[go: up one dir, main page]

CN111416142A - Correction method and device for battery cell, correction control equipment and correction system - Google Patents

Correction method and device for battery cell, correction control equipment and correction system Download PDF

Info

Publication number
CN111416142A
CN111416142A CN202010248910.7A CN202010248910A CN111416142A CN 111416142 A CN111416142 A CN 111416142A CN 202010248910 A CN202010248910 A CN 202010248910A CN 111416142 A CN111416142 A CN 111416142A
Authority
CN
China
Prior art keywords
detection object
deviation correction
distance parameters
parameters
floating range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010248910.7A
Other languages
Chinese (zh)
Other versions
CN111416142B (en
Inventor
周俊杰
谢盛珍
刘江
杜兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Lyric Robot Automation Co Ltd
Original Assignee
Guangdong Lyric Robot Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Lyric Robot Automation Co Ltd filed Critical Guangdong Lyric Robot Automation Co Ltd
Priority to CN202010248910.7A priority Critical patent/CN111416142B/en
Publication of CN111416142A publication Critical patent/CN111416142A/en
Application granted granted Critical
Publication of CN111416142B publication Critical patent/CN111416142B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/005Devices for making primary cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电芯的纠偏方法、装置、纠偏控制设备和纠偏系统,该方法包括:获取多个图像采集设备分别在各自的固定视野下对卷绕过程中的电芯进行图像采集得到的多张检测图像;根据多张检测图像,得到电芯的检测对象卷绕至各层的第一边缘/第二边缘到第一基准线/第二基准线之间的多个第一距离参数/多个第二距离参数,检测对象包括阳极片、阴极片或隔膜;在多个第一距离参数/第二距离参数中,满足第一浮动范围/第二浮动范围的数据量达到设定比例时,计算检测对象的边缘变化参数;将边缘变化参数与预先得到的纠偏基准进行对比,得到检测对象的纠偏量,检测对象的纠偏量用于提供给执行机构以对下一个电芯进行纠偏。

Figure 202010248910

The embodiments of the present application provide a correction method, device, correction control device and correction system for a battery cell, the method comprising: obtaining multiple detection images obtained by acquiring images of the battery cell in a winding process by multiple image acquisition devices in their respective fixed fields of view; obtaining multiple first distance parameters/multiple second distance parameters between the first edge/second edge of the detection object of the battery cell wound to each layer and the first baseline/second baseline according to the multiple detection images, the detection object comprising an anode sheet, a cathode sheet or a diaphragm; among the multiple first distance parameters/second distance parameters, when the amount of data satisfying the first floating range/second floating range reaches a set ratio, calculating the edge change parameter of the detection object; comparing the edge change parameter with a pre-obtained correction reference to obtain a correction amount of the detection object, and the correction amount of the detection object is used to provide to an actuator to correct the next battery cell.

Figure 202010248910

Description

电芯的纠偏方法、装置、纠偏控制设备和纠偏系统Correction method, device, correction control device and correction system for battery cells

技术领域technical field

本申请涉及产品加工控制技术领域,具体而言,涉及一种电芯的纠偏方法、装置、纠偏控制设备和纠偏系统。The present application relates to the technical field of product processing control, and in particular, to a deviation correction method, device, deviation correction control device and deviation correction system of a battery cell.

背景技术Background technique

电芯,是电池的重要组成部分。在电芯的加工生产环节,会将阳极片、隔膜、阴极片卷绕在卷针上。随着卷绕工序的进行,得到厚度不断增加的电芯。但是,在实际生产过程中,各个电芯的阳极片、阴极片、隔膜等卷绕材料难以保证始终对齐,在电芯的生产过程中,阳极片、隔膜、阴极片这些卷绕材料容易出现错位现象。而当错位量超出一定范围时,将影响电池的使用安全性。Cells are an important part of batteries. In the processing and production of the cell, the anode sheet, the separator and the cathode sheet are wound on the winding needle. As the winding process proceeds, cells with increasing thickness are obtained. However, in the actual production process, it is difficult to ensure that the winding materials such as the anode sheet, cathode sheet, and diaphragm of each cell are always aligned. Phenomenon. When the dislocation amount exceeds a certain range, the safety of the battery will be affected.

发明内容SUMMARY OF THE INVENTION

本申请的目的在于提供一种电芯的纠偏方法、装置、纠偏控制设备和纠偏系统,能够改善现有技术中因未能及时对电芯进行纠偏而影响产品质量的问题。The purpose of the present application is to provide a deviation rectification method, device, deviation rectification control device and deviation rectification system for a battery cell, which can improve the problem of affecting product quality due to failure to rectify the deviation of the battery cell in time in the prior art.

第一方面,本申请实施例提供一种电芯的纠偏方法,所述方法包括:In a first aspect, an embodiment of the present application provides a method for correcting deviation of a battery cell, the method comprising:

在电芯的卷绕过程中,获取多个图像采集设备分别在各自的固定视野下对所述电芯进行图像采集得到的多张检测图像;During the winding process of the battery cell, acquiring a plurality of detection images obtained by image acquisition of the battery core by a plurality of image acquisition devices under their respective fixed fields of view;

根据所述多张检测图像,得到所述电芯的检测对象卷绕至各层的第一边缘到第一基准线之间的多个第一距离参数,以及所述检测对象卷绕至各层的第二边缘到第二基准线之间的多个第二距离参数,所述检测对象包括阳极片、阴极片或隔膜;According to the plurality of detection images, a plurality of first distance parameters between the first edge of each layer and the first reference line where the detection object of the battery cell is wound, and the detection object is wound to each layer are obtained. A plurality of second distance parameters between the second edge of the second reference line and the second reference line, the detection object includes an anode sheet, a cathode sheet or a diaphragm;

在所述多个第一距离参数中,满足第一浮动范围的数据量达到设定比例,且在所述多个第二距离参数中,满足第二浮动范围的数据量达到所述设定比例时,计算所述检测对象的边缘变化参数,所述第一浮动范围、所述第二浮动范围分别根据所述检测对象在所有层下的所有第一距离参数、所有第二距离参数确定;Among the plurality of first distance parameters, the amount of data satisfying the first floating range reaches a set ratio, and among the plurality of second distance parameters, the amount of data satisfying the second floating range reaches the set ratio When , the edge change parameters of the detection object are calculated, and the first floating range and the second floating range are respectively determined according to all the first distance parameters and all the second distance parameters of the detection object under all layers;

将所述检测对象的边缘变化参数与预先得到的纠偏基准进行对比,得到所述检测对象的纠偏量,所述检测对象的纠偏量用于提供给执行机构以对下一个电芯进行纠偏。Comparing the edge change parameters of the detection object with the pre-obtained deviation correction reference, the deviation correction amount of the detection object is obtained, and the deviation correction amount of the detection object is used to provide the actuator to correct the deviation of the next cell.

在上述方法中,通过对电芯的卷绕过程进行监测,根据卷绕过程中采集的多张检测图像得到多个第一距离参数、多个第二距离参数,通过对多个第一距离参数、多个第二距离参数的分析,得知阳极片、阴极片或隔膜这些检测对象随着卷绕工序的进行所发生的偏移情况。在这两种距离参数都满足各自的浮动范围,且满足浮动范围的数据量都达到设定比例时,表示两种距离参数的分布情况都比较正常,然后可计算出在当前这个电芯的卷绕过程下的检测对象的边缘变化参数,将边缘变化参数与该检测对象的纠偏基准进行对比,可得到纠偏量。在将纠偏量提供给执行机构后,可以基于该纠偏量对下一个电芯进行纠偏。通过上述方法能够及时针对电芯的阳极片错位、阴极片错位、隔膜错位进行纠偏,降低阳极片的错位量、阴极片的错位量、隔膜的错位量,提升电芯产品的质量。并且,相较于在发现大批量的电芯都不合格以后才对一道道工序进行逐一排查的方式,上述方法可以降低人工核查工作量,处理效率更高,可避免因误差累积而继续出现更多数量不可控的不合格产品的情况,以此提升产品的合格率。In the above method, by monitoring the winding process of the battery cell, a plurality of first distance parameters and a plurality of second distance parameters are obtained according to a plurality of detection images collected during the winding process. , Analysis of a plurality of second distance parameters, to know the deviation of the detection objects such as the anode sheet, the cathode sheet or the diaphragm with the progress of the winding process. When the two distance parameters satisfy their respective floating ranges, and the amount of data satisfying the floating range reaches the set ratio, it means that the distribution of the two distance parameters is normal, and then the current volume of the cell can be calculated. The edge change parameter of the detection object under the winding process is compared, and the deviation correction amount can be obtained by comparing the edge change parameter with the deviation correction reference of the detection object. After the correction amount is provided to the actuator, the next cell can be corrected based on the correction amount. Through the above method, the misalignment of the anode sheet, the misalignment of the cathode sheet, and the misalignment of the diaphragm can be corrected in time, so as to reduce the misalignment of the anode sheet, the misalignment of the cathode sheet, and the misalignment of the diaphragm, and improve the quality of the cell product. Moreover, compared with the method of checking each process one by one after finding that a large number of cells are unqualified, the above method can reduce the workload of manual verification, the processing efficiency is higher, and it can avoid continuous errors due to accumulation of errors. There are many uncontrollable unqualified products, so as to improve the qualified rate of products.

在可选的实施方式中,在所述计算所述检测对象的边缘变化参数之前,所述方法还包括:In an optional implementation manner, before the calculating the edge change parameter of the detected object, the method further includes:

根据所述检测对象在所有层下的所有第一距离参数,计算所述检测对象的所述第一浮动范围,以及根据所述检测对象在所有层下的所有第二距离参数,计算所述检测对象的所述第二浮动范围。Calculate the first floating range of the detection object according to all first distance parameters of the detection object under all layers, and calculate the detection object according to all second distance parameters of the detection object under all layers the second float range of the object.

通过上述实现方式提供了一种能够基于实际的距离参数确定浮动范围的方式,相较于以固定区间作为浮动范围的方式,上述实现方式可以得到跟随每个电芯的距离参数变化所更新的浮动范围,有利于针对性地为每个电芯的数据判定数据集中性。The above implementation provides a way to determine the floating range based on the actual distance parameter. Compared with the way of using a fixed interval as the floating range, the above implementation can obtain the floating range updated with the change of the distance parameter of each cell. The range is beneficial to determine the data centrality for the data of each cell in a targeted manner.

在可选的实施方式中,所述根据所述检测对象在所有层下的所有第一距离参数,计算所述检测对象的所述第一浮动范围,包括:In an optional implementation manner, calculating the first floating range of the detection object according to all first distance parameters of the detection object under all layers includes:

确定所述检测对象在所有层下的所有第一距离参数中的第一中位数;determining the first median of all the first distance parameters of the detection object under all layers;

基于所述第一中位数以及设定的波动范围确定所述第一浮动范围;determining the first floating range based on the first median and the set fluctuation range;

所述根据所述检测对象在所有层下的所有第二距离参数,计算所述检测对象的所述第二浮动范围,包括:The calculating the second floating range of the detection object according to all second distance parameters of the detection object under all layers, including:

确定所述检测对象在所有层下的所有第二距离参数中的第二中位数;determining the second median of all second distance parameters of the detection object under all layers;

基于所述第二中位数以及设定的所述波动范围确定所述第二浮动范围。The second floating range is determined based on the second median and the set fluctuation range.

通过上述实现方式,以中位数和设定的波动范围相结合的方式确定出浮动范围,基于这样确定的浮动范围,更有利于针对性地判定电芯的数据集中性。Through the above implementation manner, the floating range is determined by combining the median and the set fluctuation range, and based on the floating range determined in this way, it is more beneficial to determine the data concentration of the cell in a targeted manner.

在可选的实施方式中,所述计算所述检测对象的边缘变化参数,包括:In an optional implementation manner, the calculating the edge change parameter of the detected object includes:

对所述多个第一距离参数中,处于所述第一浮动范围内的距离参数求平均,得到第一平均值;averaging the distance parameters within the first floating range among the plurality of first distance parameters to obtain a first average value;

对所述多个第二距离参数中,处于所述第二浮动范围内的距离参数求平均,得到第二平均值;averaging the distance parameters within the second floating range among the plurality of second distance parameters to obtain a second average value;

基于所述第一平均值和所述第二平均值,计算所述检测对象的边缘变化参数。Based on the first average value and the second average value, an edge change parameter of the detection object is calculated.

通过上述实现过程提供了一种计算检测对象的边缘变化参数的方式。The above implementation process provides a way to calculate the edge change parameter of the detected object.

在可选的实施方式中,所述方法还包括:In an optional embodiment, the method further includes:

判断所述纠偏量是否达到预设的纠偏阈值;Judging whether the deviation correction amount reaches a preset deviation correction threshold;

在所述纠偏量达到预设的纠偏阈值时,控制所述执行机构按照所述纠偏阈值进行纠偏操作。When the deviation correction amount reaches a preset deviation correction threshold, the actuator is controlled to perform a deviation correction operation according to the deviation correction threshold.

通过上述实现方式,可以在满足执行机构的纠偏精度的情况下,以逐步纠偏的方式对后续电芯产品进行纠偏控制。Through the above implementation manner, under the condition of satisfying the deviation rectification accuracy of the actuator, the deviation rectification control of subsequent cell products can be carried out in a step-by-step rectification manner.

在可选的实施方式中,所述方法还包括:In an optional embodiment, the method further includes:

在所述多个第一距离参数中处于所述第一浮动范围内的数据量未达到所述设定比例时,或,在所述多个第二距离参数中处于所述第二浮动范围内的数据量未达到所述设定比例时,发出复检提示信息。When the amount of data within the first floating range among the plurality of first distance parameters does not reach the set ratio, or, within the second floating range among the plurality of second distance parameters When the amount of data does not reach the set ratio, a recheck prompt message will be sent.

通过上述实现方式,可以在距离参数不具有数据集中性时,进行人工复检,可以在一定程度下避免在数据异常情况下进行无效纠偏。Through the above implementation manner, when the distance parameter does not have data centrality, manual rechecking can be performed, and invalid deviation correction can be avoided to a certain extent in the case of abnormal data.

第二方面,本申请实施例提供一种电芯的纠偏装置,所述装置包括:In a second aspect, an embodiment of the present application provides a device for correcting deviation of a battery cell, and the device includes:

获取模块,用于在电芯的卷绕过程中,获取多个图像采集设备分别在各自的固定视野下对所述电芯进行图像采集得到的多张检测图像;an acquisition module, used for acquiring a plurality of detection images obtained by image acquisition of the battery cell by a plurality of image acquisition devices under their respective fixed fields of view during the winding process of the battery cell;

识别模块,用于根据所述多张检测图像,得到所述电芯的检测对象卷绕至各层的第一边缘到第一基准线之间的多个第一距离参数,以及所述检测对象卷绕至各层的第二边缘到第二基准线之间的多个第二距离参数,所述检测对象包括阳极片、阴极片或隔膜;An identification module, configured to obtain, according to the plurality of detection images, a plurality of first distance parameters between the detection object of the battery cell wound to the first edge of each layer and the first reference line, and the detection object Winding to a plurality of second distance parameters between the second edge of each layer and the second reference line, the detection object includes an anode sheet, a cathode sheet or a separator;

计算模块,用于在所述多个第一距离参数中,满足第一浮动范围的数据量达到设定比例,且在所述多个第二距离参数中,满足第二浮动范围的数据量达到所述设定比例时,计算所述检测对象的边缘变化参数,所述第一浮动范围、所述第二浮动范围分别根据所述检测对象在所有层下的所有第一距离参数、所有第二距离参数确定;The calculation module is used for, among the plurality of first distance parameters, the amount of data satisfying the first floating range reaches a set ratio, and among the plurality of second distance parameters, the amount of data satisfying the second floating range reaches When setting the scale, the edge change parameters of the detection object are calculated, and the first floating range and the second floating range are respectively based on all the first distance parameters and all the second distance parameters of the detection object under all layers. The distance parameter is determined;

所述计算模块,还用于将所述检测对象的边缘变化参数与预先得到的纠偏基准进行对比,得到所述检测对象的纠偏量,所述检测对象的纠偏量用于提供给执行机构以对下一个电芯进行纠偏。The calculation module is also used to compare the edge change parameters of the detection object with the pre-obtained deviation correction reference to obtain the deviation correction amount of the detection object, and the deviation correction amount of the detection object is used to provide the actuator to correct the deviation. Correct the deviation of the next cell.

通过上述装置可以执行前述第一方面的方法,可以对电芯的卷绕过程进行监测,并及时对电芯的阳极片、阴极片或隔膜进行纠偏,提升产品合格率。The above-mentioned method of the first aspect can be performed by the above-mentioned device, the winding process of the battery cell can be monitored, and the deviation of the anode sheet, cathode sheet or diaphragm of the battery cell can be corrected in time, so as to improve the product qualification rate.

第三方面,本申请实施例提供一种纠偏控制设备,所述纠偏控制设备包括:In a third aspect, an embodiment of the present application provides a deviation correction control device, and the deviation correction control device includes:

存储器;memory;

处理器;processor;

所述存储器上存储有所述处理器可执行的计算机程序,所述计算机程序被所述处理器执行时执行前述第一方面所述的方法。A computer program executable by the processor is stored on the memory, and when the computer program is executed by the processor, the method described in the first aspect is performed.

第四方面,本申请实施例提供一种纠偏系统,所述系统包括:图像采集设备、执行机构以及前述第三方面所述的纠偏控制设备;In a fourth aspect, an embodiment of the present application provides a deviation correction system, the system includes: an image acquisition device, an actuator, and the deviation correction control device described in the third aspect;

所述图像采集设备和所述执行机构均与所述纠偏控制设备连接;Both the image acquisition device and the actuator are connected to the deviation correction control device;

所述图像采集设备,用于在固定视野下对卷绕过程中的电芯进行图像采集,并将采集的多张检测图像发送给所述纠偏控制设备;The image acquisition device is used for image acquisition of the cell during the winding process under a fixed field of view, and sends the collected multiple detection images to the deviation correction control device;

所述纠偏控制设备,用于根据所述多张检测图像计算纠偏量,并根据所述纠偏量控制所述执行机构对下一个电芯进行纠偏。The deviation correction control device is configured to calculate a deviation correction amount according to the plurality of detection images, and control the actuator to correct deviation of the next cell according to the deviation correction amount.

第五方面,本申请实施例提供一种存储介质,所述存储介质上存储有处理器可执行的计算机程序,所述计算机程序被所述处理器执行时执行前述第一方面所述的方法。In a fifth aspect, an embodiment of the present application provides a storage medium, where a computer program executable by a processor is stored on the storage medium, and when the computer program is executed by the processor, the method described in the foregoing first aspect is executed.

附图说明Description of drawings

为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to explain the technical solutions of the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the embodiments of the present application. It should be understood that the following drawings only show some embodiments of the present application, therefore It should not be regarded as a limitation of the scope. For those of ordinary skill in the art, other related drawings can also be obtained from these drawings without any creative effort.

图1为本申请实施例提供的一种纠偏系统的示意图。FIG. 1 is a schematic diagram of a deviation correction system provided by an embodiment of the present application.

图2为本申请实施例提供的一种纠偏控制设备的示意图。FIG. 2 is a schematic diagram of a deviation correction control device provided by an embodiment of the present application.

图3为本申请实施例提供的一种电芯的纠偏方法的流程图。FIG. 3 is a flowchart of a method for correcting deviation of a battery cell according to an embodiment of the present application.

图4为本申请实施例提供的一个实例中的电芯在卷绕状态下的侧视图。FIG. 4 is a side view of a battery cell in a winding state in an example provided by the embodiments of the present application.

图5为本申请实施例提供的一个实例中通过四个相机对电芯进行图像采集的示意图。FIG. 5 is a schematic diagram of image acquisition of a battery cell by using four cameras in an example provided by an embodiment of the present application.

图6为本申请实施例提供的一个实例中的检测对象的边缘线位置、基准线位置、纠偏基准位置之间的位置示意图。FIG. 6 is a schematic diagram of positions among edge line positions, reference line positions, and deviation correction reference positions of a detection object in an example provided by the embodiment of the present application.

图7为本申请实施例提供的一种电芯的纠偏装置的功能模块框图。FIG. 7 is a functional block diagram of a device for correcting deviation of a battery cell according to an embodiment of the present application.

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。The technical solutions in the embodiments of the present application will be described below with reference to the accompanying drawings in the embodiments of the present application.

请参阅图1,图1为本申请实施例提供的一种纠偏系统的示意图。Please refer to FIG. 1 , which is a schematic diagram of a deviation correction system provided by an embodiment of the present application.

如图1所示,该纠偏系统包括:图像采集设备100、执行机构300以及纠偏控制设备200。图像采集设备100和执行机构300均与纠偏控制设备200连接。As shown in FIG. 1 , the deviation correction system includes: an image acquisition device 100 , an actuator 300 and a deviation correction control device 200 . Both the image acquisition device 100 and the actuator 300 are connected to the deviation correction control device 200 .

图像采集设备100,用于在固定视野下对卷绕过程中的电芯进行图像采集,并将采集的多张检测图像发送给纠偏控制设备200。图像采集设备100可包括工业相机以及工业相机上的镜头,工业相机通过镜头采集电芯的图像。The image acquisition device 100 is used to acquire images of the cells during the winding process under a fixed field of view, and send the acquired multiple detection images to the deviation correction control device 200 . The image acquisition device 100 may include an industrial camera and a lens on the industrial camera, and the industrial camera collects an image of the battery cell through the lens.

纠偏控制设备200,用于根据多张检测图像计算纠偏量,并根据纠偏量控制执行机构对下一个电芯进行纠偏。纠偏控制设备200可以是工控机,也可以是具备运算处理能力,且能够与图像采集设备100、执行机构300进行通信的计算机。The deviation correction control device 200 is configured to calculate the deviation correction amount according to the plurality of detection images, and control the actuator to correct the deviation of the next cell according to the deviation correction amount. The deviation correction control device 200 may be an industrial computer, or a computer with computing processing capability and capable of communicating with the image acquisition device 100 and the execution mechanism 300 .

其中,电芯的检测对象可包括阳极片、阴极片或隔膜。Wherein, the detection object of the battery cell may include an anode sheet, a cathode sheet or a diaphragm.

在一个应用场景下,该纠偏系统包括多个图像采集设备100,该多个图像采集设备100中的每个图像采集设备100都具有各自的固定视野,多个图像采集设备100分别在各自的固定视野下进行图像采集。每个图像采集设备100所采集的图像可发送给纠偏控制设备200进行处理。纠偏控制设备200对接收到的每张图像进行识别检测,从而得到每张图像中反映出的检测对象的距离参数,通过对这些距离参数进行分析处理,从而确定基于当前电芯的卷绕情况是否需要对下一个电芯进行纠偏,并在确定出需要对下一个电芯进行纠偏时,向用于执行纠偏操作的执行机构300提供具体的纠偏量,以供执行机构300进行纠偏操作。在完成纠偏操作后可继续卷绕生产下一个电芯产品。In one application scenario, the deviation correction system includes multiple image acquisition devices 100 , each of the multiple image acquisition devices 100 has its own fixed field of view, and the multiple image acquisition devices 100 are located in their respective fixed fields of view. Image acquisition was performed under the field of view. The images captured by each image capturing device 100 may be sent to the deviation correction control device 200 for processing. The deviation correction control device 200 recognizes and detects each received image, thereby obtaining the distance parameters of the detection object reflected in each image, and by analyzing and processing these distance parameters, it is determined whether based on the current winding condition of the battery cell. The next cell needs to be rectified, and when it is determined that the next cell needs to be rectified, a specific rectification amount is provided to the actuator 300 for performing the rectification operation for the actuator 300 to perform the rectification operation. After the deviation correction operation is completed, the winding can continue to produce the next cell product.

图2示出的是本申请实施例提供的一种纠偏控制设备200的示意图。FIG. 2 shows a schematic diagram of a deviation correction control device 200 provided by an embodiment of the present application.

如图2所示,该纠偏控制设备200包括:存储器201、处理器202、通信组件203,存储器201、处理器202、通信组件203之间直接或间接连接,以实现数据交互。As shown in FIG. 2 , the deviation correction control device 200 includes: a memory 201 , a processor 202 , and a communication component 203 , and the memory 201 , the processor 202 , and the communication component 203 are directly or indirectly connected to realize data interaction.

存储器201是一种存储介质,可以是但不限于随机存取存储器(Random AccessMemory,RAM),只读存储器(Read Only Memory,ROM),可编程只读存储器(ProgrammableRead-Only Memory,PROM),可擦除只读存储器(Erasable Programmable Read-OnlyMemory,EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-OnlyMemory,EEPROM)等。存储器201上存储有处理器202可执行的计算机程序,计算机程序被处理器202执行时执行本申请实施例提供的电芯的纠偏方法。The memory 201 is a storage medium, which can be, but is not limited to, a random access memory (Random Access Memory, RAM), a read only memory (Read Only Memory, ROM), a programmable read only memory (Programmable Read-Only Memory, PROM), or Erasable Programmable Read-Only Memory (EPROM), Electrical Erasable Programmable Read-Only Memory (EEPROM), etc. The memory 201 stores a computer program executable by the processor 202, and when the computer program is executed by the processor 202, the method for correcting the deviation of the battery cell provided by the embodiment of the present application is executed.

