CN111404503A - A Differential Capacitor AC Bridge Sensing and Controlling Circuit - Google Patents
A Differential Capacitor AC Bridge Sensing and Controlling Circuit Download PDFInfo
- Publication number
- CN111404503A CN111404503A CN202010332273.1A CN202010332273A CN111404503A CN 111404503 A CN111404503 A CN 111404503A CN 202010332273 A CN202010332273 A CN 202010332273A CN 111404503 A CN111404503 A CN 111404503A
- Authority
- CN
- China
- Prior art keywords
- differential
- voltage
- bridge
- excitation source
- controlled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 31
- 230000005284 excitation Effects 0.000 claims abstract description 39
- 238000006073 displacement reaction Methods 0.000 claims abstract description 11
- 238000011896 sensitive detection Methods 0.000 claims abstract description 10
- 230000003321 amplification Effects 0.000 claims abstract description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 6
- 238000005259 measurement Methods 0.000 claims description 30
- 239000000919 ceramic Substances 0.000 claims description 4
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 238000001914 filtration Methods 0.000 abstract description 2
- 230000002457 bidirectional effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 13
- 230000007935 neutral effect Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Description
技术领域technical field
本发明涉及位移测量、差动交流电桥测量技术领域,尤其涉及一种差动电容交流电桥传感测控电路。The invention relates to the technical field of displacement measurement and differential AC bridge measurement, in particular to a differential capacitance AC bridge sensing measurement and control circuit.
背景技术Background technique
差动电容交流电桥电路是一种高精度的测量电路,经常被用于位移测量。现有技术中,电桥的平衡调节与测控一般通过改变比率变压器的中间抽头接地点,或者采用机械方式调节电容传感器的极板间距来实现。以上调节方式均需要引入专用的机械调节机构、电子开关部件或动力,会增大设备的硬件成本,并且会引入一定的干扰,影响测量电路的精度。The differential capacitor AC bridge circuit is a high-precision measurement circuit, which is often used for displacement measurement. In the prior art, the balance adjustment and measurement and control of the bridge are generally realized by changing the ground point of the middle tap of the ratio transformer, or adjusting the distance between the plates of the capacitive sensor by mechanical means. The above adjustment methods all need to introduce special mechanical adjustment mechanisms, electronic switch components or power, which will increase the hardware cost of the equipment, and will introduce certain interference, affecting the accuracy of the measurement circuit.
发明内容SUMMARY OF THE INVENTION
针对现有技术的缺陷,提出了一种差动电容交流电桥传感测控电路,不需引入专用的机械调节机构,降低了硬件成本。Aiming at the defects of the prior art, a differential capacitor AC bridge sensing measurement and control circuit is proposed, which does not need to introduce a special mechanical adjustment mechanism and reduces the hardware cost.
本发明的一种差动电容交流电桥传感测控电路,包括:差分交流激励源,程控DAC单元,压控型运算放大器,差动电容传感器以及调制解调电路,其中,所述差分交流激励源用于产生需要频率的正弦波信号,所述差分交流激励源的两个输出端由所述压控型运算放大器构成,所述程控DAC单元为所述压控型运算放大器提供参考电压,所述差分交流激励源与所述差动电容传感器形成交流电桥,所述差动电容传感器的输出端与所述调制解调电路连接,A differential capacitance AC bridge sensing measurement and control circuit of the present invention includes: a differential AC excitation source, a program-controlled DAC unit, a voltage-controlled operational amplifier, a differential capacitance sensor and a modulation and demodulation circuit, wherein the differential AC excitation source For generating a sine wave signal with a required frequency, the two output ends of the differential AC excitation source are formed by the voltage-controlled operational amplifier, the program-controlled DAC unit provides a reference voltage for the voltage-controlled operational amplifier, and the The differential AC excitation source and the differential capacitance sensor form an AC bridge, and the output end of the differential capacitance sensor is connected to the modulation and demodulation circuit,
所述程控DAC单元通过控制所述压控型运算放大器的参考电压来改变所述差分交流激励源两端信号的幅度,从而使所述差分交流激励源的中心点发生双向偏移,电桥达到平衡状态;当所述差动电容传感器产生电桥不平衡信号时,所述电桥不平衡信号经所述调制解调电路输出,从而将电容中极板的位移转变为电压信号。The program-controlled DAC unit changes the amplitude of the signal at both ends of the differential AC excitation source by controlling the reference voltage of the voltage-controlled operational amplifier, so that the center point of the differential AC excitation source is bidirectionally shifted, and the bridge reaches Balanced state; when the differential capacitance sensor generates a bridge unbalanced signal, the bridge unbalanced signal is output by the modulation and demodulation circuit, thereby converting the displacement of the polar plate in the capacitor into a voltage signal.
优选地,在所述差分交流激励源的交流信号输出端设置2个反向输出的所述压控型运算放大器,形成双端差分输出的交流激励源。Preferably, two voltage-controlled operational amplifiers with opposite outputs are arranged at the AC signal output end of the differential AC excitation source to form a double-ended differential output AC excitation source.
优选地,所述程控DAC单元包括程控部件和DAC元件,所述程控部件控制所述DAC元件为所述压控型运算放大器提供参考电压。Preferably, the program-controlled DAC unit includes a program-controlled component and a DAC element, and the program-controlled component controls the DAC element to provide a reference voltage for the voltage-controlled operational amplifier.
优选地,所述差动电容传感器由三极板电容构成,两侧极板通过陶瓷垫片固定,使间距保持不变,中极板可向两侧移动,从而产生电桥不平衡信号。Preferably, the differential capacitance sensor is composed of three-pole capacitors, the two-side pole plates are fixed by ceramic spacers to keep the distance unchanged, and the middle pole plate can move to both sides, thereby generating an unbalanced signal of the bridge.
优选地,所述差动电容传感器的所述两侧极板分别与差分输出的交流激励源两端相连,形成交流电桥。Preferably, the polar plates on both sides of the differential capacitive sensor are respectively connected to both ends of the AC excitation source of the differential output to form an AC bridge.
优选地,所述调制解调电路包括信号放大电路、相敏检波电路和低通滤波电路。Preferably, the modulation and demodulation circuit includes a signal amplification circuit, a phase-sensitive detection circuit and a low-pass filter circuit.
本发明的有益效果:本发明不需引入专用的机械调节机构,只通过DAC等程控电子元件,在交流信号输出端设置2个反向输出的压控型运算放大器,形成双端差分输出的交流激励源。程控单元通过控制DAC元件为压控型运算放大器提供参考电压,通过控制压控型运算放大器的参考电压,改变差分激励源两端信号的幅度,从而使差分激励的中心点发生双向偏移。差动电容传感器两侧的极板分别与差分输出的交流激励源两端相连,形成交流电桥。程控单元通过调整2个反向输出的压控型运算放大器的输出幅度,就可以调节电桥的平衡。此时当电容传感器中极板发生移动时,中极板移动将导致交流电桥的不平衡,不平衡电压由中极板经信号放大、相敏检波、低通滤波后输出,从而能够将电容中极板的位移转变为电压信号。由于不需引入专用的机械调节机构,可降低硬件成本,并且不会引入干扰,能够提高测量电路的精度。Beneficial effects of the present invention: The present invention does not need to introduce a special mechanical adjustment mechanism, and only sets two voltage-controlled operational amplifiers with reverse output at the AC signal output end through program-controlled electronic components such as DAC to form a double-ended differential output AC source of motivation. The program-controlled unit provides a reference voltage for the voltage-controlled operational amplifier by controlling the DAC element, and changes the amplitude of the signals at both ends of the differential excitation source by controlling the reference voltage of the voltage-controlled operational amplifier, so that the center point of the differential excitation is bidirectionally shifted. The polar plates on both sides of the differential capacitive sensor are respectively connected with both ends of the AC excitation source of the differential output to form an AC bridge. The program-controlled unit can adjust the balance of the bridge by adjusting the output amplitude of the two voltage-controlled operational amplifiers with reverse outputs. At this time, when the middle plate of the capacitive sensor moves, the movement of the middle plate will cause the unbalance of the AC bridge, and the unbalanced voltage is output by the middle plate after signal amplification, phase-sensitive detection, and low-pass filtering, so that the capacitor can be neutralized. The displacement of the plate is converted into a voltage signal. Since it is not necessary to introduce a special mechanical adjustment mechanism, the hardware cost can be reduced, and no interference is introduced, and the precision of the measurement circuit can be improved.
附图说明Description of drawings
图1是本发明的一种差动电容交流电桥传感测控电路的结构示意图;1 is a schematic structural diagram of a differential capacitor AC bridge sensing measurement and control circuit of the present invention;
图2是本发明的一种差动电容交流电桥传感测控电路的交流电桥的结构示意图。FIG. 2 is a schematic structural diagram of an AC bridge of a differential capacitor AC bridge sensing measurement and control circuit of the present invention.
图3是本发明的一种差动电容交流电桥传感测控电路的差动电容传感器的结构示意图。FIG. 3 is a schematic structural diagram of a differential capacitance sensor of a differential capacitance AC bridge sensing measurement and control circuit of the present invention.
图4是本发明的一种差动电容交流电桥传感测控电路的程控DAC单元的结构示意图。4 is a schematic structural diagram of a program-controlled DAC unit of a differential capacitor AC bridge sensing measurement and control circuit of the present invention.
图5是本发明的一种差动电容交流电桥传感测控电路的调制解调电路的结构示意图。5 is a schematic structural diagram of a modulation and demodulation circuit of a differential capacitor AC bridge sensing measurement and control circuit of the present invention.
图6是本发明的一种差动电容交流电桥传感测控电路的相敏检波电路的原理图。FIG. 6 is a schematic diagram of a phase-sensitive detection circuit of a differential capacitor AC bridge sensing measurement and control circuit of the present invention.
具体实施方式Detailed ways
下面通过实施例对本发明作进一步说明,其目的仅在于更好地理解本发明的研究内容而非限制本发明的保护范围。The present invention will be further illustrated by the following examples, the purpose of which is only to better understand the research content of the present invention and not to limit the protection scope of the present invention.
图1是本发明的一种差动电容交流电桥传感测控电路的结构示意图。图2是本发明的一种差动电容交流电桥传感测控电路的程控DAC单元的结构示意图。图3是本发明的一种差动电容交流电桥传感测控电路的交流电桥的结构示意图。图4是本发明的一种差动电容交流电桥传感测控电路的差动电容传感器的结构示意图。图5是本发明的一种差动电容交流电桥传感测控电路的调制解调电路的结构示意图。图6是本发明的一种差动电容交流电桥传感测控电路的相敏检波电路的原理图。下面结合图1~6对本发明的结构进行详细说明。FIG. 1 is a schematic structural diagram of a differential capacitor AC bridge sensing measurement and control circuit of the present invention. 2 is a schematic structural diagram of a program-controlled DAC unit of a differential capacitor AC bridge sensing measurement and control circuit of the present invention. FIG. 3 is a schematic structural diagram of an AC bridge of a differential capacitor AC bridge sensing measurement and control circuit of the present invention. FIG. 4 is a schematic structural diagram of a differential capacitance sensor of a differential capacitance AC bridge sensing measurement and control circuit of the present invention. 5 is a schematic structural diagram of a modulation and demodulation circuit of a differential capacitor AC bridge sensing measurement and control circuit of the present invention. FIG. 6 is a schematic diagram of a phase-sensitive detection circuit of a differential capacitor AC bridge sensing measurement and control circuit of the present invention. The structure of the present invention will be described in detail below with reference to FIGS. 1 to 6 .
如图1所示,本发明的测控电路包括差分交流激励源1,程控DAC(Digital AnalogConverter,数模转换器)单元2,压控型运算放大器3,差动电容传感器4以及调制解调电路5。As shown in FIG. 1 , the measurement and control circuit of the present invention includes a differential AC excitation source 1 , a program-controlled DAC (Digital Analog Converter)
其中,差分交流激励源1用于产生需要频率的正弦波信号,差分交流激励源1的两个输出端由2个压控型运算放大器3构成。具体是在差分交流激励源1的交流信号输出端设置2个反向输出的压控型运算放大器3,形成双端差分输出的交流激励源。程控DAC单元2为压控型运算放大器3提供参考电压。差分交流激励源1与差动电容传感器4形成交流电桥。差动电容传感器4由三极板电容构成,两侧极板41通过性能稳定的陶瓷垫片43固定,使间距保持不变,中极板42可向两侧移动,从而产生电桥不平衡信号(见图4)。差动电容传感器4的所述两侧极板41分别与差分输出的交流激励源1的两端相连,从而形成交流电桥。差动电容传感器4的输出端与调制解调电路5连接。Among them, the differential AC excitation source 1 is used to generate a sine wave signal of a required frequency, and the two output ends of the differential AC excitation source 1 are composed of two voltage-controlled
基于上述结构,程控DAC单元2通过控制压控型运算放大器3的参考电压来改变差分交流激励源两端信号的幅度,从而使差分交流激励源1的中心点发生双向偏移,电桥达到平衡状态。当差动电容传感器4因中极板移动产生电桥不平衡信号时,该电桥不平衡信号经调制解调电路5输出,从而将电容中极板的位移转变为电压信号。Based on the above structure, the program-controlled
如图2所示,差分交流激励源1可以为高精度的信号发生单元(例如SWR200芯片),可以根据需要串接不同的电容,得到所需频率的正弦波信号。该正弦波信号经由作为功放的第一运算放大器12,输出到第一压控型运算放大器31和第二压控型运算放大器32(例如VCA810)的输入端。该信号接第一压控型运算放大器31的正输入端,接第二压控型运算放大器32的负输入端,经两个压控型运算放大器31、32放大后输出两个反向的同源交流信号,并分别接入到差动电容传感器4的上下极板,形成电容电桥。As shown in FIG. 2 , the differential AC excitation source 1 can be a high-precision signal generating unit (such as a SWR200 chip), and different capacitors can be connected in series as required to obtain a sine wave signal of the required frequency. The sine wave signal is output to the input terminals of the first voltage-controlled
如图3所示,差动电容传感器4由三极板电容构成,两侧极板41通过性能稳定的陶瓷垫片43固定,使间距d保持不变,中极板42可向两侧移动,随着中极板42的位移形成差动电容(C1和C2之差),中极板42输出的对地电压即为两个压控型运算放大器31、32输出的反向激励与差动电容形成的桥路不平衡电压。两个压控型运算放大器31、32(VCA810)的压控型放大倍数由参考电压VG0和VG1控制,通过改变VG0和VG1这两个参考电压,可使其输出电压在0~5V幅值范围变化。As shown in FIG. 3 , the
如图4所示,程控DAC单元2由程控部件21和DAC元件22构成。参考电压VG0、VG1信号由DAC元件22(例如芯片LTC2666)产生。LTC2666可以为数控DAC,通过程控部件21(例如单片机89C2051)控制。单片机通过SPI总线,向LTC2666发送指令,使VG0、VG1产生0~5V/DC的输出变化。单片机通过TTL串口连接到用户端。As shown in FIG. 4 , the program-controlled
如上,通过调整两个压控型运算放大器31、32的输出电压幅度,可以使桥路达到平衡,即中极板42的输出电压为零,达到电容电桥平衡调节的目的。在一个实施例中,为了使平衡调节不影响测量电路的灵敏度,加载在传感器4两端的总的电压可以恒定为5V。之所以设定为5V,是因为两个压控型运算放大器31、32(VCA810)的供电电压为±5V,因此单边最大的电压输出不能超过5V。另外,由于DAC元件22(LTC2666)的额定输入工作电压也是5V,所以为了相互匹配,压控型运算放大器31、32(VCA810)也采用5V供电电压。As above, by adjusting the output voltage amplitudes of the two voltage-controlled
当桥路达到平衡之后,随着中极板42的位移,桥路的不平衡信号经由调制解调电路5输出,以将电容中极板的位移转变为电压信号。如图5所示,调制解调电路5包括信号放大电路51、相敏检波电路52和低通滤波电路53。放大电路51可以为两级放大电路。After the bridge circuit is balanced, along with the displacement of the
如图6所示为相敏检波电路52的原理图。电容中极板42输出的经两级放大后的不平衡信号由第二运算放大器54分出一路反向信号,与Q1、Q2配合接成相敏检波电路。移相电路模块55和比较器电路56为相敏检波电路提供参考信号。移相电路模块55由第一运算放大器12输出的激励源提取信号Yi,并作移相处理,使参考信号与检波信号同相。比较器电路56将移相电路模块55的移相正弦信号变为反向的两路方波,控制Q1、Q2,形成选通乘法电路,将正弦信号变为半波正弦信号。最后二阶低通滤波电路53滤除信号的交流成分,保留信号的直流幅度信息,并由跟随器(未图示)输出,从而将电容中极板的位移转变为电压信号。FIG. 6 is a schematic diagram of the phase-
显然,本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围。Obviously, those skilled in the art should realize that the above embodiments are only used to illustrate the present invention, not to limit the present invention. Variations and modifications of the examples will fall within the scope of the claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010332273.1A CN111404503B (en) | 2020-04-24 | 2020-04-24 | A differential capacitor AC bridge sensor and control circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010332273.1A CN111404503B (en) | 2020-04-24 | 2020-04-24 | A differential capacitor AC bridge sensor and control circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111404503A true CN111404503A (en) | 2020-07-10 |
CN111404503B CN111404503B (en) | 2024-11-26 |
Family
ID=71414218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010332273.1A Active CN111404503B (en) | 2020-04-24 | 2020-04-24 | A differential capacitor AC bridge sensor and control circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111404503B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112729641A (en) * | 2020-12-01 | 2021-04-30 | 上海空间推进研究所 | System and method for measuring response time of cold air thruster based on variable dielectric capacitance bridge |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1225117A (en) * | 1958-02-21 | 1960-06-29 | Philips Nv | Device for measuring low pressures |
US4599560A (en) * | 1983-04-11 | 1986-07-08 | The Warner & Swasey Company | AC excited transducer having stabilized phase sensitive demodulator circuit |
JP2005195509A (en) * | 2004-01-08 | 2005-07-21 | Tokyo Sokki Kenkyusho Co Ltd | Carrier wave type strain measuring method |
CN101975893A (en) * | 2010-10-20 | 2011-02-16 | 沈阳工业大学 | Differential capacitance detection circuit based on instrument amplifier and detection method thereof |
BRPI0902748A2 (en) * | 2009-07-30 | 2011-04-12 | Univ Fed Da Paraiba | multiple resistive electronic transduction instrument with thermal drift compensation and low frequency noise |
CN106768449A (en) * | 2017-03-13 | 2017-05-31 | 中国地震局地壳应力研究所 | A kind of digital AC electric bridge platinum resistance thermometer |
US20180052031A1 (en) * | 2016-08-17 | 2018-02-22 | KSR IP Holdings, LLC | Capacitive fluid level sensor for rapid response |
CN108375445A (en) * | 2018-02-01 | 2018-08-07 | 山东理工大学 | A kind of heart-shaped tubular structure for gas electric transducer |
CN108693486A (en) * | 2018-03-30 | 2018-10-23 | 华中科技大学 | A kind of faint low frequency magnetic signal detection method and system based on AMR sensor |
CN211579938U (en) * | 2020-04-24 | 2020-09-25 | 中国地震局地壳应力研究所 | Differential capacitance alternating current bridge sensing control circuit |
-
2020
- 2020-04-24 CN CN202010332273.1A patent/CN111404503B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1225117A (en) * | 1958-02-21 | 1960-06-29 | Philips Nv | Device for measuring low pressures |
US4599560A (en) * | 1983-04-11 | 1986-07-08 | The Warner & Swasey Company | AC excited transducer having stabilized phase sensitive demodulator circuit |
JP2005195509A (en) * | 2004-01-08 | 2005-07-21 | Tokyo Sokki Kenkyusho Co Ltd | Carrier wave type strain measuring method |
BRPI0902748A2 (en) * | 2009-07-30 | 2011-04-12 | Univ Fed Da Paraiba | multiple resistive electronic transduction instrument with thermal drift compensation and low frequency noise |
CN101975893A (en) * | 2010-10-20 | 2011-02-16 | 沈阳工业大学 | Differential capacitance detection circuit based on instrument amplifier and detection method thereof |
US20180052031A1 (en) * | 2016-08-17 | 2018-02-22 | KSR IP Holdings, LLC | Capacitive fluid level sensor for rapid response |
CN109690262A (en) * | 2016-08-17 | 2019-04-26 | Ksr Ip控股有限责任公司 | The capacitive character fluid levels level sensor of quick response |
CN106768449A (en) * | 2017-03-13 | 2017-05-31 | 中国地震局地壳应力研究所 | A kind of digital AC electric bridge platinum resistance thermometer |
CN108375445A (en) * | 2018-02-01 | 2018-08-07 | 山东理工大学 | A kind of heart-shaped tubular structure for gas electric transducer |
CN108693486A (en) * | 2018-03-30 | 2018-10-23 | 华中科技大学 | A kind of faint low frequency magnetic signal detection method and system based on AMR sensor |
CN211579938U (en) * | 2020-04-24 | 2020-09-25 | 中国地震局地壳应力研究所 | Differential capacitance alternating current bridge sensing control circuit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112729641A (en) * | 2020-12-01 | 2021-04-30 | 上海空间推进研究所 | System and method for measuring response time of cold air thruster based on variable dielectric capacitance bridge |
Also Published As
Publication number | Publication date |
---|---|
CN111404503B (en) | 2024-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3139305B2 (en) | Capacitive acceleration sensor | |
CN102519617B (en) | Digitalized detection method for temperature information of micromechanical quartz gyroscope sensitive device | |
JPH02504079A (en) | capacitive transducer | |
JP2009531713A (en) | Capacitance detection circuit | |
CN111238546B (en) | The circuit for measuring the small capacitance change of capacitance sensor | |
CN106289212B (en) | Integrated measurement and control unit for silicon micro tuning fork gyroscope | |
CN111220139B (en) | Micro-electro-mechanical multi-ring gyro force balance mode measurement and control circuit system | |
CN111693784B (en) | A circuit for measuring weak capacitance changes | |
CN111751774A (en) | A processing method and device for weak signal anti-jamming detection based on Wheatstone bridge | |
CN112666400B (en) | Capacitance measuring circuit capable of automatically compensating parasitic capacitance, and use method and application thereof | |
Han et al. | A differential capacitance to voltage converter for electrostatic levitation applications | |
CN111404503A (en) | A Differential Capacitor AC Bridge Sensing and Controlling Circuit | |
CN211579938U (en) | Differential capacitance alternating current bridge sensing control circuit | |
CN107830851A (en) | Digital drive control integrated circuit for angular velocity sensor | |
CN109917185A (en) | A kind of capacitance sensor and its working method and application based on resonance frequency measurement | |
CN113819898A (en) | Error suppression method for orthogonal force feedback closed loop small-frequency-difference quartz gyroscope | |
US7639051B2 (en) | Circuit arrangement for rectifying the output voltage of a sensor that is fed by an oscillator | |
CN212646814U (en) | Weak capacitance change measuring circuit | |
CN216977775U (en) | Pen-type pressure-changing displacement sensor | |
CN105044465A (en) | Automatic balance bridge based on synchronous clock DDS and method for measuring impedance of DUT (Device Under Test) | |
CN211576217U (en) | Weak capacitance change measuring circuit of capacitance sensor | |
CN212364401U (en) | Resistance sensor measuring circuit for measuring weak signal | |
Sheng et al. | Design of PZT Micro-displacement acquisition system | |
JP2520137B2 (en) | Position detection device | |
RU205068U1 (en) | 90 DEGREES PHASE SHIFT DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 100085, Anning Road, Haidian District, Beijing, 1, Xisanqi Applicant after: National natural disaster prevention and Control Research Institute Ministry of emergency management Address before: 100085, Anning Road, Haidian District, Beijing, 1, Xisanqi Applicant before: THE INSTITUTE OF CRUSTAL DYNAMICS, CHINA EARTHQUAKE ADMINISTRATION |
|
GR01 | Patent grant | ||
GR01 | Patent grant |