[go: up one dir, main page]

CN111405667B - Node and method for TDMA dynamic time slot allocation based on linear prediction - Google Patents

Node and method for TDMA dynamic time slot allocation based on linear prediction Download PDF

Info

Publication number
CN111405667B
CN111405667B CN202010185166.0A CN202010185166A CN111405667B CN 111405667 B CN111405667 B CN 111405667B CN 202010185166 A CN202010185166 A CN 202010185166A CN 111405667 B CN111405667 B CN 111405667B
Authority
CN
China
Prior art keywords
device node
message
node
parameter
time slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010185166.0A
Other languages
Chinese (zh)
Other versions
CN111405667A (en
Inventor
徐川
曾日辉
龚亮明
赵国锋
邢媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN202010185166.0A priority Critical patent/CN111405667B/en
Publication of CN111405667A publication Critical patent/CN111405667A/en
Application granted granted Critical
Publication of CN111405667B publication Critical patent/CN111405667B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

The invention provides a TDMA dynamic time slot allocation method based on linear prediction, which belongs to the technical field of wireless Wi-Fi communication and comprises the steps of dividing time into periodic superframes; the equipment node sends a first message to the access node in a feedback frame; the access node performs linear regression prediction based on the first message; the access node transmits the predicted slot allocation information to the device node via a beacon frame. The invention aims to solve the problem that the existing time slot allocation method of the Wi-Fi technology in the industrial Internet of things cannot adapt to business diversity, and can improve the overall performance of the network.

Description

基于线性预测的TDMA动态时隙分配的节点及其方法Node and method for TDMA dynamic time slot allocation based on linear prediction

技术领域technical field

本发明属于无线Wi-Fi通信技术领域,具体涉及一种基于线性预测的TDMA 动态时隙分配的节点及其方法。The invention belongs to the technical field of wireless Wi-Fi communication, and in particular relates to a node and a method for TDMA dynamic time slot allocation based on linear prediction.

背景技术Background technique

近年来,随着工业技术的革新,工业物联网的应用范围越来越广。传统工业物联网无线协议主要是采用IEEE 802.15.4协议,但现在,Wi-Fi技术逐渐成为工业物联网的主流技术。凭借速率高、价格低、开发方便等优势,Wi-Fi在工业物联网界得到迅速普及,许多工业设备厂商都推出了针对IEEE 802.11协议族的工业无线以太网产品。In recent years, with the innovation of industrial technology, the application scope of the Industrial Internet of Things has become wider and wider. The traditional industrial IoT wireless protocol mainly adopts the IEEE 802.15.4 protocol, but now, Wi-Fi technology has gradually become the mainstream technology of the industrial IoT. With the advantages of high speed, low price, and easy development, Wi-Fi has been rapidly popularized in the industrial Internet of Things industry. Many industrial equipment manufacturers have launched industrial wireless Ethernet products for the IEEE 802.11 protocol family.

为了满足工业物联网中通信的实时性要求,现有技术通过将IEEE 802.11协议由原有的载波监听多路访问(Carrier Sense Multiple Access,CSMA)改造为时分多址接入(Time Division Multiple Access,TDMA)方式。目前基于TDMA 协议工业无线技术主要采用相对固定时隙分配方法,每个设备节点需要人工配置或者重新连接才能更新分配的时隙资源数目,适用于单一类型的传统传感设备。随着越来越多的音视频设备作为媒体控制应用不断地部署到工厂中,为数据业务带来了多样化特性的同时,也造成传输业务在时延和带宽上的需求具有多样性。现有的时隙分配算法不能根据业务的变化而调整分配方案,无法满足已经多样化的工业物联网数据业务,因此,工业界亟需一种针对工业环境中传输业务多样性的实时动态时隙分配方法。In order to meet the real-time requirements of communication in the Industrial Internet of Things, the existing technology transforms the IEEE 802.11 protocol from the original Carrier Sense Multiple Access (CSMA) to Time Division Multiple Access (Time Division Multiple Access, TDMA) method. At present, the industrial wireless technology based on the TDMA protocol mainly adopts a relatively fixed time slot allocation method. Each device node needs to be manually configured or reconnected to update the number of allocated time slot resources, which is suitable for a single type of traditional sensing equipment. As more and more audio and video devices are continuously deployed in factories as media control applications, it brings diversified features to data services, and also causes diverse demands on latency and bandwidth for transmission services. The existing time slot allocation algorithm cannot adjust the allocation scheme according to the changes of the business, and cannot meet the already diversified data services of the Industrial Internet of Things. Therefore, the industry urgently needs a real-time dynamic time slot for the diversity of transmission services in the industrial environment. allocation method.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本发明的目的在于提供一种适用于工业物联网业务多样性的时隙分配方法,尤其涉及一种基于线性预测的TDMA动态时隙分配的节点及其方法。In view of this, the purpose of the present invention is to provide a time slot allocation method suitable for industrial Internet of Things business diversity, in particular to a node and method for TDMA dynamic time slot allocation based on linear prediction.

