且如图36所示,在圆心角θ设置为15°时,层流风机110的风量达到最大值。In some embodiments, the annular disk 301 of the laminar flow fan 300 is an arc-shaped disk gradually approaching the driving disk 305 from the inner side to the outer side. Taking the laminar flow fan 300 installed in the upper part of the housing 200 as an example, each annular disc 301 is set as an arc-shaped disc that gradually rises from the inside to the outside and protrudes upwards, so that external air enters the laminar flow fan 300 The angle is more in line with fluid flow, so that it is more conducive for external air to enter the laminar flow fan 300, effectively reducing the loss of air volume, and ensuring that the air output of the laminar flow fan 110 meets the needs of users. FIG. 35 is a schematic diagram of the central angle θ of the line connecting the inner and outer diameters of a plurality of annular discs 301 on the same longitudinal section passing through the central axis. FIG. 36 is a schematic diagram of the relationship between the central angle θ and the air volume and air pressure when the outer diameter, number of layers, pitch, thickness, and rotational speed of the motor 400 of the annular disk 301 are kept constant. As shown in Figure 36, when the above-mentioned parameters are kept constant, as the central angle θ gradually increases, the air volume first increases and then decreases, while the air pressure increases slightly. In a preferred embodiment, the outer diameter of the annular disk 301 is 175mm, the number of layers is 10, the pitch is 13.75mm, the thickness is 2mm, and the rotating speed of the motor 400 is 1000rpm. Considering the comprehensive air volume and air pressure, the central angle θ Can be set from 9° to 30°. And as shown in FIG. 36 , when the central angle θ is set to 15°, the air volume of the laminar flow fan 110 reaches the maximum value.

至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。So far, those skilled in the art should appreciate that, although a number of exemplary embodiments of the present invention have been shown and described in detail herein, without departing from the spirit and scope of the present invention, the disclosed embodiments of the present invention can still be used. Many other variations or modifications consistent with the principles of the invention are directly identified or derived from the content. Accordingly, the scope of the present invention should be understood and deemed to cover all such other variations or modifications.

Claims (12)

1. An air purifier, comprising:
the shell is provided with an indoor air inlet and an indoor air outlet;
the filter element is arranged in the shell, and indoor air enters the shell from the indoor air inlet and then reaches the filter element for filtering;
the fresh air system is connected with the shell and provided with an outdoor air inlet, and outdoor air enters the shell through the outdoor air inlet; and
the laminar flow fan is arranged in the shell and is provided with an air inlet channel, the indoor air filtered by the filter element and/or the outdoor air entering the shell reach the air inlet channel, the laminar flow fan disturbs the air reaching the air inlet channel through a fluid viscosity effect to form laminar flow air, and the laminar flow air is discharged out of the shell from the air outlet;
The laminar flow fan comprises a laminar flow fan, the laminar flow fan comprises a plurality of annular disks, the annular disks are arranged in parallel at intervals, the annular disks have the same central axis, the centers of the annular disks jointly form the air inlet channel, and air entering the air inlet channel reaches gaps among the annular disks;
the laminar flow fan comprises a driving disc and a connecting piece, wherein the driving disc and the plurality of annular discs are arranged in parallel at intervals; the connecting member penetrates the driving disk and the plurality of annular disks to connect the plurality of annular disks to the driving disk;
the connecting piece is a blade, the cross section of the blade is provided with a double arc protruding towards the rotating direction of the annular disc, and the double arc comprises an inner arc and a back arc which are sequentially arranged along the rotating direction of the annular disc.
2. An air purifier as recited in claim 1, wherein,
the fresh air system comprises:
the first end of the fresh air pipeline is positioned outdoors, the outdoor air inlet is arranged, and the second end of the fresh air pipeline extends into the shell; and
and the outdoor air enters the fresh air pipeline through the outdoor air inlet and is driven by the centrifugal fan to move into the shell.
3. An air purifier as recited in claim 2, wherein,
the fresh air system further comprises:
a volute having an inlet and an outlet;
the centrifugal fan is arranged in the volute, and drives the outdoor air to enter the volute from the inlet and enter the housing from the outlet after rotating in the volute.
4. An air purifier as recited in claim 3, wherein,
the fresh air system further comprises:
the fresh air filter element is arranged in the fresh air pipeline, and the centrifugal fan drives the outdoor air filtered by the fresh air filter element to enter the volute from the inlet.
5. An air purifier as recited in claim 3, wherein,
an air duct plate is arranged in the shell and is configured to form an air duct with at least one part of the filter element;
the outlet of the volute is communicated with the air channel, so that the outdoor air enters the air channel after being discharged from the outlet and reaches the air inlet channel after being filtered by the filter element.
6. An air purifier as recited in claim 3, wherein,
the laminar flow fan comprises:
and the motor is connected with the laminar flow fan and is configured to drive the plurality of annular discs to rotate, so that the air boundary layers close to the surfaces of the plurality of annular discs are driven by the plurality of annular discs to rotate from inside to outside to form the laminar flow wind.
7. The air purifier as recited in claim 6, wherein,
the laminar flow fan and the motor are arranged at the upper part in the shell;
the upper part of the shell is provided with the air outlet at a position corresponding to the laminar flow fan;
the filter element is an annular filter element and is vertically arranged below the laminar flow fan;
the housing is formed with a receiving cavity below the filter element, the centrifugal fan and the volute are arranged in the receiving cavity, and an opening of an outlet of the volute is upward.
8. The air purifier of claim 6, further comprising:
the wind shielding piece is arranged outside the laminar flow fan, is positioned between the shell and the laminar flow fan and is provided with a notch;
the shell is provided with the air outlet at the position corresponding to the notch, and the laminar air flows out of the shell through the notch and the air outlet in sequence.
9. The air purifier as recited in claim 6, wherein,
the motor is configured to directly drive the driving disc to rotate, and the driving disc drives the plurality of annular discs to rotate.
10. The air purifier of claim 9, wherein the air purifier comprises a housing,
The driving disk is formed with a recess at its center toward the plurality of annular disks;
the air purifier further includes:
the fixing mechanism is arranged in the shell and comprises a fixing plate and a fixing frame, and the motor is arranged between the fixing plate and the fixing frame; wherein the method comprises the steps of
The fixing frame is provided with a body part and a claw part extending from the body part towards the fixing plate;
the body part is provided with a through hole, and an output shaft of the motor extends out of the fixing frame from the through hole and is connected with the laminar flow fan;
the claw portion is used for being fixed with the fixed plate and is matched with the concave portion.
11. The air purifier of claim 9, wherein the air purifier comprises a housing,
the inner arc and the back arc have different circle centers and both ends intersect, or
The inner arc and the back arc have the same circle center and are arranged in parallel.
12. The air purifier of claim 9, wherein the air purifier comprises a housing,
the annular disc is arranged according to one or more of the following structures:
the distance between two adjacent annular disks is gradually increased along the flowing direction of the air flow in the air inlet channel;
The inner diameters of the plurality of annular disks are gradually reduced along the flowing direction of the air flow in the air inlet channel;
each annular disc is an arc disc which gradually approaches the driving disc from the inner side to the outer side.
CN201910045854.4A 2019-01-17 2019-01-17 air purifier Active CN111437670B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910045854.4A CN111437670B (en) 2019-01-17 2019-01-17 air purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910045854.4A CN111437670B (en) 2019-01-17 2019-01-17 air purifier

Publications (2)

Publication Number Publication Date
CN111437670A CN111437670A (en) 2020-07-24
CN111437670B true CN111437670B (en) 2023-05-23

Family

ID=71648552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910045854.4A Active CN111437670B (en) 2019-01-17 2019-01-17 air purifier

Country Status (1)

Country Link
CN (1) CN111437670B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302045A (en) * 1988-05-30 1989-12-06 Daikin Ind Ltd air conditioner
JPH0749096A (en) * 1993-06-04 1995-02-21 Kansei Corp Fan
CN202326386U (en) * 2011-11-03 2012-07-11 江苏海狮泵业制造有限公司 Centrifugal pump disk type impeller
CN102563767A (en) * 2012-02-20 2012-07-11 上海交通大学 Multifunctional indoor air refresher coupling purification and fresh air ventilation
CN202811192U (en) * 2012-09-12 2013-03-20 江苏中蕴风电科技有限公司 Laminar-flow rotary-wing wind power generator
CN203777825U (en) * 2013-10-20 2014-08-20 刘宏志 Air purification device
CN104374011A (en) * 2014-10-29 2015-02-25 苏州盟通利机电设备有限公司 Air purifier capable of supplementing fresh air
CN204816002U (en) * 2015-08-12 2015-12-02 第一摩码人居环境科技(北京)有限公司 Take new trend to introduce purification equipment of structure
CN106016523A (en) * 2016-07-01 2016-10-12 广东美的制冷设备有限公司 Indoor air purifier
CN209865587U (en) * 2019-01-17 2019-12-31 青岛海尔空调器有限总公司 Air purifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100111720A1 (en) * 2008-11-06 2010-05-06 Nicholas Andrew Hiner High displacement air pump

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302045A (en) * 1988-05-30 1989-12-06 Daikin Ind Ltd air conditioner
JPH0749096A (en) * 1993-06-04 1995-02-21 Kansei Corp Fan
CN202326386U (en) * 2011-11-03 2012-07-11 江苏海狮泵业制造有限公司 Centrifugal pump disk type impeller
CN102563767A (en) * 2012-02-20 2012-07-11 上海交通大学 Multifunctional indoor air refresher coupling purification and fresh air ventilation
CN202811192U (en) * 2012-09-12 2013-03-20 江苏中蕴风电科技有限公司 Laminar-flow rotary-wing wind power generator
CN203777825U (en) * 2013-10-20 2014-08-20 刘宏志 Air purification device
CN104374011A (en) * 2014-10-29 2015-02-25 苏州盟通利机电设备有限公司 Air purifier capable of supplementing fresh air
CN204816002U (en) * 2015-08-12 2015-12-02 第一摩码人居环境科技(北京)有限公司 Take new trend to introduce purification equipment of structure
CN106016523A (en) * 2016-07-01 2016-10-12 广东美的制冷设备有限公司 Indoor air purifier
CN209865587U (en) * 2019-01-17 2019-12-31 青岛海尔空调器有限总公司 Air purifier

Also Published As

Publication number Publication date
CN111437670A (en) 2020-07-24

Similar Documents

Publication Publication Date Title
CN111442412B (en) Integrated air conditioner
CN111437670B (en) air purifier
CN111437669B (en) Air Purifier
CN209865586U (en) Air purifier
CN111437671B (en) air purifier
CN209865587U (en) Air purifier
CN209865584U (en) Air purifier
CN111437668A (en) air purifier
CN209865585U (en) Air purifier
CN111442414B (en) Integrated air conditioner
CN111442354B (en) Indoor machine of vertical air conditioner
CN111442358A (en) Wall-mounted air conditioner indoor unit
CN111442397A (en) Indoor machine of floor air conditioner
CN111442394A (en) Indoor machine of floor air conditioner
CN111442401A (en) Indoor machine of floor air conditioner
CN111442400A (en) Indoor machine of floor air conditioner
CN111442386A (en) wall mounted air conditioner indoor unit
CN111442351B (en) wall mounted air conditioner indoor unit
CN111442350A (en) Wall-mounted air conditioner indoor unit
CN111442413B (en) Integrated air conditioner
CN111442389A (en) Wall-mounted air conditioner indoor unit
CN111442392A (en) wall mounted air conditioner indoor unit
CN111442405A (en) Vertical air conditioner indoor unit
CN111442390A (en) Wall-mounted air conditioner indoor unit
WO2020147750A1 (en) Vertical air conditioner indoor unit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TA01 Transfer of patent application right

Effective date of registration: 20230509

Address after: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao

Applicant after: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd.

Applicant after: Haier Smart Home Co., Ltd.

Address before: 266101 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao

Applicant before: QINGDAO HAIER AIR CONDITIONER GENERAL Corp.,Ltd.

TA01 Transfer of patent application right