处理器202具有运算处理能力,可以是中央处理器(Central Processing Unit,CPU)、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件(PLC)、分立硬件组件搭建的处理器。处理器202可以执行存储器201中存储的计算机程序,从而实现本申请实施例提供的方法。The processor 202 has computing processing capability, and may be a central processing unit (Central Processing Unit, CPU), a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices (PLC), a processor built from discrete hardware components. The processor 202 may execute the computer program stored in the memory 201, thereby implementing the methods provided by the embodiments of the present application.

通信组件203可以包括通讯总线,通过通讯总线可实现纠偏控制设备200的各个内部组件之间的直接或间接连接,纠偏控制设备200还可通过通讯总线实现与图像采集设备100、执行机构300之间的有线通信连接。通信组件203也可以包括无线通信模块,纠偏控制设备200可通过无线通信模块实现与图像采集设备100、执行机构300之间的无线通信连接,从而进行无线的数据传输。The communication component 203 can include a communication bus, through which the direct or indirect connection between the various internal components of the deviation correction control device 200 can be realized, and the deviation correction control device 200 can also be connected with the image acquisition device 100 and the actuator 300 through the communication bus. wired communication connection. The communication component 203 may also include a wireless communication module, and the deviation correction control device 200 can realize the wireless communication connection with the image acquisition device 100 and the actuator 300 through the wireless communication module, so as to perform wireless data transmission.

可以理解的是,图2所示结构仅作为示意,在具体实施时,纠偏控制设备200还可以有更多的组件,或具有与图2所示的结构所不同的配置,例如,纠偏控制设备200还可以包括显示器,显示器可用于显示图像采集设备100采集的图像,还可显示本申请实施例提供的电芯的纠偏方法所得到的距离参数、纠偏量等数据。It can be understood that the structure shown in FIG. 2 is only for illustration, and during the specific implementation, the deviation correction control device 200 may also have more components, or have different configurations from the structure shown in FIG. 2 , for example, the deviation correction control device 200 may further include a display, which may be used to display images collected by the image collection device 100, and may also display data such as distance parameters, deviation correction amounts, and the like obtained by the cell deviation correction method provided in the embodiment of the present application.

请参阅图3,图3为本申请实施例提供的一种电芯的纠偏方法的流程图。该方法可应用于纠偏控制设备。下面将结合图3所示的流程对本申请实施例提供的方法进行详细阐述。Please refer to FIG. 3 , which is a flowchart of a method for correcting deviation of a battery cell provided by an embodiment of the present application. The method can be applied to deviation correction control equipment. The method provided by the embodiment of the present application will be described in detail below with reference to the flow shown in FIG. 3 .

如图3所示,该方法可包括步骤S31-S37。As shown in FIG. 3, the method may include steps S31-S37.

S31:在电芯的卷绕过程中,获取多个图像采集设备分别在各自的固定视野下对电芯进行图像采集得到的多张检测图像。S31 : During the winding process of the battery cell, acquire a plurality of detection images obtained by image acquisition of the battery core by a plurality of image acquisition devices under their respective fixed fields of view.

其中,该电芯是卷绕电芯。图像采集设备可以是电荷耦合器件(charge coupleddevice,简称CCD)。Wherein, the cell is a wound cell. The image acquisition device may be a charge coupled device (charge coupled device, CCD for short).

S33:根据多张检测图像,得到电芯的检测对象卷绕至各层的第一边缘到第一基准线之间的多个第一距离参数,以及检测对象卷绕至各层的第二边缘到第二基准线之间的多个第二距离参数。S33: According to the plurality of detection images, obtain a plurality of first distance parameters between the detection object of the battery cell wound to the first edge of each layer and the first reference line, and the detection object to be wound to the second edge of each layer A plurality of second distance parameters to the second reference line.

其中,检测对象包括阳极片、阴极片或隔膜。即,阳极片、阴极片、隔膜都可以作为本申请实施例中的检测对象,阳极片、阴极片、隔膜三者的纠偏过程相互独立。Wherein, the detection object includes an anode sheet, a cathode sheet or a diaphragm. That is, the anode sheet, the cathode sheet, and the diaphragm can all be used as detection objects in the embodiments of the present application, and the deviation correction processes of the anode sheet, the cathode sheet, and the diaphragm are independent of each other.

第一基准线、第二基准线可作为参考位置,第一基准线和第二基准线可以是通过对各图像采集设备进行关联校准时确定的虚拟基准线。阳极片、阴极片、隔膜都具有两条相对的边缘线。该两条相对的边缘线记为第一边缘和第二边缘,可分别表示同一检测对象的左边缘、右边缘。第一距离可以是检测对象的左边缘到第一基准线之间的距离,第二距离可以是检测对象的右边缘到第二基准线之间的距离。电芯的阳极片、阴极片、隔膜每绕卷轴转一圈(即电芯每卷绕增加一层),可以检测到至少一对距离值,每一对距离值包括一个第一距离参数和一个第二距离参数。The first reference line and the second reference line may be used as reference positions, and the first reference line and the second reference line may be virtual reference lines determined by correlating and calibrating each image acquisition device. The anode sheet, cathode sheet, and separator all have two opposing edge lines. The two opposite edge lines are denoted as the first edge and the second edge, which can respectively represent the left edge and the right edge of the same detection object. The first distance may be the distance between the left edge of the detection object and the first reference line, and the second distance may be the distance between the right edge of the detection object and the second reference line. Each time the anode sheet, cathode sheet, and diaphragm of the cell rotate around the reel (that is, one layer is added for each winding of the cell), at least one pair of distance values can be detected, and each pair of distance values includes a first distance parameter and a The second distance parameter.

随着电芯的卷绕过程的进行,电芯的层数增加,采集到的检测图像增加,得到的第一距离参数和第二距离参数的个数增加。As the winding process of the battery cell proceeds, the number of layers of the battery core increases, the collected detection images increase, and the number of obtained first distance parameters and second distance parameters increases.

S35:在多个第一距离参数中,满足第一浮动范围的数据量达到设定比例,且在多个第二距离参数中,满足第二浮动范围的数据量达到设定比例时,计算检测对象的边缘变化参数。S35: Among the plurality of first distance parameters, the amount of data satisfying the first floating range reaches the set ratio, and among the plurality of second distance parameters, when the amount of data satisfying the second floating range reaches the set ratio, calculate and detect The edge change parameter of the object.

其中,第一浮动范围、第二浮动范围分别根据检测对象在所有层下的所有第一距离参数、所有第二距离参数确定。在多个第一距离参数中,满足第一浮动范围的数据量达到设定比例,且在多个第二距离参数中,满足第二浮动范围的数据量达到设定比例时,认为S33中得到的多个第一距离参数、多个第一距离参数均具有数据集中性。设定比例可以是第一/第二距离参数的60%、65%、70%、75%等值。Wherein, the first floating range and the second floating range are respectively determined according to all first distance parameters and all second distance parameters of the detection object under all layers. Among the plurality of first distance parameters, the amount of data satisfying the first floating range reaches the set ratio, and among the plurality of second distance parameters, when the amount of data satisfying the second floating range reaches the set ratio, it is considered that the data obtained in S33 is obtained The multiple first distance parameters of , and the multiple first distance parameters have data centrality. The set ratio may be 60%, 65%, 70%, 75%, etc. of the first/second distance parameter.

S37:将检测对象的边缘变化参数与预先得到的纠偏基准进行对比,得到检测对象的纠偏量,检测对象的纠偏量用于提供给执行机构以对下一个电芯进行纠偏。S37: Compare the edge change parameters of the detection object with the pre-obtained deviation correction reference to obtain the deviation correction amount of the detection object, and the deviation correction amount of the detection object is used to provide the actuator to correct the deviation of the next cell.

以检测对象是阳极片为例,在执行上述S31-37时,通过S31可以得到在一个电芯的卷绕过程中,该电芯的阳极片的多张检测图像。然后可以执行S33,根据阳极片的多张检测图像,得到阳极片卷绕至各层的第一边缘到第一基准线之间的多个第一距离参数,以及该阳极片卷绕至各层的第二边缘到第二基准线之间的多个第二距离参数。然后可以对阳极片的多个第一距离参数、以及阳极片的多个第二距离参数分别进行数据集中性的分析,在阳极片的多个第一距离参数和多个第二距离参数都具有数据集中性时,计算阳极片的边缘变化参数(对应S35)。在将阳极片的边缘变化参数与阳极片的纠偏基准进行对比后,得到阳极片的纠偏量(对应S37),该纠偏量用于对下一个电芯的阳极片进行纠偏。Taking the detection object as an anode sheet as an example, when the above S31-37 are performed, multiple detection images of the anode sheet of the battery cell during the winding process of the battery cell can be obtained through S31. Then, S33 may be executed to obtain a plurality of first distance parameters between the first edge of the anode sheet wound to the first edge of each layer and the first reference line according to the plurality of detection images of the anode sheet, and the anode sheet wound to each layer A plurality of second distance parameters between the second edge of the second reference line. Then, a centralized data analysis can be performed on the plurality of first distance parameters of the anode sheet and the plurality of second distance parameters of the anode sheet, respectively, where the plurality of first distance parameters and the plurality of second distance parameters of the anode sheet have When the data is centralized, calculate the edge variation parameters of the anode sheet (corresponding to S35). After the edge change parameters of the anode sheet are compared with the deviation correction reference of the anode sheet, the deviation correction amount of the anode sheet is obtained (corresponding to S37), and the deviation correction amount is used to correct the deviation of the anode sheet of the next cell.

可以理解的是,上述执行过程还可以用于对阴极片、隔膜进行纠偏。例如,可以通过S31得到一个电芯的阳极片、阴极片和隔膜的多组检测图像,通过S33确定出阳极片的多个第一距离参数、阴极片的多个第一距离参数、隔膜的多个第一距离参数、阳极片的多个第二距离参数、阴极片的多个第二距离参数、隔膜的多个第二距离参数,通过S35计算阳极片的边缘变化参数、阴极片的边缘变化参数和隔膜的边缘变化参数。通过S37在将阳极片的边缘变化参数、阴极片的边缘变化参数、隔膜的边缘变化参数分别与阳极片的纠偏基准参数、阴极片的纠偏基准参数、隔膜的纠偏基准参数进行对比后,得到阳极片的纠偏量、阴极片的纠偏量、隔膜的纠偏量,以此可以将此次计算出的阳极片的纠偏量、阴极片的纠偏量和隔膜的纠偏量用于对下一个电芯的阳极片、阴极片和隔膜进行纠偏。It can be understood that the above execution process can also be used to correct the deviation of the cathode sheet and the diaphragm. For example, multiple sets of detection images of the anode sheet, cathode sheet and diaphragm of a cell can be obtained through S31, and multiple first distance parameters of the anode sheet, multiple first distance parameters of the cathode sheet, and multiple first distance parameters of the membrane can be determined through S33. A first distance parameter, a plurality of second distance parameters of the anode sheet, a plurality of second distance parameters of the cathode sheet, and a plurality of second distance parameters of the diaphragm, and the edge change parameters of the anode sheet and the edge change of the cathode sheet are calculated through S35 parameter and the edge change parameter of the diaphragm. Through S37, after comparing the edge variation parameters of the anode sheet, the edge variation parameters of the cathode sheet, and the edge variation parameters of the diaphragm with the correction reference parameters of the anode sheet, the correction reference parameters of the cathode sheet, and the correction reference parameters of the diaphragm, respectively, the anode is obtained. The deviation correction amount of the plate, the deviation correction amount of the cathode plate, and the deviation correction amount of the diaphragm can be used for the correction amount of the anode plate, the deviation correction amount of the cathode plate and the deviation correction amount of the diaphragm calculated this time. Sheets, cathode sheets and diaphragms are corrected.