为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:

基于线性预测的TDMA动态时隙分配方法,其特征在于,包括以下步骤:The TDMA dynamic time slot allocation method based on linear prediction is characterized in that, comprises the following steps:

S1、将时间划分为周期性的超帧,其中,所述超帧至少包括信标帧、反馈帧和数据传输帧;S1, dividing time into periodic superframes, wherein the superframes at least include a beacon frame, a feedback frame and a data transmission frame;

S2、设备节点在反馈帧向接入节点发送第一消息,其中,所述第一消息包括设备节点当前数据队列长度消息和/或更新标志消息;S2. The device node sends a first message to the access node in the feedback frame, where the first message includes a current data queue length message and/or an update flag message of the device node;

S3、接入节点基于所述第一消息,进行线性回归预测;S3. The access node performs linear regression prediction based on the first message;

S4、接入节点将预测的时隙分配信息经由信标帧发送至设备节点。S4. The access node sends the predicted time slot allocation information to the device node via the beacon frame.

可选地,所述信标帧包括在保留字段的添加部分,其中,所述添加部分至少携带调度字段,用以携带预测的时隙分配信息。Optionally, the beacon frame includes an added part of a reserved field, wherein the added part carries at least a scheduling field for carrying predicted time slot allocation information.

可选地,所述接入节点基于所述第一消息进行线性回归预测之前,还包括根据第一消息中的更新标志消息进行参数更新。Optionally, before the access node performs the linear regression prediction based on the first message, the method further includes performing parameter update according to the update flag message in the first message.

可选地,所述接入节点基于所述第一消息,进行线性回归预测还包括,使用第一参数ω和第二参数b,通过公式f(Tn)=ωTn+b,n∈(1,2,…,K)计算K 个设备节点中的设备节点n在队列长度为Tn时的预测时隙分配数f(Tn)。Optionally, the access node performing linear regression prediction based on the first message further includes, using the first parameter ω and the second parameter b, by formula f(T n )=ωT n +b, n∈( 1, 2, . . . , K) calculates the predicted time slot allocation number f(T n ) of the device node n among the K device nodes when the queue length is T n .

本公开中的方法利用线性预测算法,有效地解决了时隙分配的难题,圆满地解决了现有工业物联网中业务多样性带来的资源分配技术问题。The method in the present disclosure effectively solves the problem of time slot allocation by using a linear prediction algorithm, and satisfactorily solves the technical problem of resource allocation caused by business diversity in the existing Industrial Internet of Things.

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure.

附图说明Description of drawings

为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical solutions and beneficial effects of the present invention clearer, the present invention provides the following drawings for description:

图1是本发明采用的超帧结构示意图;Fig. 1 is the superframe structure schematic diagram that the present invention adopts;

图2是本发明采用的反馈帧结构示意图;2 is a schematic diagram of a feedback frame structure adopted by the present invention;

图3是本发明采用的动态时隙分配流程框图;Fig. 3 is the dynamic time slot allocation flow diagram that the present invention adopts;

图4是本发明采用的基于线性回归的时隙预测算法流程框图;Fig. 4 is the time slot prediction algorithm flow diagram based on linear regression that the present invention adopts;

图5是本发明采用的Beacon帧结构示意图。FIG. 5 is a schematic diagram of a Beacon frame structure adopted in the present invention.

具体实施方式Detailed ways

下面结合说明书附图对本发明进行进一步的说明。The present invention will be further described below with reference to the accompanying drawings.

如图1所示,为本发明所采用的超帧结构示意图。对于超帧T,在其周期范围内,被划分为信标区(Beacon),反馈区(CSMA)和数据传输区(TDMA)。在任一区域内,均包含至少一个时隙(Time Slot)。较好地,可以将信标区的时隙定义为1个时隙,反馈区定义为3个时隙,以及数据传输区定位为30个时隙长度。较好地,接入节点(Access Point,AP)在信标区以广播形式发送信标信号,信标信号包含诸多系统信息,同步信息,以及各种资源分配信息,比如时隙分配表。多种业务发送的设备节点则在反馈区中向AP发送各种反馈信息,或者请求信息等,或者由AP向设备节点发送ACK应答信息。最后在数据传输区,AP与设备节点之间上下行通信。As shown in FIG. 1 , it is a schematic diagram of a superframe structure adopted in the present invention. The superframe T is divided into a beacon area (Beacon), a feedback area (CSMA) and a data transfer area (TDMA) within its period range. In any area, at least one time slot (Time Slot) is included. Preferably, the time slot of the beacon area may be defined as 1 time slot, the feedback area may be defined as 3 time slots, and the data transmission area may be positioned as 30 time slots in length. Preferably, an access node (Access Point, AP) sends a beacon signal in the form of broadcasting in the beacon area, and the beacon signal includes a lot of system information, synchronization information, and various resource allocation information, such as a time slot allocation table. The device node sending multiple services sends various feedback information, or request information, etc. to the AP in the feedback area, or the AP sends ACK response information to the device node. Finally, in the data transmission area, uplink and downlink communication between AP and device node.

参考图2,是本发明的反馈区帧结构示意图。在其中,示例地包含24字节的头部信息,7字节的帧信息以及FCS字段。在7字节的帧信息中,包含了帧识别码(Element ID),帧长度信息(Length),设备节点的关联识别码(Association ID,AID),以及数据队列长度信息(Dataqueuelength)。反馈区发送的管理帧也被称作INFO_FEEDBACK帧。通常地,如果设备节点成功发送 INFO_FEEDBACK帧,则AP将会返回ACK应答帧;如果发送失败或者没有收到任何应答或者受到NACK应答帧,则设备节点将在下一个反馈阶段内重新发送INFO_FEEDBACK帧。Referring to FIG. 2, it is a schematic diagram of the frame structure of the feedback area of the present invention. Among them, the header information of 24 bytes, the frame information of 7 bytes, and the FCS field are exemplarily included. In the 7-byte frame information, the frame identification code (Element ID), the frame length information (Length), the association identification code (Association ID, AID) of the device node, and the data queue length information (Dataqueuelength) are included. The management frame sent in the feedback area is also called an INFO_FEEDBACK frame. Generally, if the device node successfully sends an INFO_FEEDBACK frame, the AP will return an ACK response frame; if the transmission fails or does not receive any response or receives a NACK response frame, the device node will resend the INFO_FEEDBACK frame in the next feedback phase.

参考图3,为本发明优选实施例的动态时隙分配流程框图。在图中,步骤 301是当前信道资源的总体划分方案。整个系统将时间资源划分为周期性的超帧,即如图1所述的超帧,进一步地将其划分为多个相等或不等的时隙,又将相等数量或者不相等数量的相邻时隙组成三个区域。其中第一区域用于AP发送包括信标beacon在内的广播信息,同步信息,设备节点专用信息等,称为信标区。相邻的部分时隙组成反馈区(CSMA),用于设备节点向AP或者由AP向设备节点发送反馈信息。反馈信息的组成复杂多样,比如设备节点可以向AP反馈信道信息,反馈AP请求的任何信息,或者反馈缓存队列长度信息等。同样,AP也可以在本区域向设备节点反馈信息,主要包括ACK/NACK应答信息。Referring to FIG. 3 , it is a flow chart of dynamic time slot allocation according to a preferred embodiment of the present invention. In the figure, step 301 is the overall division scheme of the current channel resources. The whole system divides time resources into periodic superframes, that is, superframes as shown in Figure 1, and further divides them into multiple equal or unequal time slots, and divides equal or unequal number of adjacent time slots. The time slots make up three regions. The first area is used for the AP to send broadcast information including beacons, synchronization information, device node-specific information, etc., and is called a beacon area. Part of the adjacent time slots form a feedback area (CSMA) for the device node to send feedback information to the AP or from the AP to the device node. The composition of the feedback information is complex and diverse. For example, the device node can feed back channel information to the AP, feed back any information requested by the AP, or feed back buffer queue length information. Similarly, the AP can also feed back information to the device node in this area, mainly including ACK/NACK response information.

在步骤302,设备节点向AP发送反馈的第一信息。其中,所述第一信息负载在如图2所示的管理帧结构上。第一信息中至少包含数据队列长度信息和更新标志位,由设备节点发送至AP,以告知AP,此刻在设备节点处有多少数据需要分配时隙。另一方面,设备节点产生了需要发送的数据队列,还需要根据历史时隙分配信息与当前需要发送的数据队列长度进行比较和判断,此前的时隙分配是否满足要求。若不满足要求,则将第一信息中更新标志位置1,表示需要更新参数。若已满足要求,则将第一信息中更新标志位置0,表示无需更新参数。In step 302, the device node sends the feedback first information to the AP. Wherein, the first information is carried on the management frame structure as shown in FIG. 2 . The first information at least includes data queue length information and an update flag, which is sent by the device node to the AP to inform the AP how much data at the device node needs to allocate a time slot at the moment. On the other hand, when the device node generates a data queue to be sent, it is also necessary to compare and judge whether the previous time slot allocation meets the requirements according to the historical time slot allocation information and the current data queue length to be sent. If the requirement is not met, the update flag in the first information is set to 1, indicating that the parameter needs to be updated. If the requirement has been met, the update flag position in the first information is set to 0, indicating that the parameter does not need to be updated.

