CN111426310A - A gyro sensor module and its detection method - Google Patents
A gyro sensor module and its detection method Download PDFInfo
- Publication number
- CN111426310A CN111426310A CN202010271393.5A CN202010271393A CN111426310A CN 111426310 A CN111426310 A CN 111426310A CN 202010271393 A CN202010271393 A CN 202010271393A CN 111426310 A CN111426310 A CN 111426310A
- Authority
- CN
- China
- Prior art keywords
- circuit
- gyro sensor
- sensor module
- capacitance
- drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/567—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2605—Measuring capacitance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
本发明提出了一种陀螺传感器模块及其检测方法,包括陀螺传感器、驱动电路和感应电路;所述驱动电路用于驱动陀螺传感器:使内部产生反馈电路,使陀螺传感器的质量体在指定的共振频率上产生共振;所述感应电路用于检测所述质量体的移动位移和电容并确定角速度;所述驱动电路通过驱动电极和驱动感应电极与所述陀螺传感器模块施加电力;所述感应电路和所述驱动电路都均包括至少一个电容检测电路,对于陀螺传感器的输出值,不使用改变噪音特性的信号放大器,也能测出装置移动检测值的陀螺传感器模块,陀螺传感器模块在电容检测电路上包括全差动电流转换器,可以在低电流高频率下工作,因此,可以提高感应效率及准确率。
The invention proposes a gyro sensor module and a detection method thereof, including a gyro sensor, a driving circuit and an induction circuit; the driving circuit is used to drive the gyro sensor: a feedback circuit is generated inside, so that the mass body of the gyro sensor is at a specified resonance Resonance is generated on the frequency; the induction circuit is used to detect the movement displacement and capacitance of the mass body and determine the angular velocity; the drive circuit applies power to the gyro sensor module through the drive electrode and the drive induction electrode; the induction circuit and The drive circuits all include at least one capacitance detection circuit. For the output value of the gyro sensor, the gyro sensor module that can measure the device movement detection value can also be measured without using a signal amplifier that changes the noise characteristics. The gyro sensor module is on the capacitance detection circuit. A fully differential current converter is included, which can operate at low current and high frequency, thus improving sensing efficiency and accuracy.
Description
技术领域technical field
本发明涉及陀螺传感器领域,尤其涉及陀螺传感器模块及其检测方法。The invention relates to the field of gyro sensors, in particular to a gyro sensor module and a detection method thereof.
背景技术Background technique
近年来,开发的移动通信装置上安装可以测量移动的多种传感器,此时,陀螺传感器测量物体施加旋转力的信息,是一种测量角速度的传感器。目前大量研究输出陀螺传感器的移动时的微量变化,通过这种输出值检测装置准确移动的方法。专利文献US2007-0163815号提供具有输入共同模式控制电路的差动容量性传感器接口电路---共同模式控制电路32,其特点在于,对于检测电路的接口电路输入,连接第一及第二检测输入7a、7b,并连接与驱动容量性传感器-1容量不平衡(ΔCs)相关并提供输出信号(Vo)的检测放大器12及第一及第二检测输入7a、7b,并控制第一及第二检测输入7a、7b上的共同模式电量,这样,通过放大器放大陀螺传感器的数值,便于检测装置的移动,但是,信号被放大后,噪音特性变差,因此,需要一种提升噪音质量的精密装置。In recent years, a variety of sensors that can measure movement have been mounted on mobile communication devices developed. At this time, a gyro sensor measures information about the rotational force exerted by an object, and is a sensor that measures angular velocity. At present, a large number of researches have been conducted to output the slight change of the gyro sensor during the movement, and to detect the accurate movement of the device through this output value. Patent document US2007-0163815 provides a differential capacitive sensor interface circuit with an input common mode control circuit---the common mode control circuit 32, which is characterized in that, for the interface circuit input of the detection circuit, the first and second detection inputs are connected 7a, 7b, and connect the sense amplifier 12 and the first and second sense inputs 7a, 7b which are related to the capacitance unbalance (ΔCs) of the drive capacitance sensor-1 and provide the output signal (Vo), and control the first and second Detecting the common mode power on the inputs 7a and 7b, in this way, the value of the gyro sensor is amplified by the amplifier, which is convenient for the movement of the detection device. However, after the signal is amplified, the noise characteristic is deteriorated. Therefore, a precision device for improving noise quality is required. .
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提出了一种陀螺传感器模块,包括陀螺传感器、驱动电路和感应电路;In order to solve the above technical problems, the present invention provides a gyro sensor module, including a gyro sensor, a drive circuit and an induction circuit;
所述驱动电路用于驱动陀螺传感器:使内部产生反馈电路,使陀螺传感器的质量体在指定的共振频率上产生共振;The drive circuit is used to drive the gyro sensor: a feedback circuit is generated inside, so that the mass body of the gyro sensor resonates at the specified resonance frequency;
所述感应电路用于检测所述质量体的移动位移和电容并确定角速度;The induction circuit is used to detect the displacement and capacitance of the mass body and determine the angular velocity;
所述驱动电路通过驱动电极和驱动感应电极与所述陀螺传感器模块施加电力;所述感应电路通过感应电极与所述陀螺传感器模块测量角速度;The drive circuit applies power to the gyro sensor module through the drive electrode and the drive induction electrode; the induction circuit measures the angular velocity with the gyro sensor module through the induction electrode;
所述感应电路和所述驱动电路都均包括至少一个电容检测电路。Both the sensing circuit and the driving circuit include at least one capacitance detection circuit.
优选的,所述电容检测电路包括电荷电压转换电路或/和带通滤波器。Preferably, the capacitance detection circuit includes a charge-to-voltage conversion circuit or/and a band-pass filter.
优选的,所述电荷电压转换电路包括电流转换器或/和调制器或/和积分器。Preferably, the charge-to-voltage conversion circuit includes a current converter or/and a modulator or/and an integrator.
优选的,所述电流转换器为全差分电流转换器。Preferably, the current converter is a fully differential current converter.
优选的,所述驱动电路还包括与所述电荷电压转换电路连接的比较计和相位锁定回路,所述相位锁定回路可以补偿在正当其上产生的交流信号。Preferably, the drive circuit further comprises a comparator connected to the charge-voltage conversion circuit and a phase-locked loop, the phase-locked loop can compensate for the AC signal just generated thereon.
一种陀螺传感器模块电路的测量方法,驱动电路在内部产生反馈回路,并基于施加的电力,使得陀螺传感器的质量体在指定的共振频率上产生共振,感应电路通过电容检测电路检测对质量体的移动位移,检测电容,并确定角速度;A measurement method of a gyro sensor module circuit, the drive circuit internally generates a feedback loop, and based on the applied power, the mass body of the gyro sensor resonates at a specified resonant frequency, and the induction circuit detects the impact on the mass body through a capacitance detection circuit. Move displacement, detect capacitance, and determine angular velocity;
电容检测电路通过电流转换器检测正弦波信号,输出对应电容变化的正弦波电流信号;The capacitance detection circuit detects the sine wave signal through the current converter, and outputs the sine wave current signal corresponding to the capacitance change;
调制器调制电流转化器输出的正弦波信号,通过积分器将调制后的正弦波信号进行积分运算,产生正弦电压信号;The modulator modulates the sine wave signal output by the current converter, and integrates the modulated sine wave signal through the integrator to generate a sine voltage signal;
积分器将累积积分输入的正弦和电流信号,可以提升输出电压,在积分器上输出的正弦波电压信号通过累积积分处在噪音或者白色信号消除的状态;The integrator will accumulate and integrate the input sine and current signals, which can increase the output voltage. The sine wave voltage signal output by the integrator is in the state of noise or white signal elimination through the accumulation and integration;
带通滤波器控制控制通过积分器输出的正弦波电压信号的补偿。The bandpass filter control controls the compensation of the sine wave voltage signal output by the integrator.
优选的,在陀螺传感器上质量体的共振通过由驱动电路传递的指定周期余弦波来产生,对于在质量体上施加旋转力的情形,按照余弦波承于旋转力的形式,检测共振频率的位移及电容的变化,此时,余弦波的大小以旋转力的大小进行表示。Preferably, the resonance of the mass body on the gyro sensor is generated by a cosine wave of a specified period transmitted by the driving circuit. For the situation where a rotational force is applied to the mass body, the displacement of the resonance frequency is detected in the form of the cosine wave bearing the rotational force. And the change of capacitance, at this time, the size of the cosine wave is represented by the size of the rotational force.
优选的,驱动电路通过电荷电压转换电路或/和比较计,将输出的信号频率成份采用定相位锁定回路进行处理,可以将基于相位锁定回路的正反馈信号施加于质量体上进行共振。Preferably, the drive circuit uses a phase-locked loop to process the frequency components of the output signal through a charge-to-voltage conversion circuit or/and a comparator, and can apply a positive feedback signal based on the phase-locked loop to the mass body to resonate.
优选的,通过电容检测电路检测通过驱动电路在质量体上产生的余弦波的电容及/或电容变化,感应电路的电容检测电路同步驱动电路的检测数值。Preferably, the capacitance and/or capacitance change of the cosine wave generated by the driving circuit on the mass body is detected by the capacitance detection circuit, and the capacitance detection circuit of the induction circuit synchronizes the detection value of the driving circuit.
优选的,相位锁定回路(33)对于陀螺传感器模块可以补偿在一定温度、时间下在质量体上检测的共振频率变化及在陀螺传感器模块电路上发生的相位延迟,在电路上提供在一定供共振频率下需要的时钟。。Preferably, the phase locking loop (33) can compensate the resonance frequency change detected on the mass body under a certain temperature and time and the phase delay occurring on the gyro sensor module circuit for the gyro sensor module, and provide a certain resonance frequency on the circuit. required clock at the frequency. .
本发明提出的陀螺传感器模块有以下有益效果:对于陀螺传感器的输出值,不使用改变噪音特性的信号放大器,也能测出装置移动检测值的陀螺传感器模块。在陀螺传感器的输出端消除输入电容的工作则相同或者类似,但是,由于增益不大,即使未消除电容,也能检测未失真的电流信号。此外,陀螺传感器模块在电容检测电路上包括全差动电流转换器,可以在低电流高频率下工作,因此,可以提高感应效率及准确率。The gyro sensor module proposed by the present invention has the following beneficial effects: for the output value of the gyro sensor, the gyro sensor module can also measure the device movement detection value without using a signal amplifier that changes noise characteristics. The work of eliminating the input capacitance at the output of the gyro sensor is the same or similar, but because the gain is not large, the undistorted current signal can be detected even if the capacitance is not eliminated. In addition, the gyro sensor module includes a fully differential current converter on the capacitance detection circuit, which can work at a low current and a high frequency, thus improving the sensing efficiency and accuracy.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments.
图1为本发明的模块示意图;Fig. 1 is the module schematic diagram of the present invention;
图2为本发明的构件方框图;Fig. 2 is the component block diagram of the present invention;
图3为本发明的出现偏置的电荷电压变化电路输出曲线图;Fig. 3 is the output curve diagram of the charge-voltage variation circuit of the present invention with bias;
图4为本发明的电容检测电路详细结构元件方框图;4 is a block diagram of the detailed structural elements of the capacitance detection circuit of the present invention;
图5为本发明的电容检测电路中消除积分器偏置前的积分器输出曲线图;5 is a graph showing the output of the integrator before eliminating the bias of the integrator in the capacitance detection circuit of the present invention;
图6为本发明的电容检测电路中共同模式反馈回路积分器输出曲线图Fig. 6 is the output curve diagram of the common mode feedback loop integrator in the capacitance detection circuit of the present invention
其中,100、陀螺传感器模块;10、陀螺传感器;101、电容检测电路;30、驱动电路;50、感应电路;201、电荷电压转换电路;203、带通滤波器;31、比较器;33、相位固定环;301、电流转换器;303、调制器;305、积分器。Among them, 100, gyro sensor module; 10, gyro sensor; 101, capacitance detection circuit; 30, drive circuit; 50, induction circuit; 201, charge-voltage conversion circuit; 203, band-pass filter; 31, comparator; 33, Phase fixed loop; 301, current converter; 303, modulator; 305, integrator.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention.
如图3所示,一种陀螺传感器模块,包括陀螺传感器10、驱动电路30和感应电路50;柯氏效应基于通过物体的质量、速度及加速度而生的科里奥利力。陀螺传感器模块100包括为了产生科里奥利力而驱动陀螺传感器模块100的驱动电路30及在测量在陀螺传感器10中输出的角速度的感应电路50中而每个电路至少包括一个完成电功能的电极,驱动电路包括在陀螺传感器(10)上施加电力的驱动电极(DRV_P,DRV_N)和共振位移及测量频率的驱动感应电极(DRVS_P,DRVS_N),而感应电路包括通过陀螺传感器(10)测量角速度的感应电极(SEN_P,SEN_N)dl);所述感应电路50通过感应电极与所述陀螺传感器模块100测量角速度。所述驱动电路30用于驱动陀螺传感器10:使内部产生反馈电路,使陀螺传感器10的质量体在指定的共振频率上产生共振;As shown in FIG. 3, a gyro sensor module includes a
优选的,所述电容检测电路101包括电荷电压转换电路201或/和带通滤波器203,所述电荷电压转换电路201包括电流转换器301或/和调制器303或/和积分器305,此处的和/或是指至少一个,所述电流转换器301为全差分电流转换器301。所述驱动电路30还包括与所述电荷电压转换电路201连接的比较计和相位锁定回路,所述相位锁定回路可以补偿在正当其上产生的交流信号。Preferably, the
电容检测电路101采用对应于电容变化量的电流量确定检测值,所以,不会出现大幅度的电压差,因此,通过增加频率可以提高信号值。电容检测电路101基于电流信号提供质量体移动检测值的电压信号,相比检测电压值的感应动作,对噪音的影响较小,提高信号处理效率。在电容检测电路101产生将带通滤波器203的输出值输入积分器305上的共同模式反馈回路,因此,可以消除在积分器305上产生的补偿,可以将积分器305输出范围设置大一些,感应电路50则与电容检测电路101相同或者类似的结构及可以输出消除补偿的正弦波电压信号。The
陀螺传感器模块100及其构件包含在至少连接一个处理器上的电子装置。此时,所述功能及/或者动作通过包含在电子装置上的至少一个处理器来完成的。The
具体的说,其测量方法为:Specifically, its measurement method is:
驱动电路30在内部产生反馈回路,并基于施加的电力,使得陀螺传感器10的质量体在指定的共振频率上产生共振,感应电路50通过电容检测电路101检测对质量体的移动位移,检测电容,并确定角速度;The
其中,电容检测电路101通过电流转换器301检测正弦波信号,输出对应电容变化的正弦波电流信号;在陀螺传感器10上质量体的共振通过由驱动电路30传递的指定周期余弦波来产生,对于在质量体上施加旋转力的情形,按照余弦波承于旋转力的形式,检测共振频率的位移及电容的变化,此时,余弦波的大小以旋转力的大小进行表示。其中,共振是通过:驱动电路30通过电荷电压转换电路201或/和比较计,将输出的信号频率成份采用定相位锁定回路进行处理,可以将基于相位锁定回路的正反馈信号施加于质量体上进行共振。而相位锁定回路对于陀螺传感器模块100可以补偿在一定温度、时间下在质量体上检测的共振频率变化及在陀螺传感器模块100电路上发生的相位延迟,在电路上提供在一定供共振频率下需要的时钟。Among them, the
电容的检测是通过电容检测电路101检测通过驱动电路30在质量体上产生的余弦波的电容及/或电容变化,感应电路50的电容检测电路101同步驱动电路30的检测数值,检测质量体的电容变化,驱动电路30或者感应电路50至少可以采用一个电荷电压转换电路201。此时,通过质量体发生的电容变化非常小,为了得出可检测范围内的信号,可以放大增益。The detection of capacitance is to detect the capacitance and/or capacitance change of the cosine wave generated by the driving
调制器303调制上述电流转化器输出的正弦波信号,通过积分器305将调制后的正弦波信号进行积分运算,产生正弦电压信号;The
积分器305将累积积分输入的正弦和电流信号,可以提升输出电压,在积分器305上输出的正弦波电压信号通过累积积分处在噪音或者白色信号消除的状态;The
带通滤波器203控制通过积分器305输出的正弦波电压信号的补偿。具体的说,如图5所示,控制积分器305的补偿之前,在积分器305上输出的正弦波电压信号则输出在正弦波电压信号中消除一部分峰值的电压信号。比如,积分器305输出信号输出在正极的电压信号中部分最高值,比如,大于漏极电压(VDD)的数值(1-1,1-3)和正极的电压信号中最低值,比如,消除小于源极电压(VSS)数值(3-1,3-3)的正极电压信号及负极电压信号,通过带通滤波器203输出积分器305功率的交流(AC)信号,即,输出功率失真的正弦波电压信号。
相反,电容检测电路101采用带通滤波器203的输出值,控制积分器305的输出值的失真。带通滤波器203通过10kHz至60kHz的带宽及具有30kHz带宽的共振频率。In contrast, the
如图4所示,电容检测电路101向积分器305反馈在带通滤波器203上输出的电压信号。As shown in FIG. 4 , the
带通滤波器203的输出值则输入积分器305,产生共同模式反馈回路。此时,首次工作时,电容检测电路101的积分器305的输出基于输入电流的补偿,可能大幅度失真,但是,带通滤波器203可以使积分器305的输出在VDD/2内的直流(DC)范围内工作,并输出积分器305的交流(AC)信号。The output value of the
即,首次工作以后,带通滤波器203逆向输出则反馈为积分器305的输入值,使积分器305的输出信号在VDD/2范围内进行工作,如图6所示。That is, after the first operation, the reverse output of the
为了提高陀螺传感器10的感应度,电容检测电路101通过截波(chopping)电路的输出,均检测在输出端正边沿(positiveedge)上输出的正电流和在负边沿(negativeedge)上输出的负电流,因此,可以消除具有1/f图案(pattern)的噪音。In order to improve the sensitivity of the
陀螺传感器模块100通过带通滤波器203输出在积分器305上消除补偿的积分器305功率(正弦流电压信号)。The
根据上述内容,陀螺传感器模块100的电容检测电路101在陀螺传感器10的输出端采用电流转换器301。According to the above content, the
电容检测电路101相比采用电荷放大器的电路,在陀螺传感器10的输出端消除输入电容的工作则相同或者类似,但是,由于增益不大,即使未消除电容,也能检测未失真的电流信号。此外,根据多种实施例,陀螺传感器模块100在电容检测电路101上包括全差动电流转换器301,可以在低电流高频率下工作,因此,可以提高感应效率及准确率。Compared with the circuit using the charge amplifier, the
对实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。Various modifications to the embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010271393.5A CN111426310A (en) | 2020-04-09 | 2020-04-09 | A gyro sensor module and its detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010271393.5A CN111426310A (en) | 2020-04-09 | 2020-04-09 | A gyro sensor module and its detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111426310A true CN111426310A (en) | 2020-07-17 |
Family
ID=71557661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010271393.5A Pending CN111426310A (en) | 2020-04-09 | 2020-04-09 | A gyro sensor module and its detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111426310A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104596496A (en) * | 2015-01-26 | 2015-05-06 | 上海应用技术学院 | Self-adapted time lag feedback control micromechanical gyroscope system |
KR101869924B1 (en) * | 2017-01-31 | 2018-06-21 | 다믈멀티미디어주식회사 | Gyrosensor module |
CN110631570A (en) * | 2019-10-17 | 2019-12-31 | 东南大学 | A system and method for improving temperature stability of silicon microgyroscope scale factor |
CN212133679U (en) * | 2020-04-09 | 2020-12-11 | 南京市谭慕半导体技术有限公司 | Gyro sensor module |
-
2020
- 2020-04-09 CN CN202010271393.5A patent/CN111426310A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104596496A (en) * | 2015-01-26 | 2015-05-06 | 上海应用技术学院 | Self-adapted time lag feedback control micromechanical gyroscope system |
KR101869924B1 (en) * | 2017-01-31 | 2018-06-21 | 다믈멀티미디어주식회사 | Gyrosensor module |
CN110631570A (en) * | 2019-10-17 | 2019-12-31 | 东南大学 | A system and method for improving temperature stability of silicon microgyroscope scale factor |
CN212133679U (en) * | 2020-04-09 | 2020-12-11 | 南京市谭慕半导体技术有限公司 | Gyro sensor module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6373264B1 (en) | Impedance detection apparatus and method of physical variable | |
US8677822B2 (en) | Angular velocity detection circuit, angular velocity detection apparatus, and failure determination system | |
US10533854B2 (en) | Method for automatic frequency adaptation of filters during operation in closed control loops | |
CN102507050B (en) | Stimulation and vibration pick integrated pressure sensor of electric heating stimulation-piezoresistance vibration pick resonance beam | |
US7107841B2 (en) | Capacitance-sensing vibratory gyro and method for detecting change in capacitance | |
US7466119B2 (en) | Sensor circuit for detection of an abnormal offset voltage | |
CN113702663B (en) | A MEMS resonant acceleration sensor | |
US7343802B2 (en) | Dynamic-quantity sensor | |
US5949257A (en) | DC level transition detecting circuit for sensor devices | |
US20100011858A1 (en) | Angular velocity detection circuit and angular velocity detection apparatus | |
JP2002062211A (en) | Signal processor of piezoelectric sensor | |
CN110018330A (en) | Silicon micro-resonance type accelerometer temperature compensation algorithm based on adjustment structure compensation parameter | |
KR101869924B1 (en) | Gyrosensor module | |
CN212133679U (en) | Gyro sensor module | |
CN114646412B (en) | Temperature self-compensation resonant pressure sensor control circuit and implementation method thereof | |
CN114113813B (en) | Self-adaptive MEMS electric field sensor and structure thereof | |
CN111426310A (en) | A gyro sensor module and its detection method | |
CN107436144A (en) | Circuit for automatically eliminating quadrature error of gyroscope | |
CN113819898A (en) | Error suppression method for orthogonal force feedback closed loop small-frequency-difference quartz gyroscope | |
US11513135B2 (en) | Method for automatic frequency adaptation of a filter in a closed loop | |
US6538458B2 (en) | Electrostatic capacitance probe device and displacement measuring circuit | |
JP4031215B2 (en) | Sensor signal processing circuit | |
JP3458732B2 (en) | Vibration sensor disconnection detection device | |
CN113340986A (en) | High-resolution sensor and method for cooperative regulation and control of parameter excitation and synchronous resonance | |
JP2004170163A (en) | Electrostatic capacity type displacement sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: Room 201, building 1, No. 62, Lane 99, Chunguang Road, Minhang District, Shanghai Applicant after: Shanghai Tamu Semiconductor Technology Co.,Ltd. Address before: 210000 506-508, block B, Kechuang Plaza, Nanjing area, Jiangsu Free Trade Zone, No. 320, pubin Road, Pukou District, Nanjing, Jiangsu Province Applicant before: Nanjing Tamu Semiconductor Technology Co.,Ltd. |
|
CB02 | Change of applicant information | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200717 |
|
RJ01 | Rejection of invention patent application after publication |