在上述S31-S37的方法中,通过对电芯的卷绕过程进行监测,根据卷绕过程中采集的多张检测图像得到多个第一距离参数、多个第二距离参数,通过对多个第一距离参数、多个第二距离参数的分析,得知阳极片、阴极片或隔膜这些检测对象随着卷绕工序的进行所发生的偏移情况。在这两种距离参数都满足各自的浮动范围,且满足浮动范围的数据量都达到设定比例时,表示两种距离参数的分布情况都比较正常,然后可计算出在当前这个电芯的卷绕过程下的检测对象的边缘变化参数,将边缘变化参数与该检测对象的纠偏基准进行对比,可得到纠偏量。在将纠偏量提供给执行机构后,可以基于该纠偏量对下一个电芯进行纠偏。通过上述方法能够及时针对电芯的阳极片错位、阴极片错位、隔膜错位进行纠偏,降低阳极片的错位量、阴极片的错位量、隔膜的错位量,提升电芯产品的质量。并且,相较于在发现大批量的电芯都不合格以后才对一道道工序进行逐一排查的方式,上述方法可以降低人工核查工作量,处理效率更高,可避免因误差累积而继续出现更多数量不可控的不合格产品的情况,以此提升产品的合格率。In the above methods S31-S37, by monitoring the winding process of the battery cell, a plurality of first distance parameters and a plurality of second distance parameters are obtained according to a plurality of detection images collected during the winding process. The analysis of the first distance parameter and the plurality of second distance parameters shows the deviation of the detection objects such as the anode sheet, the cathode sheet or the diaphragm with the progress of the winding process. When the two distance parameters satisfy their respective floating ranges, and the amount of data satisfying the floating range reaches the set ratio, it means that the distribution of the two distance parameters is normal, and then the current volume of the cell can be calculated. The edge change parameter of the detection object under the winding process is compared, and the deviation correction amount can be obtained by comparing the edge change parameter with the deviation correction reference of the detection object. After the correction amount is provided to the actuator, the next cell can be corrected based on the correction amount. Through the above method, the misalignment of the anode sheet, the misalignment of the cathode sheet, and the misalignment of the diaphragm can be corrected in time, so as to reduce the misalignment of the anode sheet, the misalignment of the cathode sheet, and the misalignment of the diaphragm, and improve the quality of the cell product. Moreover, compared with the method of checking each process one by one after finding that a large number of cells are unqualified, the above method can reduce the workload of manual verification, the processing efficiency is higher, and it can avoid continuous errors due to accumulation of errors. There are many uncontrollable unqualified products, so as to improve the qualified rate of products.

下面将结合实例对上述S31-S37的方法进行详细介绍。The above-mentioned methods of S31-S37 will be described in detail below with reference to an example.

图4示出了一个实例中的电芯在卷绕状态下的侧视图。如图4所示,围绕电芯卷针M进行卷绕的材料包括阳极片T1、阴极片T2、隔膜T3。隔膜T3用于在阳极片T1和阴极片T2之间起隔离作用。在电芯卷针M开始旋转之前,阳极片T1、阴极片T2、隔膜T3可按照图4的布局方式被夹设在电芯卷针M的缝隙中(图4中的矩形区域),以对阳极片T1、阴极片T2、隔膜T3这些卷绕材料进行固定,然后阳极片T1、阴极片T2、隔膜T3这些卷绕材料随着电芯卷针M的转动而被卷绕在电芯卷针M上,从而形成电芯的各层表面。在该图4中,“B1”、“B2”、“B3”是该电芯被卷绕至不同层数下的位置。Figure 4 shows a side view of the cell in a wound state in one example. As shown in FIG. 4 , the material wound around the cell winding needle M includes an anode sheet T1 , a cathode sheet T2 , and a separator T3 . The separator T3 is used for isolation between the anode sheet T1 and the cathode sheet T2. Before the cell winding needle M starts to rotate, the anode sheet T1, the cathode sheet T2, and the separator T3 can be sandwiched in the gap of the cell winding needle M (the rectangular area in FIG. 4) according to the layout of FIG. The anode sheet T1, cathode sheet T2, and separator T3 are fixed, and then the anode sheet T1, cathode sheet T2, and separator T3 are wound around the cell winding needle with the rotation of the cell winding needle M. M, thereby forming the surface of each layer of the cell. In this FIG. 4, "B1", "B2", and "B3" are the positions where the cell is wound to different layers.

在S31的实现过程中,随着电芯卷绕过程的进行,图像采集设备可以从指定方向(例如图4中的“P”所指示的方向)对电芯进行图像采集,以得到电芯在各层的检测图像。In the implementation process of S31, as the winding process of the battery cell proceeds, the image acquisition device can capture the image of the battery cell from a specified direction (eg, the direction indicated by "P" in FIG. Detection images of each layer.

作为一种实现方式,纠偏控制设备中的处理器可以是可编程逻辑控制器(PLC)。纠偏控制设备(或PLC)通过判断驱动电芯卷针进行旋转的电机是否转动设定角度,从而确定是否触发相机进行拍照。例如,可以在检测到电芯卷针每转动180度时,可编程逻辑控制器输出一电平信号触发四个相机进行拍照。As an implementation manner, the processor in the deviation correction control device may be a programmable logic controller (PLC). The deviation correction control device (or PLC) determines whether to trigger the camera to take pictures by judging whether the motor that drives the cell winding needle to rotate rotates the set angle. For example, the programmable logic controller can output a level signal to trigger four cameras to take pictures when it is detected that the winding needle of the battery rotates every 180 degrees.

图5示出的是一个实例中通过四个相机对电芯进行图像采集的示意图。为便于描述,四个相机分别记为第一相机CCD1、第二相机CCD2、第三相机CCD3、第四相机CCD4。FIG. 5 shows a schematic diagram of image acquisition of a battery cell by four cameras in an example. For convenience of description, the four cameras are respectively denoted as a first camera CCD1, a second camera CCD2, a third camera CCD3, and a fourth camera CCD4.

如图5所示,通过第一相机CCD1的检测图像可以得到隔膜T3的第一边缘到第一基准线K1之间的距离d1、阳极片T1的第一边缘到第一基准线K1之间的距离d2;通过第三相机CCD3的检测图像可以得到该层隔膜T3的第二边缘到第二基准线K2之间的距离d5、阳极片T1的第二边缘到第二基准线K2之间的距离d6。通过第二相机CCD2的检测图像可以得到隔膜T3的第一边缘到第一基准线K1之间的距离d3、阴极片T2的第一边缘到第一基准线K1之间的距离d4;通过第四相机CCD4的检测图像可以得到隔膜T3的第二边缘到第二基准线K2之间的距离d7、阴极片T2的第二边缘到第二基准线K2之间的距离d8。As shown in FIG. 5 , the distance d1 between the first edge of the diaphragm T3 and the first reference line K1 and the distance d1 between the first edge of the anode sheet T1 and the first reference line K1 can be obtained through the detection image of the first camera CCD1 Distance d2; through the detection image of the third camera CCD3, the distance d5 between the second edge of the diaphragm T3 and the second reference line K2, and the distance between the second edge of the anode sheet T1 and the second reference line K2 can be obtained d6. Through the detection image of the second camera CCD2, the distance d3 between the first edge of the diaphragm T3 and the first reference line K1, and the distance d4 between the first edge of the cathode sheet T2 and the first reference line K1 can be obtained; The detection image of the camera CCD4 can obtain the distance d7 between the second edge of the diaphragm T3 and the second reference line K2, and the distance d8 between the second edge of the cathode sheet T2 and the second reference line K2.

假设电芯需要卷绕n层,以每卷绕180度进行一次图像采集,则每个图像采集设备可得到2n张检测图像。对四个相机的4*2n张检测图像进行检测识别后,可得到2n个d1~d8。Assuming that the cell needs to be wound with n layers, and one image acquisition is performed every 180 degrees of winding, each image acquisition device can obtain 2n detection images. After detecting and identifying the 4*2n detection images of the four cameras, 2n d1 to d8 can be obtained.

在其他实例中,出于设备成本的考虑,可以采用其他数量的图像采集设备进行图像采集,例如可以通过一个或两个视野较大的相机对电芯进行图像采集,使得同一张检测图像能够反映多个位置的距离参数。为了保障检测精度,本例继续以基于四个相机得到的2n个d1~d8为例进行说明。In other instances, for the consideration of equipment cost, other numbers of image acquisition devices can be used for image acquisition. For example, one or two cameras with a larger field of view can be used to acquire images of cells, so that the same detection image can reflect the Distance parameter for multiple locations. In order to ensure the detection accuracy, this example continues to take 2n d1 to d8 obtained based on four cameras as an example for description.

其中,由于阳极片、阴极片、隔膜的纠偏互不干扰,因此在以阳极片作为纠偏的检测对象时,可以将2n个d2作为前述步骤S33中的多个第一距离参数,以及将2n个d6作为步骤S33中的多个第二距离参数,从而基于2n个d2、2n个d6执行上述S33-S37的方法,以对下一个电芯的阳极片进行纠偏。Among them, since the deviation correction of the anode sheet, the cathode sheet and the diaphragm do not interfere with each other, when the anode sheet is used as the detection object for deviation correction, 2n d2 can be used as a plurality of first distance parameters in the aforementioned step S33, and 2n d6 is used as a plurality of second distance parameters in step S33, so that the above-mentioned methods of S33-S37 are performed based on 2n d2 and 2n d6, so as to correct the deviation of the anode sheet of the next cell.

而在以阴极片作为纠偏的检测对象时,可以将2n个d4、2n个d8分别作为前述步骤S33中的多个第一距离参数、多个第二距离参数,从而可基于2n个d4、2n个d8执行上述S33-S37的方法,以对下一个电芯的阴极片进行纠偏。When the cathode sheet is used as the detection object for deviation correction, 2n d4 and 2n d8 can be respectively used as the multiple first distance parameters and multiple second distance parameters in the aforementioned step S33, so that the 2n d4 and 2n Each d8 performs the above-mentioned methods of S33-S37 to correct the deviation of the cathode sheet of the next cell.

同理,在以隔膜作为纠偏的检测对象时,可以将2n个d3、2n个d7分别作为前述步骤S33中的多个第一距离参数、多个第二距离参数,以对下一个电芯的隔膜进行纠偏,还可以将2n个d1、2n个d5分别作为前述步骤S33中的多个第一距离参数、多个第二距离参数,以对下一个电芯的另一隔膜进行纠偏。In the same way, when the diaphragm is used as the detection object for deviation correction, 2n d3 and 2n d7 can be used as the first distance parameters and the second distance parameters in the aforementioned step S33, respectively, so as to measure the accuracy of the next cell. When the diaphragm is rectified, 2n d1 and 2n d5 can also be used as multiple first distance parameters and multiple second distance parameters in the foregoing step S33, respectively, to rectify the deviation of another diaphragm of the next cell.

作为一种实现方式,对于同种类型的检测对象(阳极片或阴极片或隔膜),可以在确定出多个第一距离参数、多个第二距离参数后,检测该多个第一距离参数的数据集中性以及该多个第二距离参数的数据集中性。在这些距离参数的值较为集中时,可认为得到的距离参数是有效的,此时可以执行S35以计算检测对象的边缘变化参数。As an implementation manner, for the detection object of the same type (anode sheet or cathode sheet or diaphragm), after multiple first distance parameters and multiple second distance parameters are determined, the multiple first distance parameters can be detected. and the data centrality of the plurality of second distance parameters. When the values of these distance parameters are relatively concentrated, it can be considered that the obtained distance parameters are valid, and at this time, S35 can be executed to calculate the edge change parameters of the detection object.

因此,在执行S35之前,基于S33得到的多个第一距离参数、多个第二距离参数,可以执行S34,以确定选取的距离参数是否具有数据集中性。Therefore, before performing S35, based on the plurality of first distance parameters and the plurality of second distance parameters obtained in S33, S34 may be performed to determine whether the selected distance parameters have data centrality.

S34:判断在多个第一距离参数中处于第一浮动范围内的数据量是否达到设定比例,以及判断在多个第二距离参数中处于第二浮动范围内的数据量是否达到该设定比例。S34: Determine whether the amount of data within the first floating range among the plurality of first distance parameters reaches the set ratio, and judge whether the amount of data within the second floating range among the plurality of second distance parameters reaches the setting Proportion.

其中,第一浮动范围是根据检测对象在所有层下的所有第一距离参数计算得到的,第二浮动范围是根据该检测对象在所有层下的所有第二距离参数计算得到的。The first floating range is calculated according to all first distance parameters of the detection object under all layers, and the second floating range is calculated according to all second distance parameters of the detection object under all layers.

当通过S34判定出多个第一距离参数中,满足第一浮动范围的数据量达到设定比例,且在所述多个第二距离参数中,满足第二浮动范围的数据量达到所述设定比例时,执行S35以计算检测对象的边缘变化参数。When it is determined through S34 that among the plurality of first distance parameters, the amount of data satisfying the first floating range reaches the set ratio, and among the plurality of second distance parameters, the amount of data satisfying the second floating range reaches the set ratio. When scaling, S35 is performed to calculate the edge change parameter of the detection object.

当通过S34判定出在多个第一距离参数中处于第一浮动范围内的数据量未达到设定比例时,或,在多个第二距离参数中处于第二浮动范围内的数据量未达到设定比例时,认为针对同一检测对象的多个第一距离参数或多个第二距离参数不具有数据集中性,数据存在异常,此时可以发出复检提示信息。即,在不具有数据集中性时,不进行纠偏,而是发出复检提示信息,以待当前的电芯卷绕完成后,人为参与复检,以此可以在一定程度下避免在数据异常情况下进行无效纠偏。When it is determined through S34 that the amount of data within the first floating range among the plurality of first distance parameters does not reach the set ratio, or, the amount of data within the second floating range among the plurality of second distance parameters does not reach When the ratio is set, it is considered that the multiple first distance parameters or multiple second distance parameters for the same detection object do not have data centrality, and the data is abnormal. At this time, a retest prompt message can be issued. That is, when there is no data centrality, the deviation correction is not performed, but a re-inspection prompt message is issued, and the re-inspection can be manually participated in after the current cell winding is completed, so as to avoid abnormal data to a certain extent. Invalid deviation correction is performed below.

在一个实例中,对于2n个第一距离参数、2n个第二距离参数,计算出的第一浮动范围记为f1±e毫米,计算出的第二浮动范围记为f2±e毫米,设定比例是60%(也可以是65%、70%、75%等值)。如果该2n个第一距离参数中,处于f1±e这一浮动范围的数据量达到2n*60%,则可认为该2n个第一距离参数具有数据集中性,如果该2n个第二距离参数中,处于f2±e这一浮动范围的数据量达到2n*60%,则可认为该2n个第二距离参数具有数据集中性。在2n个第一距离参数、2n个第二距离参数都具有数据集中性时,可以基于该2n个第一距离参数和2n个第二距离参数计算检测对象的边缘变化参数。基于这一原理可以分别判断2n个d1~d8中任一种距离参数的数据集中性,从而可以分别计算阳极片的边缘变化参数、阴极片的边缘变化参数、隔膜的边缘变化参数。In an example, for 2n first distance parameters and 2n second distance parameters, the calculated first floating range is denoted as f1±e mm, and the calculated second floating range is denoted as f2±e mm, and set The ratio is 60% (can also be 65%, 70%, 75%, etc.). If among the 2n first distance parameters, the amount of data in the floating range of f1±e reaches 2n*60%, it can be considered that the 2n first distance parameters have data centrality. If the 2n second distance parameters , if the amount of data in the floating range of f2±e reaches 2n*60%, it can be considered that the 2n second distance parameters have data centrality. When both the 2n first distance parameters and the 2n second distance parameters have data centrality, the edge change parameter of the detected object may be calculated based on the 2n first distance parameters and the 2n second distance parameters. Based on this principle, the data concentration of any one of the 2n distance parameters from d1 to d8 can be judged separately, so that the edge change parameters of the anode sheet, the edge change parameters of the cathode sheet, and the edge change parameters of the diaphragm can be calculated respectively.

作为一种实现方式,根据检测对象在所有层下的所有第一距离参数,计算检测对象的第一浮动范围的过程可以包括子步骤S341-S342,根据检测对象在所有层下的所有第二距离参数,计算检测对象的第二浮动范围的过程可以包括子步骤S343-S344。As an implementation manner, according to all the first distance parameters of the detection object under all layers, the process of calculating the first floating range of the detection object may include sub-steps S341-S342, according to all the second distances of the detection object under all layers parameter, the process of calculating the second floating range of the detection object may include sub-steps S343-S344.

S341:确定检测对象在所有层下的所有第一距离参数中的第一中位数。S341: Determine the first median of all the first distance parameters of the detection object under all layers.

S342:基于第一中位数以及设定的波动范围确定第一浮动范围。S342: Determine the first floating range based on the first median and the set fluctuation range.

S343:确定检测对象在所有层下的所有第二距离参数中的第二中位数。S343: Determine the second median of all second distance parameters of the detection object under all layers.

S344:基于第二中位数以及设定的该波动范围确定第二浮动范围。S344: Determine a second floating range based on the second median and the set fluctuation range.

其中,设定的波动范围可以是±0.1毫米,则第一浮动范围可以表示为(第一中位数±0.1毫米),第二浮动范围可以表示为(第二中位数±0.1毫米)。可以理解的是,在其他实施例中,波动范围也可以是其他范围,例如可以是±0.15毫米、±0.2毫米、±0.3毫米等波动范围。Wherein, the set fluctuation range may be ±0.1 mm, the first floating range may be expressed as (first median ±0.1 mm), and the second floating range may be expressed as (second median ±0.1 mm). It can be understood that, in other embodiments, the fluctuation range may also be other ranges, for example, the fluctuation range may be ±0.15 mm, ±0.2 mm, ±0.3 mm, and the like.

以图5中的各个距离参数为例,在以阳极片作为检测对象时,可以对2n个d2进行排序,并确定出2n个d2中的中位数d2’,作为第一中位数,以及对2n个d6进行排序并确定出2n个d6中的中位数d6’,作为第二中位数。当该2n个d2中,处于第一浮动范围(d2’±0.1毫米)的数据量达到2n*60%时,且该2n个d6中,处于第二浮动范围(d6’±0.1毫米)的数据量达到2n*60%时,可以计算阳极片的边缘变化参数

Figure BDA0002433817430000171
在该2n个d2或2n个d6不具有数据集中性时,可以发出复检提示信息以通知用户进行人工复检。Taking each distance parameter in Figure 5 as an example, when the anode sheet is used as the detection object, the 2n d2 can be sorted, and the median d2' of the 2n d2 can be determined as the first median, and Sort the 2n d6s and determine the median d6' among the 2n d6s as the second median. In the 2n d2s, the amount of data in the first floating range (d2'±0.1 mm) reaches 2n*60%, and in the 2n d6s, the data in the second floating range (d6'±0.1 mm) When the amount reaches 2n*60%, the edge change parameters of the anode sheet can be calculated
Figure BDA0002433817430000171
When the 2n d2 or 2n d6 do not have data centrality, a rechecking prompt message may be issued to notify the user to perform manual rechecking.

基于同样的原理,在以隔膜作为检测对象时,可以基于2n个d3和2n个d7,得到适用于隔膜纠偏的第一中位数d3’和第二中位数d7’,相应的第一浮动范围、第二浮动范围分别是d3’±0.1毫米、d7’±0.1毫米。在以阴极片作为检测对象时,可基于2n个d4和2n个d8,得到适用于阴极片纠偏的第一中位数d4’和第二中位数d8’,相应的第一浮动范围、第二浮动范围分别是d4’±0.1毫米、d8’±0.1毫米。Based on the same principle, when the diaphragm is used as the detection object, the first median d3' and the second median d7' suitable for diaphragm deviation correction can be obtained based on 2n d3 and 2n d7, and the corresponding first floating The range and the second floating range are respectively d3'±0.1 mm and d7'±0.1 mm. When the cathode sheet is used as the detection object, based on 2n d4 and 2n d8, the first median d4' and the second median d8' suitable for the deviation correction of the cathode sheet, the corresponding first floating range, The two floating ranges are respectively d4'±0.1 mm and d8'±0.1 mm.

通过上述S341-S344的实现方式,可以根据当前电芯的实际卷绕情况,得到当前卷绕条件下的第一浮动范围、第二浮动范围,便于判定出当前卷绕状态下的距离参数是否具有数据集中性。在具有数据集中性时,可以进一步计算检测对象的纠偏量,在不具有数据集中性时,可以在当前电芯的卷绕过程结束后,人工采用二次元设备进行复检。Through the implementation of the above S341-S344, the first floating range and the second floating range under the current winding condition can be obtained according to the actual winding condition of the current cell, which is convenient to determine whether the distance parameter in the current winding state has Data centrality. When there is data centrality, the deviation correction amount of the detection object can be further calculated. When there is no data centrality, after the winding process of the current cell is completed, the secondary device can be used for re-inspection manually.

作为上述S35的一种实现方式,上述S35中计算检测对象的边缘变化参数的过程,可包括子步骤S351-S353。As an implementation manner of the above S35, the process of calculating the edge change parameter of the detection object in the above S35 may include sub-steps S351-S353.

S351:对多个第一距离参数中,处于第一浮动范围内的距离参数求平均,得到第一平均值。S351: Average the distance parameters within the first floating range among the plurality of first distance parameters to obtain a first average value.

S352:对多个第二距离参数中,处于第二浮动范围内的距离参数求平均,得到第二平均值。S352: Average the distance parameters within the second floating range among the plurality of second distance parameters to obtain a second average value.

S353:基于第一平均值和第二平均值,计算检测对象的边缘变化参数。S353: Calculate the edge change parameter of the detection object based on the first average value and the second average value.

在一个实例中,在20个第一距离参数中处于第一浮动范围内的数据量超过了12个(即20*60%),且处于第一浮动范围内的数据量达到了16个(即20*80%),则可以对处于第一浮动范围内的该16个第一距离参数求平均,得到该16个参数的平均值作为第一平均值。第二平均值的计算方式可参照第一平均值的计算方式。In an example, the amount of data within the first floating range of the 20 first distance parameters exceeds 12 (ie 20*60%), and the amount of data within the first floating range reaches 16 (ie 20*80%), the 16 first distance parameters within the first floating range can be averaged to obtain the average value of the 16 parameters as the first average value. The calculation method of the second average value may refer to the calculation method of the first average value.

检测对象的边缘变化参数可以表示为:第一平均值与第二平均值之差平均值,即:边缘变化参数=(第一平均值-第二平均值)/2。The edge change parameter of the detection object can be expressed as: the average value of the difference between the first average value and the second average value, that is, the edge change parameter=(the first average value−the second average value)/2.

对于2n个d1~d8,均可以采用上述S351-S353的实现方式,基于相应的浮动范围内的距离参数求平均值

Figure BDA0002433817430000181
For 2n d1 to d8, the above implementations of S351-S353 can be used, and the average value is calculated based on the distance parameters within the corresponding floating range.
Figure BDA0002433817430000181

在以阳极片作为检测对象时,根据处于(d2’±0.1毫米)这一第一浮动范围内的多个第一距离参数可计算出第一平均值

Figure BDA0002433817430000182
根据处于(d6’±0.1毫米)这一第二浮动范围内的多个第二距离参数可计算出第二平均值
Figure BDA0002433817430000183
阳极片的边缘变化参数
Figure BDA0002433817430000184
When the anode sheet is used as the detection object, the first average value can be calculated according to a plurality of first distance parameters within the first floating range of (d2'±0.1 mm).
Figure BDA0002433817430000182
The second average value can be calculated according to a plurality of second distance parameters within the second floating range of (d6'±0.1 mm).
Figure BDA0002433817430000183
Edge Variation Parameters of Anode Sheets
Figure BDA0002433817430000184

在以阴极片作为检测对象时,根据处于(d4’±0.1毫米)这一第一浮动范围内的多个第一距离参数可计算出第一平均值

Figure BDA0002433817430000191
根据处于(d8’±0.1毫米)这一第二浮动范围内的多个第二距离参数可计算出第二平均值
Figure BDA0002433817430000192
阴极片的边缘变化参数
Figure BDA0002433817430000193
When the cathode sheet is used as the detection object, the first average value can be calculated according to a plurality of first distance parameters within the first floating range of (d4'±0.1 mm).
Figure BDA0002433817430000191
The second average value can be calculated according to a plurality of second distance parameters within the second floating range of (d8'±0.1 mm).
Figure BDA0002433817430000192
Edge Variation Parameters of Cathode
Figure BDA0002433817430000193

在以隔膜作为检测对象时,根据处于(d3’±0.1毫米)这一第一浮动范围内的多个第一距离参数可计算出第一平均值

Figure BDA0002433817430000194
根据处于(d7’±0.1毫米)这一第二浮动范围内的多个第二距离参数可计算出第二平均值
Figure BDA0002433817430000195
隔膜的边缘变化参数
Figure BDA0002433817430000196
When the diaphragm is used as the detection object, the first average value can be calculated according to a plurality of first distance parameters within the first floating range of (d3'±0.1 mm).
Figure BDA0002433817430000194
The second average value can be calculated according to a plurality of second distance parameters within the second floating range of (d7'±0.1 mm).
Figure BDA0002433817430000195
Diaphragm edge variation parameters
Figure BDA0002433817430000196

关于上述S37,通过将阳极片的边缘变化参数

Figure BDA0002433817430000197
与阳极片的纠偏基准参数Ac进行对比,可得到阳极片的纠偏量A’。通过将阴极片的边缘变化参数
Figure BDA0002433817430000198
与阴极片的纠偏基准参数Cc进行对比,可得到阴极片的纠偏量C’。通过将隔膜的边缘变化参数
Figure BDA0002433817430000199
与隔膜的纠偏基准参数Sc进行对比,可得到阴极片的纠偏量S’。Regarding the above S37, by changing the parameters of the edge of the anode sheet
Figure BDA0002433817430000197
Comparing with the correction reference parameter Ac of the anode sheet, the correction amount A' of the anode sheet can be obtained. By changing the parameters of the edge of the cathode
Figure BDA0002433817430000198
Comparing with the correction reference parameter Cc of the cathode sheet, the correction amount C' of the cathode sheet can be obtained. By changing the parameters of the edge of the diaphragm
Figure BDA0002433817430000199
Comparing with the correction reference parameter Sc of the diaphragm, the correction amount S' of the cathode sheet can be obtained.

关于纠偏基准参数Ac、Cc、Sc,可以是在正式生产之前,根据多次卷绕测试后,对多次测试的结果进行统计并求平均后确定出的基准参数。Regarding the deviation correction benchmark parameters Ac, Cc, and Sc, they may be benchmark parameters determined after the results of multiple winding tests are counted and averaged before the official production.

检测对象的纠偏基准参数可以用于表示该检测对象的纠偏基准位置与第一基准线K1之间的距离。以图6所示的位置示意图为例,由于第一基准线K1、第二基准线K2是参考位置,第一基准线K1、第二基准线K2之间的距离L可以视为先验值。The deviation correction reference parameter of the detection object may be used to represent the distance between the deviation correction reference position of the detection object and the first reference line K1. Taking the position diagram shown in FIG. 6 as an example, since the first reference line K1 and the second reference line K2 are reference positions, the distance L between the first reference line K1 and the second reference line K2 can be regarded as a priori value.

令检测对象的纠偏基准为(X1-X2)/2,X1(图未示)为检测对象在无需纠偏时的第一边缘至第一基准线K1之间的距离,X2(图未示)为检测对象在无需纠偏时的第二边缘至第二基准线K2之间的距离,则检测对象的纠偏基准位置相对于第一基准线K1的距离可以表示为:(L-X2-X1)/2+X1=L/2-X2/2-X1/2+X1=L/2-X2/2+X1/2=(X1-X2)/2+L/2=检测对象的纠偏基准+L/2。基于此原理,阳极片的纠偏基准位置Ac0相对于第一基准线K1的距离可以表示为:Ac0=阳极片的纠偏基准参数Ac+L/2,阴极片的纠偏基准位置Cc0相对于第一基准线K1的距离可以表示为:Cc0=阴极片的纠偏基准参数Cc+L/2,隔膜的纠偏基准位置Sc0相对于第一基准线K1的距离可以表示为:Sc0=隔膜的纠偏基准参数Sc+L/2。Let the deviation correction benchmark of the detection object be (X1-X2)/2, X1 (not shown in the figure) is the distance from the first edge of the detection object to the first reference line K1 when no deviation correction is required, and X2 (not shown in the figure) is The distance between the second edge of the detection object and the second reference line K2 when no deviation correction is required, the distance between the deviation correction reference position of the detection object relative to the first reference line K1 can be expressed as: (L-X2-X1)/2 +X1=L/2-X2/2-X1/2+X1=L/2-X2/2+X1/2=(X1-X2)/2+L/2=Offset correction reference of detection object+L/2 . Based on this principle, the distance of the correction reference position Ac0 of the anode sheet relative to the first reference line K1 can be expressed as: Ac0=correction reference parameter Ac+L/2 of the anode sheet, and the correction reference position Cc0 of the cathode sheet is relative to the first reference The distance of the line K1 can be expressed as: Cc0=correction reference parameter Cc+L/2 of the cathode sheet, and the distance of the correction reference position Sc0 of the diaphragm relative to the first reference line K1 can be expressed as: Sc0=The correction reference parameter of the diaphragm Sc+ L/2.

以阳极片的纠偏计算为例,在电芯的生产过程中,阳极片的中心线位置A1可以表示为:A1=边缘变化参数

Figure BDA0002433817430000201
在计算阳极片的纠偏量A’时,将阳极片的中心线位置A1与阳极片的纠偏基准位置Ac0相对于第一基准线K1的距离进行对比,由于A1、Ac0这两个参数都带有“+L/2”这一项,因此将A1与Ac0作差得到的结果是:阳极片的纠偏量A’=A1-Ac0=(阳极片的边缘变化参数
Figure BDA0002433817430000202
)-(阳极片的纠偏基准Ac+L/2)=阳极片的边缘变化参数
Figure BDA0002433817430000203
-阳极片的纠偏基准Ac。因此在实际执行S37以计算纠偏量时,无需获取或测量实际的L也可以计算出纠偏量,仅需将检测对象的边缘变化参数和预先得到的纠偏基准进行对比即可。Taking the correction calculation of the anode sheet as an example, in the production process of the cell, the centerline position A1 of the anode sheet can be expressed as: A1=edge variation parameter
Figure BDA0002433817430000201
When calculating the correction amount A' of the anode sheet, compare the distance between the center line position A1 of the anode sheet and the correction reference position Ac0 of the anode sheet relative to the first reference line K1, since the two parameters A1 and Ac0 have The item "+L/2", so the result obtained by making the difference between A1 and Ac0 is: the correction amount of the anode sheet A'=A1-Ac0=(the edge change parameter of the anode sheet
Figure BDA0002433817430000202
)-(correction reference Ac+L/2 of anode sheet) = edge change parameter of anode sheet
Figure BDA0002433817430000203
- Correction reference Ac of the anode sheet. Therefore, when S37 is actually executed to calculate the deviation correction amount, the deviation correction amount can be calculated without acquiring or measuring the actual L, and it is only necessary to compare the edge change parameters of the detection object with the pre-obtained deviation correction reference.

基于此原理,在计算阴极片的纠偏量C’、隔膜的纠偏量S’时,也无需获取或测量两条基准线(K1与K2)之间的距离L,仅需将阴极片的边缘变化参数与阴极片的纠偏基准进行对比即可得到阴极片的纠偏量C’,仅需将隔膜的边缘变化参数与隔膜的纠偏基准进行对比即可得到隔膜的纠偏量S’。Based on this principle, it is not necessary to obtain or measure the distance L between the two reference lines (K1 and K2) when calculating the deviation correction amount C' of the cathode sheet and the deviation correction amount S' of the diaphragm, and only the edge of the cathode sheet needs to be changed. The rectification amount C' of the cathode sheet can be obtained by comparing the parameters with the rectification reference of the cathode sheet, and the rectification amount S' of the diaphragm can be obtained only by comparing the edge change parameters of the diaphragm with the rectification reference of the diaphragm.

通过上述实现方式,可以得到可靠性较强的纠偏量,可以在出现错位现象时及时进行纠偏,从而提升后续电芯产品的质量。Through the above implementation manner, a highly reliable deviation correction amount can be obtained, and deviation correction can be carried out in time when a dislocation phenomenon occurs, thereby improving the quality of subsequent cell products.

可选地,基于通过S37计算出的纠偏量,上述方法还可以包括步骤S38-S39。Optionally, based on the deviation correction amount calculated through S37, the above method may further include steps S38-S39.

S38:判断纠偏量是否达到预设的纠偏阈值。S38: Determine whether the deviation correction amount reaches a preset deviation correction threshold.

S39:在纠偏量达到预设的纠偏阈值时,控制执行机构按照纠偏阈值进行纠偏操作。S39 : when the deviation correction amount reaches the preset deviation correction threshold, the actuator is controlled to perform the deviation correction operation according to the deviation correction threshold.

其中,纠偏阈值与纠偏机构允许的纠偏精度有关,该纠偏阈值小于前述的波动范围的绝对值。仍以波动范围为±0.1毫米为例,则纠偏阈值可小于0.1毫米,例如,纠偏阈值可以是0.02、0.04、0.05、0.07毫米等值。The deviation correction threshold is related to the deviation correction accuracy allowed by the deviation correction mechanism, and the deviation correction threshold is smaller than the absolute value of the aforementioned fluctuation range. Still taking the fluctuation range of ±0.1 mm as an example, the deviation correction threshold may be less than 0.1 mm, for example, the deviation correction threshold may be 0.02, 0.04, 0.05, 0.07 mm and the like.

在一个实例中,确定第一浮动范围、第二浮动范围时采用的波动范围是±0.1毫米,且设定的纠偏阈值是0.05毫米,将S37得到的纠偏量与0.05毫米进行比较,如果S37计算出的纠偏量小于0.05毫米,则可以认为纠偏量太小,本次不参与纠偏。如果S37计算出的纠偏量大于或等于0.05毫米,由于在计算检测对象的边缘检测范围时,已经对数据进行过±0.1毫米的判断,考虑到可能有其他暂未可知的影响因素导致检测对象偏移,因此在通过S37计算出的纠偏量大于0.05毫米时,可对下一个电芯的检测对象纠偏0.05毫米。即,在纠偏量大于0.05毫米时,可以只纠偏0.05毫米。以此可以在满足执行机构的纠偏精度的情况下,以逐渐纠偏的方式对后续电芯进行闭环纠偏。In one example, the fluctuation range used in determining the first floating range and the second floating range is ±0.1 mm, and the set deviation correction threshold is 0.05 mm, and the deviation correction amount obtained in S37 is compared with 0.05 mm, if S37 calculates If the output correction amount is less than 0.05 mm, it can be considered that the correction amount is too small and will not participate in the correction this time. If the deviation correction amount calculated by S37 is greater than or equal to 0.05 mm, since the data has been judged by ±0.1 mm when calculating the edge detection range of the detection object, considering that there may be other unknown influencing factors that may cause the detection object to be biased Therefore, when the deviation correction amount calculated by S37 is greater than 0.05 mm, the detection object of the next cell can be corrected by 0.05 mm. That is, when the deviation correction amount is greater than 0.05 mm, only 0.05 mm of deviation can be corrected. In this way, under the condition of satisfying the deviation rectification accuracy of the actuator, the closed-loop deviation rectification of the subsequent cells can be carried out in a gradual deviation rectification manner.

综上所述,上述方法能够将实时视觉检测与可编程控制方式进行结合,实现对电芯的纠偏控制,可以对电芯的阴阳极错位现象进行改善,可以尽可能避免阴阳极的错位量超出范围,能够提升电芯、电池的质量,提升电芯、电池产品的使用安全性。To sum up, the above method can combine real-time visual inspection with programmable control to realize the correction control of the cell, improve the misalignment of the cathode and anode of the cell, and avoid the misalignment of the cathode and anode as much as possible. It can improve the quality of cells and batteries, and improve the safety of the use of cells and battery products.

基于同一发明构思,请参阅图7,本申请实施例还提供一种电芯的纠偏装置400。图7为该电芯的纠偏装置400的功能模块框图。Based on the same inventive concept, please refer to FIG. 7 , an embodiment of the present application further provides a deviation correction device 400 for a battery cell. FIG. 7 is a functional block diagram of the deviation correction device 400 of the cell.

如图7所示,该装置包括:获取模块401、识别模块402、计算模块403。As shown in FIG. 7 , the apparatus includes: an acquisition module 401 , an identification module 402 , and a calculation module 403 .

获取模块401,用于在电芯的卷绕过程中,获取多个图像采集设备分别在各自的固定视野下对电芯进行图像采集得到的多张检测图像。The acquisition module 401 is configured to acquire a plurality of detection images obtained by image acquisition of the battery cell by a plurality of image acquisition devices under respective fixed fields of view during the winding process of the battery cell.

识别模块402,用于根据多张检测图像,得到电芯的检测对象卷绕至各层的第一边缘到第一基准线之间的多个第一距离参数,以及检测对象卷绕至各层的第二边缘到第二基准线之间的多个第二距离参数,检测对象包括阳极片、阴极片或隔膜。The identification module 402 is used to obtain a plurality of first distance parameters between the first edge of each layer and the first reference line where the detection object of the battery cell is wound to each layer, and the detection object is wound to each layer according to the plurality of detection images. A plurality of second distance parameters between the second edge of the second reference line and the second reference line, and the detection object includes an anode sheet, a cathode sheet or a diaphragm.

计算模块403,用于在多个第一距离参数中,满足第一浮动范围的数据量达到设定比例,且在多个第二距离参数中,满足第二浮动范围的数据量达到设定比例时,计算检测对象的边缘变化参数,第一浮动范围、第二浮动范围分别根据检测对象在所有层下的所有第一距离参数、所有第二距离参数确定。The calculation module 403 is used for, among the plurality of first distance parameters, the amount of data satisfying the first floating range reaches the set ratio, and among the plurality of second distance parameters, the amount of data satisfying the second floating range reaches the set ratio When , the edge change parameters of the detection object are calculated, and the first floating range and the second floating range are respectively determined according to all the first distance parameters and all the second distance parameters of the detection object under all layers.

该计算模块403,还用于将检测对象的边缘变化参数与预先得到的纠偏基准进行对比,得到检测对象的纠偏量,检测对象的纠偏量用于提供给执行机构以对下一个电芯进行纠偏。The calculation module 403 is also used to compare the edge change parameters of the detection object with the pre-obtained deviation correction reference to obtain the deviation correction amount of the detection object, and the deviation correction amount of the detection object is used to provide the actuator to correct the deviation of the next cell. .

通过上述装置可以执行前述的电芯的纠偏方法,可以通过对电芯的卷绕过程进行监测,及时对电芯的阳极片、阴极片或隔膜进行纠偏,提升产品合格率。The above-mentioned method for correcting the deviation of the battery cell can be performed by the above-mentioned device, and by monitoring the winding process of the battery cell, the deviation of the anode sheet, the cathode sheet or the diaphragm of the cell can be corrected in time to improve the product qualification rate.

可选地,该计算模块403还可用于:根据所述检测对象在所有层下的所有第一距离参数,计算所述检测对象的所述第一浮动范围,以及根据所述检测对象在所有层下的所有第二距离参数,计算所述检测对象的所述第二浮动范围。Optionally, the calculation module 403 can be further configured to: calculate the first floating range of the detection object according to all the first distance parameters of the detection object under all layers, and calculate the first floating range of the detection object according to the detection object in all layers. All the second distance parameters below, the second floating range of the detection object is calculated.

可选地,该计算模块403还可用于:确定所述检测对象在所有层下的所有第一距离参数中的第一中位数;基于所述第一中位数以及设定的波动范围确定所述第一浮动范围;确定所述检测对象在所有层下的所有第二距离参数中的第二中位数;基于所述第二中位数以及设定的所述波动范围确定所述第二浮动范围。Optionally, the calculation module 403 can also be used to: determine the first median of all the first distance parameters of the detection object under all layers; determine based on the first median and the set fluctuation range the first floating range; determining the second median of all the second distance parameters of the detection object under all layers; determining the second median based on the second median and the set fluctuation range 2. Floating range.

可选地,该计算模块403还可用于:对所述多个第一距离参数中,处于所述第一浮动范围内的距离参数求平均,得到第一平均值;对所述多个第二距离参数中,处于所述第二浮动范围内的距离参数求平均,得到第二平均值;基于所述第一平均值和所述第二平均值,计算所述检测对象的边缘变化参数。Optionally, the calculation module 403 can be further configured to: average the distance parameters within the first floating range among the plurality of first distance parameters to obtain a first average value; Among the distance parameters, the distance parameters within the second floating range are averaged to obtain a second average value; based on the first average value and the second average value, the edge change parameter of the detection object is calculated.

可选地,该装置还可包括:执行模块,该执行模块可用于:判断所述纠偏量是否达到预设的纠偏阈值;在所述纠偏量达到预设的纠偏阈值时,控制所述执行机构按照所述纠偏阈值进行纠偏操作。Optionally, the device may further include: an execution module, which can be used to: determine whether the deviation correction amount reaches a preset deviation correction threshold; when the deviation correction amount reaches the preset deviation correction threshold, control the execution mechanism The deviation correction operation is performed according to the deviation correction threshold.

关于本申请实施例提供的电芯的纠偏装置400的其他细节,请参照前述电芯的纠偏方法的相关描述,在此不再赘述。For other details of the device 400 for correcting the deviation of the battery cell provided by the embodiment of the present application, please refer to the relevant description of the deviation correcting method for the battery cell, which will not be repeated here.

除了上述实施例,本申请实施例还提供一种存储介质,该存储介质上存储有处理器可执行的计算机程序,计算机程序被处理器执行时执行前述的方法。In addition to the foregoing embodiments, the embodiments of the present application further provide a storage medium, where a computer program executable by a processor is stored on the storage medium, and the aforementioned method is executed when the computer program is executed by the processor.

在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统。另一点,所讨论的相互之间的连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the embodiments provided in this application, it should be understood that the disclosed apparatus and method may be implemented in other manners. The apparatus embodiments described above are only illustrative. For example, the division of modules is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or integrated. to another system. On the other hand, the discussed connection between each other may be through some communication interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.

另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。In addition, units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。Furthermore, each functional module in each embodiment of the present application may be integrated together to form an independent part, or each module may exist alone, or two or more modules may be integrated to form an independent part.

需要说明的是,功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以用软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备执行本申请各个实施例方法的全部或部分步骤。It should be noted that, if the functions are implemented in the form of software function modules and sold or used as independent products, they may be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device to perform all or part of the steps of the methods of various embodiments of the present application.

在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。In this document, relational terms such as first and second, etc. are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such existence between these entities or operations. The actual relationship or sequence.

以上仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above are only examples of the present application, and are not intended to limit the protection scope of the present application. For those skilled in the art, the present application may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.

Claims (10)

1.一种电芯的纠偏方法,其特征在于,所述方法包括:1. A deviation correction method for a battery cell, characterized in that the method comprises: 在电芯的卷绕过程中,获取多个图像采集设备分别在各自的固定视野下对所述电芯进行图像采集得到的多张检测图像;During the winding process of the battery cell, acquiring a plurality of detection images obtained by image acquisition of the battery core by a plurality of image acquisition devices under their respective fixed fields of view; 根据所述多张检测图像,得到所述电芯的检测对象卷绕至各层的第一边缘到第一基准线之间的多个第一距离参数,以及所述检测对象卷绕至各层的第二边缘到第二基准线之间的多个第二距离参数,所述检测对象包括阳极片、阴极片或隔膜;According to the plurality of detection images, a plurality of first distance parameters between the first edge of each layer and the first reference line where the detection object of the battery cell is wound, and the detection object is wound to each layer are obtained. A plurality of second distance parameters between the second edge of the second reference line and the second reference line, the detection object includes an anode sheet, a cathode sheet or a diaphragm; 在所述多个第一距离参数中,满足第一浮动范围的数据量达到设定比例,且在所述多个第二距离参数中,满足第二浮动范围的数据量达到所述设定比例时,计算所述检测对象的边缘变化参数,所述第一浮动范围、所述第二浮动范围分别根据所述检测对象在所有层下的所有第一距离参数、所有第二距离参数确定;Among the plurality of first distance parameters, the amount of data satisfying the first floating range reaches a set ratio, and among the plurality of second distance parameters, the amount of data satisfying the second floating range reaches the set ratio When , the edge change parameters of the detection object are calculated, and the first floating range and the second floating range are respectively determined according to all the first distance parameters and all the second distance parameters of the detection object under all layers; 将所述检测对象的边缘变化参数与预先得到的纠偏基准进行对比,得到所述检测对象的纠偏量,所述检测对象的纠偏量用于提供给执行机构以对下一个电芯进行纠偏。Comparing the edge change parameters of the detection object with the pre-obtained deviation correction reference, the deviation correction amount of the detection object is obtained, and the deviation correction amount of the detection object is used to provide the actuator to correct the deviation of the next cell. 2.根据权利要求1所述的方法,其特征在于,在所述计算所述检测对象的边缘变化参数之前,所述方法还包括:2 . The method according to claim 1 , wherein, before the calculating the edge change parameter of the detected object, the method further comprises: 2 . 根据所述检测对象在所有层下的所有第一距离参数,计算所述检测对象的所述第一浮动范围,以及根据所述检测对象在所有层下的所有第二距离参数,计算所述检测对象的所述第二浮动范围。Calculate the first floating range of the detection object according to all first distance parameters of the detection object under all layers, and calculate the detection object according to all second distance parameters of the detection object under all layers the second float range of the object. 3.根据权利要求2所述的方法,其特征在于,所述根据所述检测对象在所有层下的所有第一距离参数,计算所述检测对象的所述第一浮动范围,包括:3 . The method according to claim 2 , wherein calculating the first floating range of the detection object according to all first distance parameters of the detection object under all layers comprises: 3 . 确定所述检测对象在所有层下的所有第一距离参数中的第一中位数;determining the first median of all the first distance parameters of the detection object under all layers; 基于所述第一中位数以及设定的波动范围确定所述第一浮动范围;determining the first floating range based on the first median and the set fluctuation range; 所述根据所述检测对象在所有层下的所有第二距离参数,计算所述检测对象的所述第二浮动范围,包括:The calculating the second floating range of the detection object according to all second distance parameters of the detection object under all layers, including: 确定所述检测对象在所有层下的所有第二距离参数中的第二中位数;determining the second median of all second distance parameters of the detection object under all layers; 基于所述第二中位数以及设定的所述波动范围确定所述第二浮动范围。The second floating range is determined based on the second median and the set fluctuation range. 4.根据权利要求1所述的方法,其特征在于,所述计算所述检测对象的边缘变化参数,包括:4. The method according to claim 1, wherein the calculating the edge change parameter of the detection object comprises: 对所述多个第一距离参数中,处于所述第一浮动范围内的距离参数求平均,得到第一平均值;averaging the distance parameters within the first floating range among the plurality of first distance parameters to obtain a first average value; 对所述多个第二距离参数中,处于所述第二浮动范围内的距离参数求平均,得到第二平均值;averaging the distance parameters within the second floating range among the plurality of second distance parameters to obtain a second average value; 基于所述第一平均值和所述第二平均值,计算所述检测对象的边缘变化参数。Based on the first average value and the second average value, an edge change parameter of the detection object is calculated. 5.根据权利要求1所述的方法,其特征在于,所述方法还包括:5. The method according to claim 1, wherein the method further comprises: 判断所述纠偏量是否达到预设的纠偏阈值;Judging whether the deviation correction amount reaches a preset deviation correction threshold; 在所述纠偏量达到预设的纠偏阈值时,控制所述执行机构按照所述纠偏阈值进行纠偏操作。When the deviation correction amount reaches a preset deviation correction threshold, the actuator is controlled to perform a deviation correction operation according to the deviation correction threshold. 6.根据权利要求1所述的方法,其特征在于,所述方法还包括:6. The method of claim 1, wherein the method further comprises: 在所述多个第一距离参数中处于所述第一浮动范围内的数据量未达到所述设定比例时,或,在所述多个第二距离参数中处于所述第二浮动范围内的数据量未达到所述设定比例时,发出复检提示信息。When the amount of data within the first floating range among the plurality of first distance parameters does not reach the set ratio, or, within the second floating range among the plurality of second distance parameters When the amount of data does not reach the set ratio, a recheck prompt message will be sent. 7.一种电芯的纠偏装置,其特征在于,所述装置包括:7. A device for correcting deviation of a cell, wherein the device comprises: 获取模块,用于在电芯的卷绕过程中,获取多个图像采集设备分别在各自的固定视野下对所述电芯进行图像采集得到的多张检测图像;an acquisition module, used for acquiring a plurality of detection images obtained by image acquisition of the battery cell by a plurality of image acquisition devices under their respective fixed fields of view during the winding process of the battery cell; 识别模块,用于根据所述多张检测图像,得到所述电芯的检测对象卷绕至各层的第一边缘到第一基准线之间的多个第一距离参数,以及所述检测对象卷绕至各层的第二边缘到第二基准线之间的多个第二距离参数,所述检测对象包括阳极片、阴极片或隔膜;An identification module, configured to obtain, according to the plurality of detection images, a plurality of first distance parameters between the detection object of the battery cell wound to the first edge of each layer and the first reference line, and the detection object Winding to a plurality of second distance parameters between the second edge of each layer and the second reference line, the detection object includes an anode sheet, a cathode sheet or a separator; 计算模块,用于在所述多个第一距离参数中,满足第一浮动范围的数据量达到设定比例,且在所述多个第二距离参数中,满足第二浮动范围的数据量达到所述设定比例时,计算所述检测对象的边缘变化参数,所述第一浮动范围、所述第二浮动范围分别根据所述检测对象在所有层下的所有第一距离参数、所有第二距离参数确定;The calculation module is used for, among the plurality of first distance parameters, the amount of data satisfying the first floating range reaches a set ratio, and among the plurality of second distance parameters, the amount of data satisfying the second floating range reaches When setting the scale, the edge change parameters of the detection object are calculated, and the first floating range and the second floating range are respectively based on all the first distance parameters and all the second distance parameters of the detection object under all layers. The distance parameter is determined; 所述计算模块,还用于将所述检测对象的边缘变化参数与预先得到的纠偏基准进行对比,得到所述检测对象的纠偏量,所述检测对象的纠偏量用于提供给执行机构以对下一个电芯进行纠偏。The calculation module is also used to compare the edge change parameters of the detection object with the pre-obtained deviation correction reference to obtain the deviation correction amount of the detection object, and the deviation correction amount of the detection object is used to provide the actuator to correct the deviation. Correct the deviation of the next cell. 8.一种纠偏控制设备,其特征在于,所述纠偏控制设备包括:8. A deviation correction control device, characterized in that, the deviation correction control device comprises: 存储器;memory; 处理器;processor; 所述存储器上存储有所述处理器可执行的计算机程序,所述计算机程序被所述处理器执行时执行权利要求1-6任一项所述的方法。A computer program executable by the processor is stored on the memory, and when the computer program is executed by the processor, the method of any one of claims 1-6 is executed. 9.一种纠偏系统,其特征在于,所述系统包括:图像采集设备、执行机构以及权利要求8所述的纠偏控制设备;9. A deviation correction system, characterized in that, the system comprises: an image acquisition device, an executive mechanism, and the deviation correction control device according to claim 8; 所述图像采集设备和所述执行机构均与所述纠偏控制设备连接;Both the image acquisition device and the actuator are connected to the deviation correction control device; 所述图像采集设备,用于在固定视野下对卷绕过程中的电芯进行图像采集,并将采集的多张检测图像发送给所述纠偏控制设备;The image acquisition device is used for image acquisition of the cell during the winding process under a fixed field of view, and sends the collected multiple detection images to the deviation correction control device; 所述纠偏控制设备,用于根据所述多张检测图像计算纠偏量,并根据所述纠偏量控制所述执行机构对下一个电芯进行纠偏。The deviation correction control device is configured to calculate a deviation correction amount according to the plurality of detection images, and control the actuator to correct deviation of the next cell according to the deviation correction amount. 10.一种存储介质,其特征在于,所述存储介质上存储有处理器可执行的计算机程序,所述计算机程序被所述处理器执行时执行权利要求1-6任一项所述的方法。10. A storage medium, wherein a computer program executable by a processor is stored on the storage medium, and when the computer program is executed by the processor, the method according to any one of claims 1-6 is executed .
CN202010248910.7A 2020-03-31 2020-03-31 Correction method, device, correction control device and correction system for battery cells Active CN111416142B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010248910.7A CN111416142B (en) 2020-03-31 2020-03-31 Correction method, device, correction control device and correction system for battery cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010248910.7A CN111416142B (en) 2020-03-31 2020-03-31 Correction method, device, correction control device and correction system for battery cells

Publications (2)

Publication Number Publication Date
CN111416142A true CN111416142A (en) 2020-07-14
CN111416142B CN111416142B (en) 2021-03-30

Family

ID=71493355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010248910.7A Active CN111416142B (en) 2020-03-31 2020-03-31 Correction method, device, correction control device and correction system for battery cells

Country Status (1)

Country Link
CN (1) CN111416142B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112286235A (en) * 2020-10-30 2021-01-29 广东利元亨智能装备股份有限公司 Trajectory-based control method
CN115236074A (en) * 2022-06-21 2022-10-25 广州超音速自动化科技股份有限公司 Detection method, system and platform for lithium battery pole piece lamination
CN115808130A (en) * 2021-10-14 2023-03-17 宁德时代新能源科技股份有限公司 Battery cell winding calibration method and equipment
CN115872209A (en) * 2023-01-16 2023-03-31 钛玛科(北京)工业科技有限公司 Automatic CCD closed loop deviation rectification control system of centering
WO2023050065A1 (en) * 2021-09-28 2023-04-06 宁德时代新能源科技股份有限公司 Offset detection method and offset detection device
WO2023070552A1 (en) * 2021-10-29 2023-05-04 宁德时代新能源科技股份有限公司 Method and apparatus for testing coverage of jelly roll of battery during winding, and device
CN116199023A (en) * 2023-04-27 2023-06-02 宁德时代新能源科技股份有限公司 Control method and device for deviation correction of winding mechanism, electronic equipment and storage medium
WO2023133690A1 (en) * 2022-01-11 2023-07-20 宁德时代新能源科技股份有限公司 Measurement method, measurement apparatus and measurement system for winding gap between electrode plates
WO2023141971A1 (en) * 2022-01-28 2023-08-03 宁德时代新能源科技股份有限公司 Double-sided coating deviation rectification method and apparatus
WO2023217040A1 (en) * 2022-05-07 2023-11-16 宁德时代新能源科技股份有限公司 Deviation correction apparatus and winding machine
WO2024055267A1 (en) * 2022-09-16 2024-03-21 宁德时代新能源科技股份有限公司 Wound cell detection method and apparatus
WO2024124746A1 (en) * 2022-12-15 2024-06-20 宁德时代新能源科技股份有限公司 Pole piece labeling control method and apparatus, and electronic device and storage medium
EP4369292A4 (en) * 2022-04-08 2025-02-12 Contemporary Amperex Technology Hong Kong Ltd OFFSET DETECTION METHOD AND DEVICE, CONVEYING DEVICE AND STORAGE MEDIUM
WO2025030880A1 (en) * 2023-08-07 2025-02-13 宁德时代新能源科技股份有限公司 Method and device for coating deviation correction

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221252A (en) * 1996-02-16 1997-08-26 Sony Corp Travel guiding device and travel guiding method for belt-like member
CN101911365A (en) * 2008-01-11 2010-12-08 丰田自动车株式会社 Electrode take-up apparatus and electrode take-up method
CN102800886A (en) * 2011-05-24 2012-11-28 深圳市吉阳自动化科技有限公司 Deviation correction control method and device for pole piece winding and pole piece winding machine
CN102931438A (en) * 2011-08-11 2013-02-13 深圳市吉阳自动化科技有限公司 Pole piece correction method and lamination machine
US20140020239A1 (en) * 2011-04-07 2014-01-23 Nissan Motor Co., Ltd. Stacking apparatus and stacking method
CN104091977A (en) * 2014-05-06 2014-10-08 无锡日联科技有限公司 Detection method of coiled lithium ion battery
CN104577215A (en) * 2014-12-31 2015-04-29 深圳市赢合科技股份有限公司 Pole piece winding method and equipment
CN107681202A (en) * 2017-11-06 2018-02-09 无锡先导智能装备股份有限公司 A kind of CCD feedbacks correction closed loop control method, control device and control system
CN107799831A (en) * 2017-11-06 2018-03-13 无锡先导智能装备股份有限公司 The determination method and determining device of a kind of battery core datum line
CN109390636A (en) * 2018-08-31 2019-02-26 广州超音速自动化科技股份有限公司 Sutomatic winding machine pole piece deviation correction method, electronic equipment, storage medium and system
CN109786853A (en) * 2018-12-28 2019-05-21 惠州锂威新能源科技有限公司 A kind of automatic correcting method of lithium battery coiling winding layer boundary displacement
CN209626350U (en) * 2019-03-05 2019-11-12 惠州市隆合科技有限公司 A kind of lithium battery electric core tape sticking device of CCD correction

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221252A (en) * 1996-02-16 1997-08-26 Sony Corp Travel guiding device and travel guiding method for belt-like member
CN101911365A (en) * 2008-01-11 2010-12-08 丰田自动车株式会社 Electrode take-up apparatus and electrode take-up method
US20140020239A1 (en) * 2011-04-07 2014-01-23 Nissan Motor Co., Ltd. Stacking apparatus and stacking method
CN102800886A (en) * 2011-05-24 2012-11-28 深圳市吉阳自动化科技有限公司 Deviation correction control method and device for pole piece winding and pole piece winding machine
CN102931438A (en) * 2011-08-11 2013-02-13 深圳市吉阳自动化科技有限公司 Pole piece correction method and lamination machine
CN104091977A (en) * 2014-05-06 2014-10-08 无锡日联科技有限公司 Detection method of coiled lithium ion battery
CN104577215A (en) * 2014-12-31 2015-04-29 深圳市赢合科技股份有限公司 Pole piece winding method and equipment
CN107681202A (en) * 2017-11-06 2018-02-09 无锡先导智能装备股份有限公司 A kind of CCD feedbacks correction closed loop control method, control device and control system
CN107799831A (en) * 2017-11-06 2018-03-13 无锡先导智能装备股份有限公司 The determination method and determining device of a kind of battery core datum line
CN109390636A (en) * 2018-08-31 2019-02-26 广州超音速自动化科技股份有限公司 Sutomatic winding machine pole piece deviation correction method, electronic equipment, storage medium and system
CN109786853A (en) * 2018-12-28 2019-05-21 惠州锂威新能源科技有限公司 A kind of automatic correcting method of lithium battery coiling winding layer boundary displacement
CN209626350U (en) * 2019-03-05 2019-11-12 惠州市隆合科技有限公司 A kind of lithium battery electric core tape sticking device of CCD correction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖艳军: "电池极片生产线纠偏控制器的设计", 《机械设计与制造》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112286235A (en) * 2020-10-30 2021-01-29 广东利元亨智能装备股份有限公司 Trajectory-based control method
WO2023050065A1 (en) * 2021-09-28 2023-04-06 宁德时代新能源科技股份有限公司 Offset detection method and offset detection device
CN115808130B (en) * 2021-10-14 2023-12-12 宁德时代新能源科技股份有限公司 Battery cell winding calibration method and device
CN115808130A (en) * 2021-10-14 2023-03-17 宁德时代新能源科技股份有限公司 Battery cell winding calibration method and equipment
WO2023061284A1 (en) * 2021-10-14 2023-04-20 宁德时代新能源科技股份有限公司 Cell winding calibration method and apparatus, device and cell winding system
US12140413B2 (en) 2021-10-14 2024-11-12 Contemporary Amperex Technology (Hong Kong) Limited Cell winding calibration method, apparatus, and device, and cell winding system
WO2023070552A1 (en) * 2021-10-29 2023-05-04 宁德时代新能源科技股份有限公司 Method and apparatus for testing coverage of jelly roll of battery during winding, and device
WO2023133690A1 (en) * 2022-01-11 2023-07-20 宁德时代新能源科技股份有限公司 Measurement method, measurement apparatus and measurement system for winding gap between electrode plates
US11978879B1 (en) 2022-01-28 2024-05-07 Contemporary Amperex Technology Co., Limited Deviation-correcting method and apparatus for double-sided coating
WO2023141971A1 (en) * 2022-01-28 2023-08-03 宁德时代新能源科技股份有限公司 Double-sided coating deviation rectification method and apparatus
EP4369292A4 (en) * 2022-04-08 2025-02-12 Contemporary Amperex Technology Hong Kong Ltd OFFSET DETECTION METHOD AND DEVICE, CONVEYING DEVICE AND STORAGE MEDIUM
WO2023217040A1 (en) * 2022-05-07 2023-11-16 宁德时代新能源科技股份有限公司 Deviation correction apparatus and winding machine
CN115236074A (en) * 2022-06-21 2022-10-25 广州超音速自动化科技股份有限公司 Detection method, system and platform for lithium battery pole piece lamination
WO2024055267A1 (en) * 2022-09-16 2024-03-21 宁德时代新能源科技股份有限公司 Wound cell detection method and apparatus
WO2024124746A1 (en) * 2022-12-15 2024-06-20 宁德时代新能源科技股份有限公司 Pole piece labeling control method and apparatus, and electronic device and storage medium
CN115872209A (en) * 2023-01-16 2023-03-31 钛玛科(北京)工业科技有限公司 Automatic CCD closed loop deviation rectification control system of centering
CN116199023B (en) * 2023-04-27 2023-09-29 宁德时代新能源科技股份有限公司 Control method and device for deviation correction of winding mechanism, electronic equipment and storage medium
CN116199023A (en) * 2023-04-27 2023-06-02 宁德时代新能源科技股份有限公司 Control method and device for deviation correction of winding mechanism, electronic equipment and storage medium
WO2025030880A1 (en) * 2023-08-07 2025-02-13 宁德时代新能源科技股份有限公司 Method and device for coating deviation correction

Also Published As

Publication number Publication date
CN111416142B (en) 2021-03-30

Similar Documents

Publication Publication Date Title
CN111416142A (en) Correction method and device for battery cell, correction control equipment and correction system
EP4350621A1 (en) Bare cell appearance inspection method and apparatus, computer device, and storage medium
CN111193072B (en) Tab inspection and correction method and device
CN117213372B (en) Pole piece detection method and system
CN106623493B (en) A kind of detection method of steel band punching Continuous maching
US20230032166A1 (en) System and method for reproducible manufacturing of electrode for secondary battery
CN118347413B (en) Winding type coating detection system
WO2023070552A1 (en) Method and apparatus for testing coverage of jelly roll of battery during winding, and device
EP4220812B1 (en) Apparatus and method for inspecting disconnection of electrode tab of battery cell
CN111539943A (en) Multi-camera-based lithium battery pole piece stacking position measuring method, device and system
CN113945302B (en) Method and device for determining internal temperature of battery
WO2024000515A1 (en) Coating size deviation correction method and apparatus, device, storage medium, and program product
CN115435691A (en) Electrode material line position determining method, device, equipment and storage medium
EP3486975B1 (en) Method for manufacturing a secondary battery electrode
US11946893B2 (en) Method, apparatus, electronic device and storage medium for detecting water content in battery
CN117444442A (en) Automatic welding method, welding system and storage medium
CN116804611A (en) Automatic evaluation method and system for inspection equipment
CN117718198A (en) Coating deviation correction control method, device, computer equipment and storage medium
TWI819831B (en) Method and apparatus for battery inspection
CN113405610B (en) Temperature and humidity measuring device for wood structure building production and processing based on intelligent manufacturing
WO2024000514A1 (en) Electrode plate test apparatus, method and system
CN111369509A (en) Product detection compensation method, device, product monitoring system and storage medium
US20230333168A1 (en) Method and device for battery detection
JP2025508894A (en) System and method for detecting defects in electrodes - Patents.com
EP4487105A1 (en) Systems and methods for detection of defects in electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant