CN111430664B - 一种高负载电极、制备方法及其锂离子电池 - Google Patents
一种高负载电极、制备方法及其锂离子电池 Download PDFInfo
- Publication number
- CN111430664B CN111430664B CN202010429525.2A CN202010429525A CN111430664B CN 111430664 B CN111430664 B CN 111430664B CN 202010429525 A CN202010429525 A CN 202010429525A CN 111430664 B CN111430664 B CN 111430664B
- Authority
- CN
- China
- Prior art keywords
- coating
- slurry
- negative electrode
- positive electrode
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0435—Rolling or calendering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明创造涉及一种高负载电极,集流体外围由内至外至少涂布有两层浆料,所述浆料包括活性物质、导电剂和粘结剂;从极片外表面到集流体表面垂直方向上,各层浆料中粘结剂重量配比依次升高、导电剂重量配比依次升高;各层浆料的辊压压缩量依次减小,各层浆料的碾压厚度之和达到设计要求厚度。应用该高负载电极,可缩短吸液时间,提高浸润效果,对应的锂离子电池具有优异的克容量发挥、长循环和低温放电性能。
Description
技术领域
本发明创造涉及锂离子电池技术领域,尤其是涉及一种高负载电极、制备方法及其锂离子电池。
背景技术
随着科学技术的不断进步,锂离子电池逐渐应用到很多领域,从便携式的电子产品到电动汽车、储能电源、航空领域等。特别是电动汽车,要缩短和传统汽车的应用差距,不但需要保证安全性的前提下尽可能延长其单次充电的续航里程及使用寿命,而且希望减小续航里程受温度影响,尤其在低温下。进而需要与电动汽车相匹配的电池拥有更高的能量密度、循环寿命和低温放电能力,因此对于锂离子电池的能量密度、循环寿命及低温放电性能提出了更高的要求。目前提升能量密度的方法有多种,如何通过提高正负极的厚度(即提高正负极材料的负载量)、提高活性材料的压实密度、以及提升活性物质克容量等途径实现。相对而言,增加电极片负载量是最直接的提高电池能量密度的方法,相对于提高压实而言,一方面可以显著减少正负极集流体及隔膜等非活性物质的使用量,节约物料成本;另一方面可以显著减少极片的涂布、烘干、碾压、分切、组装等电池生产工序量,节约生产成本。
目前,厚电极在实际制造和应用中,也存在一定的技术难题,随着电极片厚度的提升容易带来电解液浸润不佳,极片内极化内阻增大等问题,从而导致电池的克容量发挥、循环及低温放电性能的劣化。
发明内容
本发明创造针对背景技术中的相关问题,提供一种高负载电极、制备方法及其锂离子电池,应用该高负载电极,可缩短吸液时间,提高浸润效果,对应的锂离子电池具有优异的克容量发挥、长循环和低温放电性能。
为解决上述技术问题,本发明创造采用的技术方案是:
一种高负载电极,集流体外围由内至外至少涂布有两层浆料,所述浆料包括活性物质、导电剂和粘结剂,根据涂布的先后顺序,各层浆料中粘结剂重量配比依次降低、导电剂重量配比依次降低;各层浆料的辊压压缩量依次增加,各层浆料的碾压厚度之和达到设计要求厚度。
其中,正极浆料中的活性物质不限于镍钴锰酸锂、钴酸锂、锰酸锂、磷酸铁锂、磷酸锰锂等具有锂离子脱出功能的材料。
其中,正极浆料中的导电剂不限于导电炭黑、碳纳米管、石墨烯等具有高电子导电能力的材料。
其中,正极浆料中的粘结剂聚四氟乙烯、聚酰亚胺、聚丙酸、聚丙烯腈等具有粘接作用的高分子化合物。
其中,负极浆料中的活性物质不限于石墨材料、硅基材料和钛酸锂等具有锂离子嵌入功能的材料。
其中,负极浆料中的导电剂不限于导电炭黑、碳纳米管、石墨烯等具有高电子导电能力的材料。
其中,负极浆料中的粘结剂羧甲基纤维素、丁苯橡胶、聚酰亚胺、聚丙酸、聚丙烯腈等具有粘接作用的高分子化合物。
本发明还在于公开上述高负载电极的制备方法,该制备方法包括浆料制备、浆料涂布、烘干和辊压等常规步骤。
本发明还在于公开应用上述高负载电极的锂离子电池。
本发明创造的有益效果:
本发明通过分次涂布可以控制导电剂从极片外表面到集流体表面垂直方向上的含量由低到高分布,优化极片内部欧姆电阻的分布,改善极片厚度方向上的极化,进而提高电池的充放电性能;控制粘结剂从极片外表面到集流体表面垂直方向上的含量由低到高分布,可提高活性物质靠近集流体部分的粘接力,减小极片在循环过程中因收缩膨胀造成活性物质与集流体分离的程度,进而提高电池的循环性能;另外,本发明通过分次碾压控制空隙率从极片外表面到集流体表面垂直方向上的由低到高分布,使得靠近集流体的活性物质浸润更充分,进而增加离子通道,提高充放电性能。
附图说明
图1为在集流体外围涂布三层浆料的结构示意图,其中,箭头方向为从极片外表面到集流体表面垂直方向。
其中,1-集流体;2-涂层A;3-涂层B;4-涂层C。
具体实施方式
需要说明的是,在不冲突的情况下,本发明创造中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明创造。
实施例1
正极高负载极片的制作:
a.将正极活性物质NCM622、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比94.6:1.6:1.6:2.2,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料A;
b.将正极活性物质NCM622、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比95.4:1.4:1.4:1.8,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料B;
c.将正极浆料A涂覆在铝箔集流体上,干燥后涂层总负载量为50mg/cm2,总厚度为200μm,辊压后涂层厚度180μm,得到正极极片A;
d.将正极浆料B涂覆在正极极片A上,干燥后涂层总负载量为100mg/cm2,总厚度为380μm,辊压后涂层厚度300μm,得到正极高负载极片。
e.将5μL的PC(碳酸丙烯酯)滴到正极高负载极片上,记录PC消失时间(吸液时间)为613s。
负极高负载极片的制作:
a.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比93.4:2.5:1.5:2.6,加入水搅拌混合均匀,得到固含量为50%的负极浆料A;
b.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比94.6:1.5:1.5:2.4,加入水搅拌混合均匀,得到固含量为50%的负极浆料B;
c.将负极浆料A涂覆在铜箔集流体上,干燥后涂层总负载量为20mg/cm2,总厚度为200μm,辊压后涂层厚度180μm,得到负极极片A;
d.将负极浆料B涂覆在负极极片A上,干燥后涂层总负载量为40mg/cm2,总厚度为380μm,辊压后涂层厚度300μm,得到负极厚电极极片。
e.将5μL的PC(碳酸丙烯酯)滴到负极高负载极片上,记录PC消失时间(吸液时间)为88s。
锂离子电池的制作:
a.将上述工艺制得的正极高负载极片、负极高负载极片与PE隔膜通过卷绕或者叠片方式制成电池芯;
b.配置电解液:1mol/L LiPF6,溶剂质量配比为EC:DMC:EMC=5:2:3,1wt%VC,1wt%FEC,1wt%1,3-PS;
c.将上述电解液注入制好的电池芯中,静置、预充化成后,进行相关的电性能相关测试。
实施例2
正极高负载极片的制作:
a.将正极活性物质NCM622、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比94.4:1.7:1.7:2.2,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料A;
b.将正极活性物质NCM622、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比95.0:1.5:1.5:2.0,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料B;
c.将正极活性物质NCM622、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比95.6:1.3:1.3:1.8,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料C;
d.将正极浆料A涂覆在铝箔集流体上,干燥后涂层总负载量为30mg/cm2,总厚度为120μm,辊压后涂层厚度108μm,得到正极极片A;
e.将正极浆料B涂覆在正极极片A上,干燥后涂层总负载量为60mg/cm2,总厚度为228μm,辊压后涂层厚度201μm,得到正极极片B。
f.将正极浆料C涂覆在正极极片B上,干燥后涂层总负载量为100mg/cm2,总厚度为360μm,辊压后涂层厚度361μm,得到正极高负载极片。
g.将5μL的PC(碳酸丙烯酯)滴到正极高负载极片上,记录PC消失时间(吸液时间)为598s。
负极高负载极片的制作:
a.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比93.3:2.2:1.5:3.0,加入水搅拌混合均匀,得到固含量为50%的负极浆料A;
b.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比94.0:2.0:1.5:2.5,加入水搅拌混合均匀,得到固含量为50%的负极浆料B;
c.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比94.7:1.8:1.5:2.0,加入水搅拌混合均匀,得到固含量为50%的负极浆料C;
d.将负极浆料A涂覆在铜箔集流体上,干燥后涂层总负载量为12mg/cm2,总厚度为120μm,辊压后涂层厚度108μm,得到负极极片A;
e.将负极浆料B涂覆在负极极片A上,干燥后涂层总负载量为24mg/cm2,总厚度为228μm,辊压后涂层厚度201μm,得到负极极片B。
f.将负极浆料C涂覆在负极极片B上,干燥后涂层总负载量为40mg/cm2,总厚度为361μm,辊压后涂层厚度300μm,得到负极厚电极极片。
e.将5μL的PC(碳酸丙烯酯)滴到负极高负载极片上,记录PC消失时间(吸液时间)为71s。
锂离子电池的制作:
a.将上述工艺制得的正极高负载极片、负极高负载极片与PE隔膜通过卷绕或者叠片方式制成电池芯;
b.配置电解液:1mol/L LiPF6,溶剂质量配比为EC:DMC:EMC=5:2:3,1wt%VC,1wt%FEC,1wt%1,3-PS;
c.将上述电解液注入制好的电池芯中,静置、预充化成后,进行相关的电性能相关测试。
对比例1
正极高负载极片的制作:
a.将正极活性物质NCM622、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比95:1.5:1.5:2,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料;
b.将正极浆料涂覆在铝箔集流体上,干燥后涂层总负载量为100mg/cm2,总厚度为400μm,辊压后涂层厚度300μm,得到正极高负载极片。
c.将5μL的PC(碳酸丙烯酯)滴到正极高负载极片上,记录PC消失时间(吸液时间)为678s。
负极高负载极片的制作:
a.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比94:2:1.5:2.5,加入水搅拌混合均匀,得到固含量为50%的负极浆料;
b.将负极浆料涂覆在铜箔集流体上,干燥后涂层总负载量为40mg/cm2,总厚度为400μm,辊压后涂层厚度300μm,得到负极高负载极片。
c.将5μL的PC(碳酸丙烯酯)滴到负极高负载极片上,记录PC消失时间(吸液时间)为106s。
锂离子电池的制作:
a.将上述工艺制得的正极高负载极片、负极高负载极片与PE隔膜通过卷绕或者叠片方式制成电池芯;
b.配置电解液:1mol/L LiPF6,溶剂质量配比为EC:DMC:EMC=5:2:3,1wt%VC,1wt%FEC,1wt%1,3-PS;
c.将上述电解液注入制好的电池芯中,静置、预充化成后,进行相关的电性能测试。
对实施例1、实施例2和对比例1分别进行25℃温度条件下0.5C/0.5C充放电循环测试,并记录首次放电容量的克容量及800周长循环后电池的容量保持率,另外,对电池进行25℃/0℃/-10℃/-20℃的0.5C放电测试,并记录不同温度放电下的容量保持率,记录结果如表1。
表1
实施例3
正极高负载极片的制作:
a.将正极活性物质NCM811、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比94.4:1.5:1.5:2.6,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料A;
b.将正极活性物质NCM811、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比95.2:1.2:1.2:2.4,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料B;
c.将正极浆料A涂覆在铝箔集流体上,干燥后涂层总负载量为63mg/cm2,总厚度为250μm,辊压后涂层厚度220μm,得到正极极片A;
d.将正极浆料B涂覆在正极极片A上,干燥后涂层总负载量为126mg/cm2,总厚度为470μm,辊压后涂层厚度380μm,得到正极高负载极片。
e.将5μL的PC(碳酸丙烯酯)滴到正极高负载极片上,记录PC消失时间(吸液时间)为663s。
负极厚极片的制作:
a.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比93.3:2.2:1.5:3.0,加入水搅拌混合均匀,得到固含量为50%的负极浆料A;
b.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比93.7:2.0:1.5:2.8,加入水搅拌混合均匀,得到固含量为50%的负极浆料B;
c.将负极浆料A涂覆在铜箔集流体上,干燥后涂层总负载量为25mg/cm2,总厚度为250μm,辊压后涂层厚度220μm,得到负极极片A;
d.将负极浆料B涂覆在负极极片A上,干燥后涂层总负载量为50mg/cm2,总厚度为470μm,辊压后涂层厚度380μm,得到负极高负载极片。
e.将5μL的PC(碳酸丙烯酯)滴到负极高负载极片上,记录PC消失时间(吸液时间)为95s。
锂离子电池的制作:
a.将上述工艺制得的正极高负载极片、负极高负载极片与PE隔膜通过卷绕或者叠片方式制成电池芯;
b.配置电解液:1mol/L LiPF6,溶剂质量配比为EC:DMC:EMC=5:2:3,1wt%VC,1wt%FEC,1wt%1,3-PS;
c.将上述电解液注入制好的电池芯中,静置、预充化成后,进行相关的电性能相关测试。
实施例4
正极高负载极片的制作:
a.将正极活性物质NCM811、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比93.6:1.8:1.8:2.8,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料A;
b.将正极活性物质NCM811、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比94.4:1.5:1.5:2.6,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料B;
c.将正极活性物质NCM811、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比95.2:1.2:1.2:2.4,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料C;
d.将正极活性物质NCM811、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比96:0.9:0.9:2.2,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料D;
e.将正极浆料A涂覆在铝箔集流体上,干燥后涂层总负载量为32mg/cm2,总厚度为125μm,辊压后涂层厚度119μm,得到正极极片A;
f.将正极浆料B涂覆在正极极片A上,干燥后涂层总负载量为63mg/cm2,总厚度为244μm,辊压后涂层厚度227μm,得到正极极片B。
g.将正极浆料C涂覆在正极极片B上,干燥后涂层总负载量为95mg/cm2,总厚度为352μm,辊压后涂层厚度317μm,得到正极极片C。
h.将正极浆料D涂覆在正极极片C上,干燥后涂层总负载量为126mg/cm2,总厚度为442μm,辊压后涂层厚度380μm,得到正极高负载极片。
i.将5μL的PC(碳酸丙烯酯)滴到负极高负载极片上,记录PC消失时间(吸液时间)为608s。
负极厚极片的制作:
a.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比92.9:2.4:1.5:3.2,加入水搅拌混合均匀,得到固含量为50%的负极浆料A;
b.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比93.3:2.2:1.5:3.0,加入水搅拌混合均匀,得到固含量为50%的负极浆料B;
c.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比93.7:2.0:1.5:2.8,加入水搅拌混合均匀,得到固含量为50%的负极浆料C;
d.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比94.1:1.8:1.5:2.6,加入水搅拌混合均匀,得到固含量为50%的负极浆料D;
e.将负极浆料A涂覆在铜箔集流体上,干燥后涂层总负载量为13mg/cm2,总厚度为125μm,辊压后涂层厚度119μm,得到负极极片A;
f.将负极浆料B涂覆在负极极片A上,干燥后涂层总负载量为25mg/cm2,总厚度为244μm,辊压后涂层厚度227μm,得到负极极片B。
g.将负极浆料C涂覆在负极极片B上,干燥后涂层总负载量为38mg/cm2,总厚度为352μm,辊压后涂层厚度317μm,得到负极极片C。
h.将负极浆料D涂覆在负极极片C上,干燥后涂层总负载量为50mg/cm2,总厚度为442μm,辊压后涂层厚度380μm,得到负极高负载极片。
i.将5μL的PC(碳酸丙烯酯)滴到负极高负载极片上,记录PC消失时间(吸液时间)为82s。
锂离子电池的制作:
a.将上述工艺制得的正极高负载极片、负极高负载极片与PE隔膜通过卷绕或者叠片方式制成电池芯;
b.配置电解液:1mol/L LiPF6,溶剂质量配比为EC:DMC:EMC=5:2:3,1wt%VC,1wt%FEC,1wt%1,3-PS;
c.将上述电解液注入制好的电池芯中,静置、预充化成后,进行相关的电性能相关测试。
对比例2
正极高负载极片的制作:
a.将正极活性物质NCM811、导电剂1(SP)、导电剂2(CNTs)、粘结剂(PVDF)按重量比94.8:1.35:1.35:2.5,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料;
b.将正极浆料涂覆在铝箔集流体上,干燥后涂层总负载量为126mg/cm2,总厚度为500μm,辊压后涂层厚度380μm,得到正极高负载极片。
c.将5μL的PC(碳酸丙烯酯)滴到负极高负载极片上,记录PC消失时间(吸液时间)为725s。
负极厚极片的制作:
a.将负极活性物质人造石墨、导电剂(SP)、粘结剂羧甲基纤维素钠(CMC)和粘结剂丁苯橡胶(SBR)按重量比93.5:2.1:1.5:2.9,加入水搅拌混合均匀,得到固含量为50%的负极浆料;
b.将负极浆料涂覆在铜箔集流体上,干燥后涂层总负载量为50mg/cm2,总厚度为500μm,辊压后涂层厚度380μm,得到负极高负载极片。
c.将5μL的PC(碳酸丙烯酯)滴到负极高负载极片上,记录PC消失时间(吸液时间)为122s。
锂离子电池的制作:
a.将上述工艺制得的正极厚电极极片、负极厚电极极片与PE隔膜通过卷绕或者叠片方式制成电池芯;
b.配置电解液:1mol/L LiPF6,溶剂质量配比为EC:DMC:EMC=5:2:3,1wt%VC,1wt%FEC,1wt%1,3-PS;
c.将上述电解液注入制好的电池芯中,静置、预充化成后,进行相关的电性能测试。
对实施例3、实施例4和对比例2分别进行25℃温度条件下0.5C/0.5C充放电循环测试,并记录首次放电容量的克容量及400周长循环后电池的容量保持率,另外,对电池进行25℃/0℃/-10℃/-20℃的0.5C放电测试,并记录不同温度放电下的容量保持率,记录结果如表2。
表2
以上对本发明创造的一个实施例进行了详细说明,但所述内容仅为本发明创造的较佳实施例,不能被认为用于限定本发明创造的实施范围。凡依本发明创造申请范围所作的均等变化与改进等,均应仍归属于本发明创造的专利涵盖范围之内。
Claims (2)
1.一种高负载电极,其特征在于,集流体外围由内至外涂布有四层浆料,所述浆料包括活性物质、导电剂和粘结剂;从极片外表面到集流体表面垂直方向上,各层浆料中粘结剂重量配比依次升高、导电剂重量配比依次升高;各层浆料的辊压压缩量依次减小,各层浆料的碾压厚度之和达到设计要求厚度;
正极高负载电极的制作方法包括以下步骤:
a.将正极活性物质NCM811、SP、CNTs、PVDF按重量比93.6:1.8:1.8:2.8,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料A;
b.将正极活性物质NCM811、SP、CNTs、PVDF按重量比94.4:1.5:1.5:2.6,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料B;
c.将正极活性物质NCM811、SP、CNTs、PVDF按重量比95.2:1.2:1.2:2.4,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料C;
d.将正极活性物质NCM811、SP、CNTs、PVDF按重量比96:0.9:0.9:2.2,倒入N-甲基-2-吡咯烷酮,混合、搅拌均匀,制得固含量为75%的正极浆料D;
e.将正极浆料A涂覆在铝箔集流体上,干燥后涂层总负载量为32mg/cm2,总厚度为125μm,辊压后涂层厚度119μm,得到正极极片A;
f.将正极浆料B涂覆在正极极片A上,干燥后涂层总负载量为63mg/cm2,总厚度为244μm,辊压后涂层厚度227μm,得到正极极片B;
g.将正极浆料C涂覆在正极极片B上,干燥后涂层总负载量为95mg/cm2,总厚度为352μm,辊压后涂层厚度317μm,得到正极极片C;
h.将正极浆料D涂覆在正极极片C上,干燥后涂层总负载量为126mg/cm2,总厚度为442μm,辊压后涂层厚度380μm,得到正极高负载电极;
负极高负载电极的制作方法包括以下步骤:
a.将负极活性物质人造石墨、SP、CMC和SBR按重量比92.9:2.4:1.5:3.2,加入水搅拌混合均匀,得到固含量为50%的负极浆料A;
b.将负极活性物质人造石墨、SP、CMC和SBR按重量比93.3:2.2:1.5:3.0,加入水搅拌混合均匀,得到固含量为50%的负极浆料B;
c.将负极活性物质人造石墨、SP、CMC和SBR按重量比93.7:2.0:1.5:2.8,加入水搅拌混合均匀,得到固含量为50%的负极浆料C;
d.将负极活性物质人造石墨、SP、CMC和SBR按重量比94.1:1.8:1.5:2.6,加入水搅拌混合均匀,得到固含量为50%的负极浆料D;
e.将负极浆料A涂覆在铜箔集流体上,干燥后涂层总负载量为13mg/cm2,总厚度为125μm,辊压后涂层厚度119μm,得到负极极片A;
f.将负极浆料B涂覆在负极极片A上,干燥后涂层总负载量为25mg/cm2,总厚度为244μm,辊压后涂层厚度227μm,得到负极极片B;
g.将负极浆料C涂覆在负极极片B上,干燥后涂层总负载量为38mg/cm2,总厚度为352μm,辊压后涂层厚度317μm,得到负极极片C;
h.将负极浆料D涂覆在负极极片C上,干燥后涂层总负载量为50mg/cm2,总厚度为442μm,辊压后涂层厚度380μm,得到负极高负载电极。
2.应用如权利要求1所述高负载电极的锂离子电池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010429525.2A CN111430664B (zh) | 2020-05-20 | 2020-05-20 | 一种高负载电极、制备方法及其锂离子电池 |
EP21807689.1A EP4156319A1 (en) | 2020-05-20 | 2021-05-20 | High-load electrode, preparation method therefor, and lithium ion battery thereof |
PCT/CN2021/094940 WO2021233387A1 (zh) | 2020-05-20 | 2021-05-20 | 一种高负载电极、制备方法及其锂离子电池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010429525.2A CN111430664B (zh) | 2020-05-20 | 2020-05-20 | 一种高负载电极、制备方法及其锂离子电池 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111430664A CN111430664A (zh) | 2020-07-17 |
CN111430664B true CN111430664B (zh) | 2023-06-02 |
Family
ID=71558949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010429525.2A Active CN111430664B (zh) | 2020-05-20 | 2020-05-20 | 一种高负载电极、制备方法及其锂离子电池 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4156319A1 (zh) |
CN (1) | CN111430664B (zh) |
WO (1) | WO2021233387A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111430664B (zh) * | 2020-05-20 | 2023-06-02 | 天津市捷威动力工业有限公司 | 一种高负载电极、制备方法及其锂离子电池 |
CN114156439A (zh) * | 2021-10-21 | 2022-03-08 | 浙江南都电源动力股份有限公司 | 一种负极极片及磷酸铁锂电池 |
CN114709363A (zh) * | 2022-04-29 | 2022-07-05 | 三一技术装备有限公司 | 干法极片及其制备方法 |
CN115172663A (zh) * | 2022-05-16 | 2022-10-11 | 广东马车动力科技有限公司 | 一种复合负极极片及其制备方法与应用 |
CN115020642B (zh) * | 2022-05-25 | 2024-01-30 | 天津力神电池股份有限公司 | 一种多层复合电极的制备方法和多层复合电极的锂离子电池 |
CN115020651B (zh) * | 2022-06-09 | 2023-11-10 | 广东马车动力科技有限公司 | 一种正极极片及其制备方法与应用 |
CN114824164B (zh) * | 2022-06-20 | 2022-10-18 | 比亚迪股份有限公司 | 一种锂离子电池负极及其制备方法和锂离子电池 |
CN115394963B (zh) * | 2022-08-29 | 2024-11-15 | 西安交通大学苏州研究院 | 一种利用先进激光系统辅助制备锂电池高负载正极的方法 |
EP4345928A3 (en) * | 2022-09-27 | 2024-04-17 | SK On Co., Ltd. | Anode for secondary battery and secondary battery comprising the same |
CN116014067A (zh) * | 2023-02-02 | 2023-04-25 | 荣盛盟固利新能源科技股份有限公司 | 一种快充型锂离子电池极片和电池 |
CN116333649A (zh) * | 2023-03-02 | 2023-06-27 | 深圳市比克动力电池有限公司 | 一种粘结剂及其电极 |
CN116169302A (zh) * | 2023-03-20 | 2023-05-26 | 珠海冠宇动力电池有限公司 | 一种负极集流体、负极片及包括该负极片的电池 |
CN119731796A (zh) * | 2023-04-07 | 2025-03-28 | 宁德时代新能源科技股份有限公司 | 电极极片、电池以及用电装置 |
CN119153707A (zh) * | 2024-11-18 | 2024-12-17 | 湖南钠能时代科技发展有限公司 | 一种低温钠离子电池极片、电芯及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101002351A (zh) * | 2004-07-27 | 2007-07-18 | 奥克斯能源有限公司 | 电池中电极结构的改进 |
CN107431186A (zh) * | 2015-03-17 | 2017-12-01 | 株式会社Lg化学 | 多层电极以及包含该多层电极的锂二次电池 |
CN109004171A (zh) * | 2018-02-26 | 2018-12-14 | 宁德新能源科技有限公司 | 一种正极极片和锂离子电池 |
WO2019225939A1 (ko) * | 2018-05-21 | 2019-11-28 | 주식회사 엘지화학 | 이차 전지용 양극 및 이를 포함하는 이차 전지 |
CN110611076A (zh) * | 2019-08-02 | 2019-12-24 | 河南平煤国能锂电有限公司 | 一种锂离子电池正极极片及其制备方法 |
CN110660996A (zh) * | 2018-12-29 | 2020-01-07 | 宁德时代新能源科技股份有限公司 | 一种电极极片和电化学装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106848190B (zh) * | 2017-02-14 | 2019-10-08 | 珠海光宇电池有限公司 | 负极极片、负极极片的制备方法及锂离子电池 |
CN107742709A (zh) * | 2017-10-17 | 2018-02-27 | 中国科学院青岛生物能源与过程研究所 | 一种磷酸铁锂电池正极活性材料及其制备和应用 |
CN110071292B (zh) * | 2019-04-04 | 2022-05-13 | 桑顿新能源科技(长沙)有限公司 | 一种锂离子电池正极极片的制备方法及其正极极片 |
CN110137434A (zh) * | 2019-06-06 | 2019-08-16 | 深圳鸿鹏新能源科技有限公司 | 锂电池极片及其制备方法 |
CN111430664B (zh) * | 2020-05-20 | 2023-06-02 | 天津市捷威动力工业有限公司 | 一种高负载电极、制备方法及其锂离子电池 |
-
2020
- 2020-05-20 CN CN202010429525.2A patent/CN111430664B/zh active Active
-
2021
- 2021-05-20 WO PCT/CN2021/094940 patent/WO2021233387A1/zh unknown
- 2021-05-20 EP EP21807689.1A patent/EP4156319A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101002351A (zh) * | 2004-07-27 | 2007-07-18 | 奥克斯能源有限公司 | 电池中电极结构的改进 |
CN107431186A (zh) * | 2015-03-17 | 2017-12-01 | 株式会社Lg化学 | 多层电极以及包含该多层电极的锂二次电池 |
CN109004171A (zh) * | 2018-02-26 | 2018-12-14 | 宁德新能源科技有限公司 | 一种正极极片和锂离子电池 |
WO2019225939A1 (ko) * | 2018-05-21 | 2019-11-28 | 주식회사 엘지화학 | 이차 전지용 양극 및 이를 포함하는 이차 전지 |
CN110660996A (zh) * | 2018-12-29 | 2020-01-07 | 宁德时代新能源科技股份有限公司 | 一种电极极片和电化学装置 |
CN110611076A (zh) * | 2019-08-02 | 2019-12-24 | 河南平煤国能锂电有限公司 | 一种锂离子电池正极极片及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111430664A (zh) | 2020-07-17 |
WO2021233387A1 (zh) | 2021-11-25 |
EP4156319A1 (en) | 2023-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111430664B (zh) | 一种高负载电极、制备方法及其锂离子电池 | |
CN111540881B (zh) | 一种负极片、制备方法及包含其的锂离子电池 | |
CN108258236B (zh) | 一种高比容量高循环寿命18650圆柱锂电池及其制备方法 | |
CN111540880B (zh) | 一种负极片、制备方法及包含其的锂离子电池 | |
CN113258031B (zh) | 电池 | |
WO2020078307A1 (zh) | 负极极片及二次电池 | |
CN112259803B (zh) | 一种锂离子叠芯及其应用 | |
CN113113565B (zh) | 一种负极片及电池 | |
CN111987375A (zh) | 勃姆石/惰性锂粉复合浆料、补锂负极片、其制备方法和锂离子电池 | |
CN114824226B (zh) | 负极极片及其制备方法、锂离子电池和用电设备 | |
CN109428051A (zh) | 锂离子电池及其正极片 | |
CN109037592A (zh) | 锂离子电池正极片及其制备方法、锂离子电池 | |
WO2024124969A1 (zh) | 一种二次电池和用电装置 | |
CN114068857A (zh) | 一种电极片的制备方法及其应用 | |
CN103762335A (zh) | 钛酸锂电极片及锂离子电池 | |
CN115377353A (zh) | 一种负极片及应用其的电池 | |
CN111786040A (zh) | 极片及其应用、含有该极片的低温升长寿命锂离子电池 | |
WO2025040198A1 (zh) | 一种正极极片及其制备方法和应用 | |
CN116072854B (zh) | 一种电池 | |
CN113299919B (zh) | 一种正极极片及包括该正极极片的锂离子电池 | |
CN116014072A (zh) | 一种电池 | |
CN115036458B (zh) | 一种锂离子电池 | |
CN115020638B (zh) | 一种锂离子电池 | |
CN112786848A (zh) | 一种硅基负极材料 | |
CN118299507A (zh) | 一种电极及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PP01 | Preservation of patent right |
Effective date of registration: 20241021 Granted publication date: 20230602 |
|
PP01 | Preservation of patent right |