步骤303,AP依据接收到的第一信息中的至少数据队列长度信息和更新标志位进行线性回归预测,获得预测的时隙分配结果。若更新标志位为0,则采用原有的参数。若更新标志位为1,则需要重新计算更新参数。无论原有参数还是更新后的参数,均包含第一参数ω和第二参数b。对于任一次计算参数,都是基于最小二乘法建立数据模型,通过均方误差最小化进行求解第一参数ω和第二参数b的值,如下所示:Step 303, the AP performs linear regression prediction according to at least the data queue length information and the update flag bit in the received first information, and obtains the predicted time slot allocation result. If the update flag is 0, the original parameters are used. If the update flag is 1, the update parameters need to be recalculated. Both the original parameter and the updated parameter include the first parameter ω and the second parameter b. For any calculation parameter, a data model is established based on the least square method, and the values of the first parameter ω and the second parameter b are solved by minimizing the mean square error, as shown below:

Figure BDA0002413924060000041
Figure BDA0002413924060000041

通过函数

Figure BDA0002413924060000042
对ω和b求偏导数计算出ω和b的特定值:by function
Figure BDA0002413924060000042
Taking the partial derivatives with respect to ω and b computes specific values of ω and b:

Figure BDA0002413924060000043
Figure BDA0002413924060000043

Figure BDA0002413924060000044
Figure BDA0002413924060000044

Figure BDA0002413924060000045
Figure BDA0002413924060000045

Figure BDA0002413924060000051
Figure BDA0002413924060000051

其中,

Figure BDA0002413924060000052
表示设备节点前N次预测分配时隙的平均数目,
Figure BDA0002413924060000053
表示设备节点前N 次数据队列平均长度,f(Ti)表示设备节点第i次预测分配的时隙数,N表示设备节点分配时隙的历史总次数,Si表示设备节点的第i次分配的时隙数,Ti表示设备节点历史第i次数据队列长度。in,
Figure BDA0002413924060000052
Represents the average number of time slots allocated for the first N predictions of the device node,
Figure BDA0002413924060000053
Represents the average length of the first N data queues of the device node, f(T i ) represents the number of time slots allocated by the device node for the i-th prediction, N represents the historical total number of timeslots allocated by the device node, and S i represents the i-th time of the device node. The number of time slots allocated, T i represents the length of the i-th data queue in the history of the device node.

即当设备节点认为需要更新时,请求AP更新,则AP依照本算法,使用历史数据队列长度信息Ti(i=1,2,...,N),计算对应的第一参数ω和第二参数b。无需更新时,可略过此计算内容。That is, when the device node thinks it needs to be updated and requests the AP to update, the AP uses the historical data queue length information T i (i=1,2,...,N) to calculate the corresponding first parameter ω and the first parameter according to this algorithm. The second parameter b. This calculation can be skipped when no update is required.

使用第一参数和第二参数,AP通过公式f(Tn)=ωTn+b,n∈(1,2,…,K) 建立时隙预测模型。其中,Tn表示设备节点n的当前数据队列长度,f(Tn)表示在Tn下预测的时隙数目,ω和b是预测函数的参数,也即前述步骤中的第一参数和第二参数。预测的目的是让f(Tn)的值靠近设备节点n实际需要的时隙数目Sn,即

Figure BDA0002413924060000054
Using the first parameter and the second parameter, the AP builds the slot prediction model by the formula f(T n )=ωT n +b, n∈(1,2,...,K). Among them, T n represents the current data queue length of the device node n, f(T n ) represents the number of time slots predicted under T n , ω and b are the parameters of the prediction function, that is, the first parameter and the first parameter in the preceding steps Two parameters. The purpose of the prediction is to make the value of f(T n ) close to the number of time slots S n actually required by the device node n, that is
Figure BDA0002413924060000054

如图4所示的计算流程,AP存有设备节点发送的历史队列长度信息,基于该信息,AP能够或者曾经计算出适合与历史队列信息的第一参数和第二参数。 AP从设备节点接收第一信息,还包括识别更新标志位是否需要更新。若需要更新,则按照步骤303中所述的方案,进行一次参数计算,并将设备节点此次发送的队列线长度信息输入更新参数后的预测模型;若无需更新,则直接将设备节点此次发送的队列长度信息输入原有参数的预测模型。AP在两种选项中均计算出预测的设备节点时隙分配结果,将此结果更新到历史队列长度信息中。As shown in the calculation process shown in FIG. 4 , the AP stores the historical queue length information sent by the device node. Based on this information, the AP can or has calculated the first parameter and the second parameter suitable for the historical queue information. The AP receives the first information from the device node, and further includes identifying whether the update flag needs to be updated. If it needs to be updated, perform a parameter calculation according to the scheme described in step 303, and input the queue line length information sent by the device node this time into the prediction model after updating the parameters; The sent queue length information is input into the prediction model of the original parameters. The AP calculates the predicted time slot allocation result of the device node in both options, and updates the result to the historical queue length information.

回到图3中,在步骤304,AP依据计算好的各设备节点预测时隙分配数目,列出时隙表,经由信标区发送至各设备节点,各设备节点依据所述时隙表与AP 进行通信。Returning to FIG. 3, in step 304, the AP predicts the number of time slot allocations for each device node calculated, lists the time slot table, and sends it to each device node via the beacon area, and each device node according to the time slot table and AP to communicate.

参考图5,是本发明采用的Beacon帧结构示意图。为了适应本发明中的方案,在原有的Beacon帧结构中,将保留字段的部分或全部修改为本发明的添加部分帧,用于携带所述时隙分配信息,比如时隙表。其中,时隙分配信息在存放在Schedule字段,其他内容还可以包括帧识别码(Element ID)字段,帧长度信息字段(Length),绝对超帧号(ASN)字段,当前超帧长度(sLen)字段和指示Schedule字段大小的Size字段。其中,各个设备节点的时隙分配信息通过位运算添加到Schedule字段。设备节点根据AID通过位运算解析出专属的时隙分配信息,并更新自身的时隙表。Referring to FIG. 5 , it is a schematic diagram of the structure of the Beacon frame adopted by the present invention. In order to adapt to the solution in the present invention, in the original Beacon frame structure, part or all of the reserved fields are modified into the added partial frame of the present invention, which is used to carry the time slot allocation information, such as a time slot table. Among them, the time slot allocation information is stored in the Schedule field, and other contents may also include the frame identification code (Element ID) field, the frame length information field (Length), the absolute superframe number (ASN) field, the current superframe length (sLen) field and the Size field indicating the size of the Schedule field. The time slot allocation information of each device node is added to the Schedule field by bit operation. The device node parses out the dedicated time slot allocation information through bit operation according to the AID, and updates its own time slot table.

本发明还涉及一种接入节点AP,包括接收模块、预测模块、中央处理器、发射模块等。将时间划分为的周期性超帧中包括信标帧、反馈帧和数据传输帧,在通信过程中,所述接收模块在反馈帧中接收来自设备节点的第一消息,其中,所述第一消息中包括设备节点当前数据队列长度消息和/或更新标志消息;预测模块基于所述第一消息,进行线性回归预测;发射模块将预测的时隙分配信息经由信标帧发送至设备节点。The invention also relates to an access node AP, which includes a receiving module, a prediction module, a central processing unit, a transmitting module and the like. The periodic superframe that divides the time into a beacon frame, a feedback frame and a data transmission frame, during the communication process, the receiving module receives the first message from the device node in the feedback frame, wherein the first message The message includes the current data queue length message and/or the update flag message of the device node; the prediction module performs linear regression prediction based on the first message; the transmission module sends the predicted time slot allocation information to the device node via the beacon frame.

本发明还涉及一种设备节点,包括接收模块、发射模块、中央处理器、缓冲存储器模块等。将时间划分为的周期性超帧中包括信标帧、反馈帧和数据传输帧,在通信过程中,所述发射模块在反馈帧中发送第一消息至接入节点,其中,所述第一消息中包括设备节点当前缓冲存储器中保存的数据队列长度消息和/或更新标志消息;接收模块在信标帧中接收接入节点AP发送来的预测的时隙分配信息。The invention also relates to a device node, including a receiving module, a transmitting module, a central processing unit, a buffer memory module and the like. The periodic superframes divided into time include beacon frames, feedback frames and data transmission frames. During the communication process, the transmitting module sends a first message to the access node in the feedback frame, wherein the first message is sent to the access node. The message includes the data queue length message and/or the update flag message stored in the current buffer memory of the device node; the receiving module receives the predicted time slot allocation information sent by the access node AP in the beacon frame.

本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps in the various methods of the above embodiments can be completed by instructing relevant hardware through a program, and the program can be stored in a computer-readable storage medium, and the storage medium can include: ROM, RAM, magnetic disk or optical disk, etc.

以上所举实施例,对本发明的目的、技术方案和优点进行了进一步的详细说明,所应理解的是,以上所举实施例仅为本发明的优选实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内对本发明所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above-mentioned embodiments further describe the purpose, technical solutions and advantages of the present invention in detail. It should be understood that the above-mentioned embodiments are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made to the present invention within the spirit and principle of the present invention shall be included within the protection scope of the present invention.

Claims (4)

1.基于线性预测的TDMA动态时隙分配方法,其特征在于,包括以下步骤:1. TDMA dynamic time slot allocation method based on linear prediction, is characterized in that, comprises the following steps: S1、将时间划分为周期性的超帧,其中,所述超帧至少包括信标区、反馈区和数据传输区;S2、设备节点在反馈区向接入节点发送第一消息,其中,所述第一消息包括设备节点当前数据队列长度消息和更新标志消息;S3、接入节点基于所述第一消息,进行线性回归预测;S4、接入节点将预测的时隙分配信息经由信标区发送至设备节点;其中,所述进行线性回归预测包括,根据第一消息中的更新标志消息进行参数更新,具体为基于最小二乘法建立数据模型,通过均方误差最小化进行求解第一参数ω和第二参数b,其中,所述最小二乘法建立数据模型为:S1. Divide the time into periodic superframes, wherein the superframe includes at least a beacon area, a feedback area and a data transmission area; S2, the device node sends a first message to the access node in the feedback area, wherein all the The first message includes a current data queue length message and an update flag message of the device node; S3, the access node performs linear regression prediction based on the first message; S4, the access node sends the predicted time slot allocation information via the beacon area Sent to the device node; wherein the performing linear regression prediction includes updating parameters according to the update flag message in the first message, specifically establishing a data model based on the least squares method, and solving the first parameter ω by minimizing the mean square error and the second parameter b, where the least squares method establishes a data model as:
Figure FDA0003533435620000011
Figure FDA0003533435620000011
通过函数
Figure FDA0003533435620000012
对ω和b求偏导数计算出ω和b的特定值:
by function
Figure FDA0003533435620000012
Taking the partial derivatives with respect to ω and b computes specific values of ω and b:
Figure FDA0003533435620000013
Figure FDA0003533435620000013
Figure FDA0003533435620000014
Figure FDA0003533435620000014
Figure FDA0003533435620000015
Figure FDA0003533435620000015
Figure FDA0003533435620000016
Figure FDA0003533435620000016
其中,
Figure FDA0003533435620000017
表示设备节点前N次预测分配时隙的平均数目,
Figure FDA0003533435620000018
表示设备节点前N次数据队列平均长度,f(Ti)表示设备节点第i次预测分配的时隙数,N表示设备节点分配时隙的总次数,Si表示设备节点的第i次分配的时隙数,Ti表示设备节点历史第i次数据队列长度;使用第一参数ω和第二参数b,通过公式f(Tn)=ωTn+b,n∈(1,2,…,K)计算K个设备节点中的设备节点n在队列长度为Tn时预测分配的时隙数f(Tn)。
in,
Figure FDA0003533435620000017
Represents the average number of time slots allocated for the first N predictions of the device node,
Figure FDA0003533435620000018
Represents the average length of the first N data queues of the device node, f(T i ) represents the number of time slots allocated by the device node for the i-th prediction, N represents the total number of timeslots allocated by the device node, and S i represents the i-th allocation of the device node. The number of time slots of , T i represents the i-th data queue length in the history of the device node; using the first parameter ω and the second parameter b, through the formula f(T n )=ωT n +b, n∈(1,2,… ,K) Calculate the number of time slots f(T n ) that the device node n in the K device nodes predicts and allocates when the queue length is T n .
2.根据权利要求1所述的方法,其特征还在于,所述信标区包括在保留字段的添加部分,其中,所述添加部分至少携带调度字段,用以携带预测的时隙分配信息。2 . The method according to claim 1 , wherein the beacon area includes an added part of a reserved field, wherein the added part carries at least a scheduling field for carrying predicted time slot allocation information. 3 . 3.基于线性预测的TDMA动态时隙分配的接入节点,至少包括接收模块、预测模块和发射模块,其特征在于,在将时间划分为周期性的超帧中至少包括信标区、反馈区和数据传输区,所述接收模块在反馈区中接收来自设备节点的第一消息,其中,所述第一消息中包括设备节点当前数据队列长度消息和更新标志消息;所述预测模块基于所述第一消息,进行线性回归预测;其中,所述进行线性回归预测包括,根据第一消息中的更新标志消息进行参数更新,具体为基于最小二乘法建立数据模型,通过均方误差最小化进行求解第一参数ω和第二参数b,其中,所述最小二乘法建立数据模型为:3. the access node of the TDMA dynamic time slot allocation based on linear prediction, at least including receiving module, predicting module and transmitting module, it is characterized in that, in the superframe that is divided into periodicity by time, at least including beacon area, feedback area and the data transmission area, the receiving module receives the first message from the device node in the feedback area, wherein the first message includes the device node current data queue length message and the update flag message; the prediction module is based on the The first message is to perform linear regression prediction; wherein the performing linear regression prediction includes updating parameters according to the update flag message in the first message, specifically establishing a data model based on the least squares method, and solving by minimizing the mean square error The first parameter ω and the second parameter b, wherein the data model established by the least squares method is:
Figure FDA0003533435620000021
Figure FDA0003533435620000021
通过函数
Figure FDA0003533435620000022
对ω和b求偏导数计算出ω和b的特定值:
by function
Figure FDA0003533435620000022
Taking the partial derivatives with respect to ω and b computes specific values of ω and b:
Figure FDA0003533435620000023
Figure FDA0003533435620000023
Figure FDA0003533435620000024
Figure FDA0003533435620000024
Figure FDA0003533435620000025
Figure FDA0003533435620000025
Figure FDA0003533435620000026
Figure FDA0003533435620000026
其中,
Figure FDA0003533435620000027
表示设备节点前N次预测分配时隙的平均数目,
Figure FDA0003533435620000028
表示设备节点前N次数据队列平均长度,f(Ti)表示设备节点第i次预测分配的时隙数,N表示设备节点分配时隙的总次数,Si表示设备节点的第i次分配的时隙数,Ti表示设备节点历史第i次数据队列长度;使用第一参数ω和第二参数b,通过公式f(Tn)=ωTn+b,n∈(1,2,…,K)计算K个设备节点中的设备节点n在队列长度为Tn时预测分配的时隙数f(Tn);
in,
Figure FDA0003533435620000027
Represents the average number of time slots allocated for the first N predictions of the device node,
Figure FDA0003533435620000028
Represents the average length of the first N data queues of the device node, f(T i ) represents the number of time slots allocated by the device node for the i-th prediction, N represents the total number of timeslots allocated by the device node, and S i represents the i-th allocation of the device node. The number of time slots of , T i represents the i-th data queue length in the history of the device node; using the first parameter ω and the second parameter b, through the formula f(T n )=ωT n +b, n∈(1,2,… , K) calculate the number of time slots f(T n ) that the device node n in the K device nodes predicts and allocates when the queue length is T n ;
所述发射模块将预测的时隙分配信息经由信标区发送至设备节点。The transmit module transmits the predicted time slot allocation information to the device node via the beacon region.
4.基于线性预测的TDMA动态时隙分配的设备节点,至少包括接收模块和发射模块,其特征在于,在将时间划分为周期性的超帧中至少包括信标区、反馈区和数据传输区,所述发射模块在反馈区中发送第一消息至接入节点,其中,所述第一消息中包括设备节点当前数据队列长度消息和更新标志消息;所述接收模块在信标区中接收接入节点发送来的预测的时隙分配信息;其中,所述接入节点发送来的预测的时隙分配信息是接入节点基于所述第一消息,进行线性回归预测的信息,并且所述进行线性回归预测包括,根据第一消息中的更新标志消息进行参数更新,具体为基于最小二乘法建立数据模型,通过均方误差最小化进行求解第一参数ω和第二参数b,其中,所述最小二乘法建立数据模型为:4. the equipment node of the TDMA dynamic time slot allocation based on linear prediction, at least comprise receiving module and transmitting module, it is characterized in that, at least comprise beacon area, feedback area and data transmission area in the superframe that is divided into periodicity by time , the transmitting module sends a first message to the access node in the feedback area, wherein the first message includes the current data queue length message and the update flag message of the device node; the receiving module receives the receiving node in the beacon area The predicted time slot allocation information sent by the access node; wherein, the predicted time slot allocation information sent by the access node is the information that the access node performs linear regression prediction based on the first message, and the performing The linear regression prediction includes updating the parameters according to the update flag message in the first message, specifically establishing a data model based on the least squares method, and solving the first parameter ω and the second parameter b by minimizing the mean square error, wherein the The least squares method establishes the data model as:
Figure FDA0003533435620000031
Figure FDA0003533435620000031
通过函数
Figure FDA0003533435620000032
对ω和b求偏导数计算出ω和b的特定值:
by function
Figure FDA0003533435620000032
Taking the partial derivatives with respect to ω and b computes specific values of ω and b:
Figure FDA0003533435620000033
Figure FDA0003533435620000033
Figure FDA0003533435620000034
Figure FDA0003533435620000034
Figure FDA0003533435620000035
Figure FDA0003533435620000035
Figure FDA0003533435620000036
Figure FDA0003533435620000036
其中,
Figure FDA0003533435620000037
表示设备节点前N次预测分配时隙的平均数目,
Figure FDA0003533435620000038
表示设备节点前N次数据队列平均长度,f(Ti)表示设备节点第i次预测分配的时隙数,N表示设备节点分配时隙的总次数,Si表示设备节点的第i次分配的时隙数,Ti表示设备节点历史第i次数据队列长度;使用第一参数ω和第二参数b,通过公式f(Tn)=ωTn+b,n∈(1,2,…,K)计算K个设备节点中的设备节点n在队列长度为Tn时预测分配的时隙数f(Tn)。
in,
Figure FDA0003533435620000037
Represents the average number of time slots allocated for the first N predictions of the device node,
Figure FDA0003533435620000038
Represents the average length of the first N data queues of the device node, f(T i ) represents the number of time slots allocated by the device node for the i-th prediction, N represents the total number of timeslots allocated by the device node, and S i represents the i-th allocation of the device node. The number of time slots of , T i represents the i-th data queue length in the history of the device node; using the first parameter ω and the second parameter b, through the formula f(T n )=ωT n +b, n∈(1,2,… ,K) Calculate the number of time slots f(T n ) that the device node n in the K device nodes predicts and allocates when the queue length is T n .
CN202010185166.0A 2020-03-17 2020-03-17 Node and method for TDMA dynamic time slot allocation based on linear prediction Active CN111405667B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010185166.0A CN111405667B (en) 2020-03-17 2020-03-17 Node and method for TDMA dynamic time slot allocation based on linear prediction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010185166.0A CN111405667B (en) 2020-03-17 2020-03-17 Node and method for TDMA dynamic time slot allocation based on linear prediction

Publications (2)

Publication Number Publication Date
CN111405667A CN111405667A (en) 2020-07-10
CN111405667B true CN111405667B (en) 2022-05-03

Family

ID=71413476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010185166.0A Active CN111405667B (en) 2020-03-17 2020-03-17 Node and method for TDMA dynamic time slot allocation based on linear prediction

Country Status (1)

Country Link
CN (1) CN111405667B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114338732B (en) * 2021-11-18 2024-05-24 河南科技大学 Hot processing multi-process data feedback method based on industrial Internet of things
CN115277306B (en) * 2022-06-27 2023-05-26 重庆邮电大学 Successive approximation-based joint scheduling method for time-sensitive network and industrial wireless network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578242A (en) * 2003-06-27 2005-02-09 三星电子株式会社 Method and system for wireless local area network (lan) communication using virtual time division multiple access (tdma)
CN103457685A (en) * 2012-05-29 2013-12-18 中国科学院沈阳自动化研究所 Method for precisely synchronizing time of industrial wireless network on basis of prediction and compensation
CN104603853A (en) * 2012-05-04 2015-05-06 李尔登公司 System and methods for coping with doppler effects in distributed-input distributed-output wireless systems
CN109729591A (en) * 2019-03-25 2019-05-07 重庆邮电大学 A Time Division Multiple Access Time Slot Assignment Method Based on Genetic Algorithm
CN109963284A (en) * 2017-12-26 2019-07-02 霍尼韦尔国际公司 The system and method for effective use for wireless bandwidth
CN110022617A (en) * 2019-04-15 2019-07-16 深圳森格瑞通信有限公司 Multi-user data transmission method and device based on intelligent high bandwidth WLAN

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578242A (en) * 2003-06-27 2005-02-09 三星电子株式会社 Method and system for wireless local area network (lan) communication using virtual time division multiple access (tdma)
CN104603853A (en) * 2012-05-04 2015-05-06 李尔登公司 System and methods for coping with doppler effects in distributed-input distributed-output wireless systems
CN103457685A (en) * 2012-05-29 2013-12-18 中国科学院沈阳自动化研究所 Method for precisely synchronizing time of industrial wireless network on basis of prediction and compensation
CN109963284A (en) * 2017-12-26 2019-07-02 霍尼韦尔国际公司 The system and method for effective use for wireless bandwidth
CN109729591A (en) * 2019-03-25 2019-05-07 重庆邮电大学 A Time Division Multiple Access Time Slot Assignment Method Based on Genetic Algorithm
CN110022617A (en) * 2019-04-15 2019-07-16 深圳森格瑞通信有限公司 Multi-user data transmission method and device based on intelligent high bandwidth WLAN

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Analysis and Implementation of Time-Slot Allocation in TDMA System with Limited Queue Constraint in WLANs;Jenhui Chen 等;《 IEEE Vehicular Technology Conference》;20070226;全文 *
EASA:一种分簇Ad Hoc网络高效自适应TDMA时隙分配算法;马柯 等;《电子学报》;20100101;全文 *
浅析TDMA时隙分配算法;陈谋 等;《无线互联科技》;20150101;全文 *

Also Published As

Publication number Publication date
CN111405667A (en) 2020-07-10

Similar Documents

Publication Publication Date Title
EP3512289B1 (en) Wireless communication method using enhanced distributed channel access, and wireless communication terminal using same
US9526092B2 (en) Method of allocating resources for scheduling request and user equipment using the same and a control node using the same
JP7264230B2 (en) Communications system
US7672259B2 (en) Wireless communication system for allocating transmission period
US11418999B2 (en) Buffer status report for high priority transmission
EP2830380B1 (en) Uplink transmission scheduling of non-Guaranteed Bit Rate bearers based on quality class indicator
CN106559904B (en) Access method and device of wireless network
CN111684755B (en) User equipment initiated low latency data transmission
CN107276628A (en) A kind of industry wireless network time slot centralised allocation method under TSCH patterns
US8660062B2 (en) Methods and apparatus for quality of service-based uplink polling schemes
US20230051808A1 (en) Prioritized service period for time sensitive transmissions
CN111405667B (en) Node and method for TDMA dynamic time slot allocation based on linear prediction
US8976743B2 (en) Method and apparatus for transmitting and receiving resource allocation scheme information in a wireless communication system
WO2017070824A1 (en) Uplink data transmission method and apparatus with shortened time delay, and communications system
WO2020078456A1 (en) Service sending method and device and terminal
JP2023542106A (en) Enhanced rate signaling in wireless networks with relay functionality
CN103037376B (en) The Adaptive Time Division Duplex system and method dynamically distributed with wireless communication system
WO2020216083A1 (en) Communication method, communication apparatus, and terminal device
CN112367669A (en) Aircraft chain type networking channel access method and system
WO2023011320A1 (en) Method for determining feedback codebook, and communication apparatus
US12245204B2 (en) Method for allocating resources in a wireless communication system
US20230189246A1 (en) Orthogonal frequency-division multiple access (ofdma) schedule alignment for mesh networking
WO2024082968A1 (en) Systems and methods for providing a low delay service in a wireless local area network (wlan)
WO2017072410A1 (en) Method and apparatus for implementing signalling to re-configure logical channels
CN119013942A (en) User equipment, scheduling node, method for user equipment and method for scheduling node

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant