CN111427411A - Integrated output circuit capable of being used for adjusting temperature coefficient - Google Patents
Integrated output circuit capable of being used for adjusting temperature coefficient Download PDFInfo
- Publication number
- CN111427411A CN111427411A CN202010339070.5A CN202010339070A CN111427411A CN 111427411 A CN111427411 A CN 111427411A CN 202010339070 A CN202010339070 A CN 202010339070A CN 111427411 A CN111427411 A CN 111427411A
- Authority
- CN
- China
- Prior art keywords
- temperature coefficient
- reference voltage
- adjustable resistor
- operational amplifier
- output circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
- G05F1/567—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
Abstract
本发明提供一种可用于调整温度系数的集成输出电路,包括正温度系数基准电压产生模块和负温度系数基准电压产生模块,所述正温度系数基准电压产生模块输出正温度系数基准电压至温度系数选择模块,所述负温度系数基准电压产生模块输出负温度系数基准电压至温度系数选择模块;所述温度系数选择模块用于输出基准电压。本发明可以根据用户需求选择合适的温度系数,直到达到理想的温度漂移表现。
The present invention provides an integrated output circuit that can be used to adjust temperature coefficient, comprising a positive temperature coefficient reference voltage generating module and a negative temperature coefficient reference voltage generating module, wherein the positive temperature coefficient reference voltage generating module outputs a positive temperature coefficient reference voltage to a temperature coefficient A selection module, the negative temperature coefficient reference voltage generation module outputs the negative temperature coefficient reference voltage to the temperature coefficient selection module; the temperature coefficient selection module is used for outputting the reference voltage. The present invention can select an appropriate temperature coefficient according to user requirements until an ideal temperature drift performance is achieved.
Description
技术领域technical field
本发明属于集成电路技术领域,一种可用于调整温度系数的集成输出电路。The invention belongs to the technical field of integrated circuits, and relates to an integrated output circuit which can be used to adjust the temperature coefficient.
背景技术Background technique
芯片作为电子产品中最核心的元件,被广泛应用于工业,农业,航空等领域,在现代社会发展中起着重要的作用。而一款性能优越的芯片,不仅要有卓越的电气参数外,还需要经得住外界严苛环境的考验。例如系统的输出信号随温度的变化,在大部分情况下,用户需要的是输出信号在工作的温度区间内恒定,即不随温度变化,故传统的方式都是利用抵消温度漂移因子等方式消除温度带来的变化。而在实际的应用中,很多与芯片配合使用的激励本身存在一定的温度漂移,因此,在这样的激励下,即使芯片本身的参数不随温度变化,但由于激励的温度漂移,会造成系统整体参数的温度漂移。这样一来,越来越多的应用提出的需求是芯片具有可定制化的参数温度漂移,以补偿其他因素,如激励,随温度的变化,让整个系统的参数具有优秀的温度无关表现。As the core component of electronic products, chips are widely used in industry, agriculture, aviation and other fields, and play an important role in the development of modern society. A chip with superior performance not only needs to have excellent electrical parameters, but also needs to withstand the test of the harsh external environment. For example, the output signal of the system changes with temperature. In most cases, what the user needs is that the output signal is constant within the working temperature range, that is, it does not change with the temperature. Therefore, the traditional method is to eliminate the temperature by offsetting the temperature drift factor. brought about changes. In practical applications, many excitations used in conjunction with the chip have a certain temperature drift. Therefore, under such excitation, even if the parameters of the chip itself do not change with temperature, the temperature drift of the excitation will cause the overall parameters of the system. temperature drift. As a result, more and more applications demand that the chip has customizable parameter temperature drift to compensate for other factors, such as excitation, with temperature, so that the parameters of the entire system have excellent temperature-independent performance.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种可用于调整温度系数的集成输出电路,本发明可以根据用户需求选择合适的温度系数,直到达到理想的温度漂移表现。The purpose of the present invention is to provide an integrated output circuit that can be used to adjust the temperature coefficient. The present invention can select an appropriate temperature coefficient according to user requirements until the desired temperature drift performance is achieved.
本发明所采用的技术方案是,The technical scheme adopted in the present invention is,
一种可用于调整温度系数的集成输出电路,包括正温度系数基准电压产生模块和负温度系数基准电压产生模块,所述正温度系数基准电压产生模块输出正温度系数基准电压至温度系数选择模块,所述负温度系数基准电压产生模块输出负温度系数基准电压至温度系数选择模块;所述温度系数选择模块用于输出基准电压。An integrated output circuit that can be used to adjust temperature coefficient, comprising a positive temperature coefficient reference voltage generation module and a negative temperature coefficient reference voltage generation module, the positive temperature coefficient reference voltage generation module outputs the positive temperature coefficient reference voltage to the temperature coefficient selection module, The negative temperature coefficient reference voltage generation module outputs the negative temperature coefficient reference voltage to the temperature coefficient selection module; the temperature coefficient selection module is used for outputting the reference voltage.
本发明的特点还在于,The present invention is also characterized in that,
正温度系数基准电压产生模块包括偏置电压提供装置,偏置电压提供装置为第一三极管基集提供偏置电压,第一三极管的集电极与第一PMOS管的漏极、栅极连接,第一三极管的发射集依次连接可调电阻a和可调电阻b,可调电阻a和可调电阻b之间的电压值为正温度系数基准电压。The positive temperature coefficient reference voltage generating module includes a bias voltage providing device, the bias voltage providing device provides a bias voltage for the first triode base set, the collector of the first triode and the drain and gate of the first PMOS tube The emitting set of the first triode is connected to the adjustable resistance a and the adjustable resistance b in turn, and the voltage value between the adjustable resistance a and the adjustable resistance b is the positive temperature coefficient reference voltage.
偏置电压提供装置的一端还与供电电源连接,偏置电压提供装置的另一端接地;One end of the bias voltage providing device is also connected to the power supply, and the other end of the bias voltage providing device is grounded;
第一PMOS管的源集与供电电源连接;The source set of the first PMOS tube is connected to the power supply;
可调电阻b远离可调电阻a的另一端接地。The other end of the adjustable resistor b away from the adjustable resistor a is grounded.
负温度系数基准电压产生模块包括第二PMOS管,第二PMOS管的源集依次连接有电流源、第一NMOS管的栅极;第二PMOS管的栅极和漏极连接,第二PMOS管的栅极还与第一NMOS管的漏极连接,第一NMOS管的源集还依次连接有可调电阻c和可调电阻d,可调电阻c和可调电阻d之间的电压为负温度系数基准电压;第一NMOS管的栅极还与第二三极管的集电极连接,第二三极管的基集与第一NMOS管的源集连接。The negative temperature coefficient reference voltage generating module includes a second PMOS tube, the source set of the second PMOS tube is sequentially connected to the current source and the gate of the first NMOS tube; the gate and drain of the second PMOS tube are connected, and the second PMOS tube is connected to the drain. The gate of the first NMOS tube is also connected to the drain of the first NMOS tube, and the source set of the first NMOS tube is also connected with an adjustable resistance c and an adjustable resistance d in turn, and the voltage between the adjustable resistance c and the adjustable resistance d is negative. The temperature coefficient reference voltage; the gate of the first NMOS transistor is also connected to the collector of the second transistor, and the base set of the second transistor is connected to the source set of the first NMOS transistor.
第二PMOS管的源集还连接有供电电源;The source set of the second PMOS tube is also connected with a power supply;
可调电阻d远离可调电阻c的一端接地;One end of the adjustable resistor d away from the adjustable resistor c is grounded;
第二三极管的发射集接地。The emission set of the second triode is grounded.
温度系数选择模块包括第一运算放大器,正温度系数基准电压输入至第一运算放大器的第一输入端,第一运算放大器的第二输入端与第一运算放大器的输出端连接,第一运算放大器的输出端依次连接有可调电阻m、可调电阻n和第二运算放大器的输出端,负温度系数基准电压输入至第二运算放大器的第一输入端,第二运算放大器的第二输入端与第二运算放大器的输出端连接,可调电阻m与可调电阻n之间的电压为基准电压。The temperature coefficient selection module includes a first operational amplifier, the positive temperature coefficient reference voltage is input to the first input end of the first operational amplifier, the second input end of the first operational amplifier is connected to the output end of the first operational amplifier, and the first operational amplifier The output terminal of the NTC is sequentially connected with the adjustable resistance m, the adjustable resistance n and the output terminal of the second operational amplifier, the negative temperature coefficient reference voltage is input to the first input terminal of the second operational amplifier, and the second input terminal of the second operational amplifier It is connected with the output end of the second operational amplifier, and the voltage between the adjustable resistance m and the adjustable resistance n is the reference voltage.
本发明的有益效果是The beneficial effects of the present invention are
使用者能够通过调整的可调电阻a、可调电阻b、可调电阻c、可调电阻d、可调电阻m、可调电阻n的阻值来调整温度系数,甚至可以通过可编程化在应用上进行编程调试,直到达到理想的温度漂移表现。The user can adjust the temperature coefficient by adjusting the resistance values of adjustable resistance a, adjustable resistance b, adjustable resistance c, adjustable resistance d, adjustable resistance m, and adjustable resistance n, and even through programmable The application is programmed and debugged until the desired temperature drift performance is achieved.
附图说明Description of drawings
图1是本发明一种可用于调整温度系数的集成输出电路的原理图;1 is a schematic diagram of an integrated output circuit that can be used to adjust the temperature coefficient of the present invention;
图2是本发明一种可用于调整温度系数的集成输出电路中正温度系数基准电压产生模块的电路图;2 is a circuit diagram of a positive temperature coefficient reference voltage generation module in an integrated output circuit that can be used to adjust the temperature coefficient of the present invention;
图3是本发明一种可用于调整温度系数的集成输出电路中负温度系数基准电压产生模块的电路图;3 is a circuit diagram of a negative temperature coefficient reference voltage generation module in an integrated output circuit that can be used to adjust the temperature coefficient of the present invention;
图4本是发明一种可用于调整温度系数的集成输出电路中温度系数选择模块的电路图;4 is a circuit diagram of a temperature coefficient selection module in an integrated output circuit that can be used to adjust the temperature coefficient of the present invention;
图5是本发明一种可用于调整温度系数的集成输出电路的温度系数选择曲线图。FIG. 5 is a temperature coefficient selection curve diagram of an integrated output circuit that can be used to adjust the temperature coefficient of the present invention.
图中,1.正温度系数基准电压产生模块,2.负温度系数基准电压产生模块,3.温度系数选择模块;In the figure, 1. Positive temperature coefficient reference voltage generation module, 2. Negative temperature coefficient reference voltage generation module, 3. Temperature coefficient selection module;
1-1.第一PMOS管,1-2.偏置电压提供装置,1-3.第一三极管,1-4.可调电阻a,1-5.可调电阻b;1-1. The first PMOS tube, 1-2. The bias voltage providing device, 1-3. The first triode, 1-4. The adjustable resistance a, 1-5. The adjustable resistance b;
2-1.第二PMOS管,2-2.电流源,2-3.第一NMOS管,2-4.可调电阻c,2-5.可调电阻d,2-6.第二三极管;2-1. The second PMOS tube, 2-2. The current source, 2-3. The first NMOS tube, 2-4. The adjustable resistance c, 2-5. The adjustable resistance d, 2-6. The second and third pole tube;
3-1.第一运算放大器,3-2.第二运算放大器,3-3.可调电阻m,3-4.可调电阻n。3-1. First operational amplifier, 3-2. Second operational amplifier, 3-3. Adjustable resistance m, 3-4. Adjustable resistance n.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
本发明一种可用于调整温度系数的集成输出电路,如图1,其特征在于,包括正温度系数基准电压产生模块1和负温度系数基准电压产生模块2,正温度系数基准电压产生模块1输出正温度系数基准电压至温度系数选择模块3,负温度系数基准电压产生模块2输出负温度系数基准电压至温度系数选择模块3;温度系数选择模块3用于输出基准电压。An integrated output circuit of the present invention that can be used to adjust the temperature coefficient, as shown in Figure 1, is characterized in that it includes a positive temperature coefficient reference voltage generation module 1 and a negative temperature coefficient reference
如图2,正温度系数基准电压产生模块1包括偏置电压提供装置1-2,偏置电压提供装置1-2为第一三极管1-3基集提供偏置电压,第一三极管1-3的集电极与第一PMOS管1-1的漏极、栅极连接,第一三极管1-3的发射集依次连接可调电阻a1-4和可调电阻b1-5,可调电阻a1-4和可调电阻b1-5之间的电压值为正温度系数基准电压。As shown in FIG. 2, the positive temperature coefficient reference voltage generating module 1 includes a bias voltage providing device 1-2. The bias voltage providing device 1-2 provides a bias voltage for the base set of the first triode 1-3. The first triode The collector of the tube 1-3 is connected to the drain and gate of the first PMOS tube 1-1, and the emission set of the first transistor 1-3 is connected to the adjustable resistor a1-4 and the adjustable resistor b1-5 in turn, The voltage value between the adjustable resistor a1-4 and the adjustable resistor b1-5 is the positive temperature coefficient reference voltage.
偏置电压提供装置1-2的一端还与供电电源连接,偏置电压提供装置1-2的另一端接地;One end of the bias voltage providing device 1-2 is also connected to the power supply, and the other end of the bias voltage providing device 1-2 is grounded;
第一PMOS管1-1的源集与供电电源连接;The source set of the first PMOS transistor 1-1 is connected to the power supply;
可调电阻b1-5远离可调电阻a1-4的另一端接地。The other end of the adjustable resistor b1-5 away from the adjustable resistor a1-4 is grounded.
如图3,负温度系数基准电压产生模块2包括第二PMOS管2-1,第二PMOS管2-1的源集依次连接有电流源2-2、第一NMOS管2-3的栅极;第二PMOS管2-1的栅极和漏极连接,第二PMOS管2-1的栅极还与第一NMOS管2-3的漏极连接,第一NMOS管2-3的源集还依次连接有可调电阻c2-4和可调电阻d2-5,可调电阻c2-4和可调电阻d2-5之间的电压为负温度系数基准电压;第一NMOS管2-3的栅极还与第二三极管2-6的集电极连接,第二三极管2-6的基集与第一NMOS管的源集连接。As shown in FIG. 3 , the negative temperature coefficient reference
第二PMOS管的源集还连接有供电电源;The source set of the second PMOS tube is also connected with a power supply;
可调电阻d2-5远离可调电阻c2-4的一端接地;One end of the adjustable resistor d2-5 away from the adjustable resistor c2-4 is grounded;
第二三极管2-6的发射集接地。The emitter set of the second transistor 2-6 is grounded.
如图4,温度系数选择模块3包括第一运算放大器3-1,正温度系数基准电压输入至第一运算放大器3-1的第一输入端,第一运算放大器3-1的第二输入端与第一运算放大器3-1的输出端连接,第一运算放大器3-1的输出端依次连接有可调电阻m3-3、可调电阻n3-4和第二运算放大器3-2的输出端,负温度系数基准电压输入至第二运算放大器3-2的第一输入端,第二运算放大器3-2的第二输入端与第二运算放大器3-2的输出端连接,可调电阻m3-3与可调电阻n3-4之间的电压为基准电压。4, the temperature
本发明首先通过基准电压与温度系数的关系来确定所要调整的基准电压,之后通过改变可调电阻a1-4、可调电阻b1-5、可调电阻c2-4、可调电阻d2-5、可调电阻m3-3和可调电阻n3-4的值来改变基准电压到所需数值。The present invention first determines the reference voltage to be adjusted through the relationship between the reference voltage and the temperature coefficient, and then changes the adjustable resistance a1-4, adjustable resistance b1-5, adjustable resistance c2-4, adjustable resistance d2-5, Adjust the value of resistor m3-3 and adjustable resistor n3-4 to change the reference voltage to the desired value.
本发明的原理是,The principle of the present invention is that,
如图5为温度系数选择曲线图,正温度系数基准电压Vp与正温度系数TCp的关系为:Figure 5 is the temperature coefficient selection curve. The relationship between the positive temperature coefficient reference voltage V p and the positive temperature coefficient T Cp is:
Vp(T)为正温度系数基准电压在不同温度下的输出Vp(300K)为正温度系数基准电压在常温下输出,T为温度可变量,300K为常温。V p (T) is the output of the positive temperature coefficient reference voltage at different temperatures V p (300K) is the positive temperature coefficient reference voltage output at normal temperature, T is the temperature variable, and 300K is normal temperature.
负温度系数基准电压Vn与负温度系数TCn的关系为:The relationship between the negative temperature coefficient reference voltage Vn and the negative temperature coefficient T Cn is:
Vn(T)=Vn(300K)*[1+TCn(T-300K)] (2) Vn (T)= Vn (300K)*[1+T Cn (T-300K)] (2)
其中Vn(T)为负温度系数基准电压在不同温度下的输出,Vn(300K)为负温度系数基准电压在常温下输出。Among them, V n (T) is the output of the negative temperature coefficient reference voltage at different temperatures, and V n (300K) is the output of the negative temperature coefficient reference voltage at normal temperature.
温度系数基准电压Vout与温度系数TCout的关系为:The relationship between the temperature coefficient reference voltage V out and the temperature coefficient T Cout is:
Vout(T)=VoutVp(300K)*[1+TCout(T-300K)] (3)V out (T)=V out V p (300K)*[1+T Cout (T-300K)] (3)
其中Vout(T)为温度系数基准电压在不同温度下的输出,Vout(300K)为温度系数基准电压在常温下输出。Among them, V out (T) is the output of the temperature coefficient reference voltage at different temperatures, and V out (300K) is the output of the temperature coefficient reference voltage at normal temperature.
对于正温度系数基准电压产生模块1,通过带隙输出,降低一个Be结压降,提供一个正温度系数的基准电压,正温度系数基准电压Vp会根据可调电阻a1-4与可调电阻b1-5的变化而变化:For the positive temperature coefficient reference voltage generation module 1, through the bandgap output, a Be junction voltage drop is reduced to provide a positive temperature coefficient reference voltage. The positive temperature coefficient reference voltage Vp will be adjusted according to the adjustable resistance a1-4 and adjustable resistance Changes in b1-5 vary:
其中x为系数,VT为电热压,a为可调电阻a1-4的阻值,b为可调电阻b1-5的阻值;Where x is the coefficient, V T is the electric heating pressure, a is the resistance value of the adjustable resistor a1-4, and b is the resistance value of the adjustable resistor b1-5;
对于负温度系数基准电压产生模块2,正温度系数基准电压Vp会根据可调电阻a1-4与可调电阻b1-5的变化而变化:For the negative temperature coefficient reference
其中Vbe为第二三极管2-6的基极电压,c与d分别为可调电阻c2-4与可调电阻d2-5的阻值;Wherein Vbe is the base voltage of the second triode 2-6, c and d are the resistance values of the adjustable resistor c2-4 and the adjustable resistor d2-5 respectively;
对于温度系数选择模块3,改变的值可调电阻m3-3的和可调电阻n3-4值即可改变基准电压,即:For the temperature
联立公式(1)~(6)即可得到温度系数TCout的计算公式:Simultaneous formulas (1) to (6) can be used to obtain the calculation formula of temperature coefficient T Cout :
根据上式可知,通过对电路中的a、b、c、d、m、n阻值的改变,即实现对温度系数的调整。According to the above formula, it can be known that the adjustment of the temperature coefficient is realized by changing the resistance values of a, b, c, d, m, and n in the circuit.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010339070.5A CN111427411A (en) | 2020-04-26 | 2020-04-26 | Integrated output circuit capable of being used for adjusting temperature coefficient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010339070.5A CN111427411A (en) | 2020-04-26 | 2020-04-26 | Integrated output circuit capable of being used for adjusting temperature coefficient |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111427411A true CN111427411A (en) | 2020-07-17 |
Family
ID=71556789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010339070.5A Pending CN111427411A (en) | 2020-04-26 | 2020-04-26 | Integrated output circuit capable of being used for adjusting temperature coefficient |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111427411A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112162584A (en) * | 2020-08-31 | 2021-01-01 | 江苏东海半导体科技有限公司 | Current bias circuit with adjustable and compensable current value |
CN114137294A (en) * | 2020-09-04 | 2022-03-04 | 长鑫存储技术有限公司 | Voltage detection circuit and charge pump circuit |
US11703527B2 (en) | 2020-09-04 | 2023-07-18 | Changxin Memory Technologies, Inc. | Voltage detection circuit and charge pump circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140077789A1 (en) * | 2012-09-20 | 2014-03-20 | Novatek Microelectronics Corp. | Bandgap Reference Circuit and Self-Referenced Regulator |
CN204790660U (en) * | 2015-06-09 | 2015-11-18 | 厦门元顺微电子技术有限公司 | Controllable temperature coefficient's circuit for generating a reference voltage |
CN106873704A (en) * | 2017-02-21 | 2017-06-20 | 深圳市爱协生科技有限公司 | Reference voltage source and its positive temperature coefficient voltage generation circuit |
CN211786826U (en) * | 2020-04-26 | 2020-10-27 | 西安中科阿尔法电子科技有限公司 | Output circuit capable of being used for adjusting temperature coefficient |
-
2020
- 2020-04-26 CN CN202010339070.5A patent/CN111427411A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140077789A1 (en) * | 2012-09-20 | 2014-03-20 | Novatek Microelectronics Corp. | Bandgap Reference Circuit and Self-Referenced Regulator |
CN204790660U (en) * | 2015-06-09 | 2015-11-18 | 厦门元顺微电子技术有限公司 | Controllable temperature coefficient's circuit for generating a reference voltage |
CN106873704A (en) * | 2017-02-21 | 2017-06-20 | 深圳市爱协生科技有限公司 | Reference voltage source and its positive temperature coefficient voltage generation circuit |
CN211786826U (en) * | 2020-04-26 | 2020-10-27 | 西安中科阿尔法电子科技有限公司 | Output circuit capable of being used for adjusting temperature coefficient |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112162584A (en) * | 2020-08-31 | 2021-01-01 | 江苏东海半导体科技有限公司 | Current bias circuit with adjustable and compensable current value |
CN112162584B (en) * | 2020-08-31 | 2022-05-20 | 江苏东海半导体科技有限公司 | Current bias circuit with adjustable and compensable current value |
CN114137294A (en) * | 2020-09-04 | 2022-03-04 | 长鑫存储技术有限公司 | Voltage detection circuit and charge pump circuit |
US11703527B2 (en) | 2020-09-04 | 2023-07-18 | Changxin Memory Technologies, Inc. | Voltage detection circuit and charge pump circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108646846B (en) | Zero temperature drift current bias circuit | |
CN101794159B (en) | Band-gap reference voltage source of high power supply voltage rejection ratio | |
CN111427411A (en) | Integrated output circuit capable of being used for adjusting temperature coefficient | |
CN211786826U (en) | Output circuit capable of being used for adjusting temperature coefficient | |
CN107390771A (en) | The Fiducial reference source circuit with gap of various temperature characteristic reference electric current is produced simultaneously | |
CN202383552U (en) | Improved bandgap reference voltage source | |
CN108225588A (en) | A kind of temperature sensor and temperature checking method | |
CN114237339A (en) | Band-gap reference voltage circuit and compensation method of band-gap reference voltage | |
CN102354251A (en) | Band-gap reference voltage circuit | |
CN209433274U (en) | A kind of constant current generative circuit structure of automatic biasing | |
CN203825522U (en) | Reference voltage generating circuit with temperature compensating function | |
CN114489222B (en) | Band-gap reference circuit for power chip | |
CN202171758U (en) | Band-gap reference voltage circuit | |
CN116865740B (en) | Analog multiplier circuit | |
CN203204485U (en) | Band-gap reference circuit | |
CN100547916C (en) | Logarithmic linear type current generator and related variable gain amplifier | |
CN207319097U (en) | Band-gap reference circuit | |
CN210402134U (en) | Current bias circuit with temperature compensation | |
CN113257179B (en) | Zero-temperature-drift current circuit for built-in resistor of LED display driving chip | |
CN211979540U (en) | Simple zero-temperature-drift current bias circuit | |
CN212112265U (en) | Linear voltage stabilizing circuit | |
CN115857608A (en) | Band-gap reference source for realizing high-order temperature compensation in wide range by using depletion tube | |
CN112130615B (en) | Reference source circuit and chip | |
CN104950973A (en) | Reference voltage generating circuit and reference voltage source | |
CN219842653U (en) | Voltage generating circuit capable of configuring temperature characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |