CN111404444A - A three-phase input multi-phase output four-quadrant integrated machine circuit - Google Patents
A three-phase input multi-phase output four-quadrant integrated machine circuit Download PDFInfo
- Publication number
- CN111404444A CN111404444A CN202010283447.XA CN202010283447A CN111404444A CN 111404444 A CN111404444 A CN 111404444A CN 202010283447 A CN202010283447 A CN 202010283447A CN 111404444 A CN111404444 A CN 111404444A
- Authority
- CN
- China
- Prior art keywords
- igbt module
- capacitor
- electrically connected
- igbt
- collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 33
- 230000001360 synchronised effect Effects 0.000 claims abstract description 24
- 238000001914 filtration Methods 0.000 claims abstract description 17
- 238000010248 power generation Methods 0.000 claims abstract description 9
- 239000003990 capacitor Substances 0.000 claims description 201
- 238000004804 winding Methods 0.000 claims description 7
- 229910001219 R-phase Inorganic materials 0.000 claims description 3
- 230000018199 S phase Effects 0.000 claims description 3
- 230000005611 electricity Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC
- H02M5/42—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters
- H02M5/44—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC
- H02M5/453—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/4585—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
- H02P25/024—Synchronous motors controlled by supply frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
- H02P25/028—Synchronous motors with four quadrant control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/16—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
- H02P25/22—Multiple windings; Windings for more than three phases
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
- H02P27/14—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation with three or more levels of voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
技术领域technical field
本申请涉及工业变频驱动控制技术领域,具体涉及一种三相输入多相输出式四象限一体机电路。The present application relates to the technical field of industrial variable frequency drive control, in particular to a three-phase input and multi-phase output type four-quadrant integrated machine circuit.
背景技术Background technique
目前,永磁变频电机一体机的应用还十分少见,所用设备基本都为变频器和电机分开配合使用,需要占用大量的安装面积,同时大部分变频器安装时与电机的距离较远,不仅安装较为复杂,而且较长的电缆增加安装成本的同时还会产生较多的干扰,使du/dt增大,影响变频器驱动性能的同时还会影响电机的绝缘氧化,减少电机的寿命。现有的一体机也都为简单的三相输入三相输出式两象限一体机,而更加节能,性能更为优良的四象限多相输出式一体机尚无设计应用方案。At present, the application of permanent magnet variable frequency motor integrated machine is still very rare. The equipment used is basically used separately from the inverter and the motor, which requires a large amount of installation area. At the same time, most inverters are installed far away from the motor, not only the installation It is more complicated, and the longer cable increases the installation cost and also produces more interference, which increases du/dt, affects the drive performance of the inverter, and also affects the insulation and oxidation of the motor, reducing the life of the motor. The existing all-in-one machines are also simple three-phase input three-phase output two-quadrant all-in-one machines, and there is no design application scheme for the more energy-saving and better performance four-quadrant multi-phase output all-in-one machines.
相比异步电机来说,永磁同步电机效率更高,启动转矩更大,在节约电能和减小对电网的等方面相比异步电机也具有较大优势。多相电机具有输出转矩大,对绕组绝缘要求低的优点。随着科技进步,煤炭输送等对设备的转矩及功率要求变得更高,多相永磁同步电动机将成为一种发展的方向。Compared with asynchronous motors, permanent magnet synchronous motors have higher efficiency and larger starting torque. Compared with asynchronous motors, they also have great advantages in terms of saving electric energy and reducing power grid. Polyphase motors have the advantages of large output torque and low requirements for winding insulation. With the advancement of science and technology, the torque and power requirements of coal transportation and other equipment have become higher, and multi-phase permanent magnet synchronous motors will become a development direction.
传统的一体机大多体积较大,结构较为复杂,一体机电机部分也大多为异步电机结构,存在众多的不足之处。现存产品变频与电机输出距离受限,输出谐波尖峰对电机绝缘影响较大,输出转矩大,因此现有的一体机性能有待提高。Most of the traditional all-in-one machines are large in size and complex in structure, and most of the motors of the all-in-one machine are of asynchronous motor structure, which has many shortcomings. The distance between the frequency conversion and the motor output of the existing products is limited, the output harmonic peak has a great influence on the motor insulation, and the output torque is large, so the performance of the existing all-in-one machine needs to be improved.
发明内容SUMMARY OF THE INVENTION
本申请为了解决上述技术问题,提出了如下技术方案:In order to solve the above-mentioned technical problems, the present application proposes the following technical solutions:
第一方面,本申请实施例提供了一种三相输入多相输出式四象限一体机电路,包括:LC滤波回路、上电缓冲回路、变频整流回路、滤波分压回路、变频逆变回路、永磁同步电动机,所述LC滤波回路的第一端与三相交流电源电连接,第二端与所述上电缓冲回路的第一端电连接,所述变频整流回路的两端分别与所述上电缓冲回路的第二端和所述滤波分压回路的第一端电连接,所述变频逆变回路的两端分别与所述滤波分压回路的第二端和永磁同步电动机电连接,上述回路的能量双向流动,永磁同步电动机电动发电状态下产生的能量回馈给所述三相交流电源。In the first aspect, the embodiments of the present application provide a three-phase input and multi-phase output four-quadrant integrated machine circuit, including: an LC filter circuit, a power-on buffer circuit, a frequency conversion rectifier circuit, a filter voltage divider circuit, a frequency conversion inverter circuit, Permanent magnet synchronous motor, the first end of the LC filter circuit is electrically connected to the three-phase AC power supply, the second end is electrically connected to the first end of the power-on buffer circuit, and the two ends of the frequency conversion rectifier circuit are respectively connected to the The second end of the power-on buffer circuit is electrically connected to the first end of the filtering voltage dividing circuit, and the two ends of the frequency conversion inverter circuit are respectively electrically connected to the second end of the filtering voltage dividing circuit and the permanent magnet synchronous motor. connected, the energy of the above-mentioned loop flows in both directions, and the energy generated in the motor-generating state of the permanent magnet synchronous motor is fed back to the three-phase AC power supply.
采用上述实现方式,三相输入多相输出式四象限一体机电路,三相输入多相输出,能够有效提高电机的输出转矩。具备能量回馈功能,能够将电机所发的电回馈利用,更加节能高效。By adopting the above implementation manner, the three-phase input and multi-phase output type four-quadrant integrated machine circuit and the three-phase input and multi-phase output can effectively improve the output torque of the motor. With the function of energy feedback, it can use the electricity generated by the motor to feedback, which is more energy-saving and efficient.
结合第一方面,在第一方面第一种可能的实现方式中,所述LC滤波回路包括第一电容、第二电容、第三电容和电抗器,所述电抗器的三相绕组第一端分别串联在三相交流电源中,第二端与所述上电缓冲回路电连接;所述第一电容的第一端、第二电容的第一端和第三电容的第一端连接在一起,所述第一电容的第二端、第二电容的第二端和第三电容的第二端分别连接到三相交流电源的不同相端。与传统的LCL滤波回路相比,保证性能的同时,省略掉一个交流电抗器,结构更简单,有效降低产品的生产成本。With reference to the first aspect, in a first possible implementation manner of the first aspect, the LC filter loop includes a first capacitor, a second capacitor, a third capacitor and a reactor, and the first end of the three-phase winding of the reactor They are respectively connected in series in the three-phase AC power supply, and the second end is electrically connected to the power-on buffer circuit; the first end of the first capacitor, the first end of the second capacitor and the first end of the third capacitor are connected together , the second end of the first capacitor, the second end of the second capacitor and the second end of the third capacitor are respectively connected to different phase ends of the three-phase AC power supply. Compared with the traditional LCL filter circuit, while ensuring the performance, an AC reactor is omitted, the structure is simpler, and the production cost of the product is effectively reduced.
结合第一方面第一种可能的实现方式,在第一方面第二种可能的实现方式中,所述上电缓冲回路包括控制开关、第一电阻、第二电阻和第三电阻,所述控制开关包括三个子开关,所述第一电阻、所述第二电阻和所述第三电阻的两端分别与不同的子开关的两端电连接,所述第一电阻的第一端、所述第二电阻的第一端和所述第三电阻的第一端分别与所述电抗器的第二端电连接,所述第一电阻的第二端、所述第二电阻的第二端和所述第三电阻的第二端分别与所述变频整流回路的第一端电连接。With reference to the first possible implementation manner of the first aspect, in a second possible implementation manner of the first aspect, the power-on buffer loop includes a control switch, a first resistor, a second resistor, and a third resistor, and the control The switch includes three sub-switches, two ends of the first resistor, the second resistor and the third resistor are respectively electrically connected to two ends of different sub-switches, the first end of the first resistor, the The first end of the second resistor and the first end of the third resistor are respectively electrically connected to the second end of the reactor, the second end of the first resistor, the second end of the second resistor and The second ends of the third resistors are respectively electrically connected to the first ends of the variable frequency rectification loop.
结合第一方面第二种可能的实现方式,在第一方面第三种可能的实现方式中,所述变频整流回路包括:第一IGBT模块、第二IGBT模块、第三IGBT模块、第四IGBT模块、第五IGBT模块、第六IGBT模块、第七IGBT模块、第八IGBT模块、第九IGBT模块、第十IGBT模块、第十一IGBT模块、第十二IGBT模块、第十三IGBT模块、第十四IGBT模块、第十五IGBT模块、第十六IGBT模块、第十七IGBT模块和第十八IGBT模块,其中:每一个IGBT模块包括IGBT反向并联一个续流二极管,第一IGBT模块、第二IGBT模块、第三IGBT模块、第四IGBT模块、第五IGBT模块和第六IGBT模块组成一相桥臂,第七IGBT模块、第八IGBT模块、第九IGBT模块、第十IGBT模块、第十一IGBT模块和第十二IGBT模块组成一相桥臂,第十三IGBT模块、第十四IGBT模块、第十五IGBT模块、第十六IGBT模块、第十七IGBT模块和第十八IGBT模块组成一相桥臂;第一IGBT模块、第二IGBT模块、第三IGBT模块和第四IGBT模块依次串联连接,第一IGBT模块的集电极、第七IGBT模块的集电极和第十三IGBT模块的集电极与母线DC+端电连接,第一IGBT模块的发射极与第二IGBT模块的集电极电连接,第二IGBT模块的发射极与第三IGBT模块的集电极电连接,连接到R相电源;第三IGBT模块的发射极与第四IGBT模块的集电极电连接,第四IGBT模块的发射极发射极、第十IGBT模块的集电极和第十六IGBT模块的发射极均与母线DC-端电连接;第五IGBT模块和第六IGBT模块串联连接,第五IGBT模块的集电极与第一IGBT模块的发射极电连接,第六IGBT模块的发射极与第四IGBT模块的集电极电连接;第七IGBT模块、第八IGBT模块、第九IGBT模块和第十IGBT模块依次串联连接,第七IGBT模块的发射极与第八IGBT模块的集电极电连接,第八IGBT模块的发射极与第九IGBT模块的集电极电连接,连接到S相电源;第九IGBT模块的发射极与第十IGBT模块的集电极电连接,第十一IGBT模块和第十二IGBT模块串联连接,第十一IGBT模块的集电极与第七IGBT模块的发射极电连接,第十二IGBT模块的发射极与第十IGBT模块的集电极电连接;第十三IGBT模块、第十四IGBT模块、第十五IGBT模块和第十六IGBT模块依次串联连接,第十三IGBT模块的发射极与第十四IGBT模块的集电极电连接,第十四IGBT模块的发射极与第十五IGBT模块的集电极电连接,连接到T相电源,第十五IGBT模块的发射极与第十六IGBT模块的集电极电连接,第十七IGBT模块和第十八IGBT模块串联连接,第十七IGBT模块的集电极与第十三IGBT模块的发射极电连接,第十八IGBT模块的发射极与第十六IGBT模块的集电极电连接。With reference to the second possible implementation manner of the first aspect, in a third possible implementation manner of the first aspect, the frequency conversion rectifier circuit includes: a first IGBT module, a second IGBT module, a third IGBT module, and a fourth IGBT module, fifth IGBT module, sixth IGBT module, seventh IGBT module, eighth IGBT module, ninth IGBT module, tenth IGBT module, eleventh IGBT module, twelfth IGBT module, thirteenth IGBT module, The fourteenth IGBT module, the fifteenth IGBT module, the sixteenth IGBT module, the seventeenth IGBT module and the eighteenth IGBT module, wherein: each IGBT module includes a freewheeling diode in reverse parallel connection of the IGBT, and the first IGBT module , the second IGBT module, the third IGBT module, the fourth IGBT module, the fifth IGBT module and the sixth IGBT module form a one-phase bridge arm, the seventh IGBT module, the eighth IGBT module, the ninth IGBT module, and the tenth IGBT module , The eleventh IGBT module and the twelfth IGBT module form a one-phase bridge arm, the thirteenth IGBT module, the fourteenth IGBT module, the fifteenth IGBT module, the sixteenth IGBT module, the seventeenth IGBT module and the tenth IGBT module Eight IGBT modules form a one-phase bridge arm; the first IGBT module, the second IGBT module, the third IGBT module and the fourth IGBT module are connected in series in sequence, and the collector of the first IGBT module, the collector of the seventh IGBT module and the tenth IGBT module are connected in series. The collector of the three IGBT modules is electrically connected to the DC+ terminal of the bus bar, the emitter of the first IGBT module is electrically connected to the collector of the second IGBT module, the emitter of the second IGBT module is electrically connected to the collector of the third IGBT module, and the connection to the R-phase power supply; the emitter of the third IGBT module is electrically connected to the collector of the fourth IGBT module, the emitter-emitter of the fourth IGBT module, the collector of the tenth IGBT module and the emitter of the sixteenth IGBT module are all The fifth IGBT module and the sixth IGBT module are connected in series, the collector of the fifth IGBT module is electrically connected with the emitter of the first IGBT module, and the emitter of the sixth IGBT module is electrically connected with the fourth IGBT module The collector of the seventh IGBT module, the eighth IGBT module, the ninth IGBT module and the tenth IGBT module are connected in series in sequence, the emitter of the seventh IGBT module is electrically connected to the collector of the eighth IGBT module, and the eighth IGBT module is electrically connected to the collector of the eighth IGBT module. The emitter of the module is electrically connected to the collector of the ninth IGBT module and is connected to the S-phase power supply; the emitter of the ninth IGBT module is electrically connected to the collector of the tenth IGBT module, the eleventh IGBT module and the twelfth IGBT module are electrically connected connected in series, the collector of the eleventh IGBT module is electrically connected to the emitter of the seventh IGBT module, the emitter of the twelfth IGBT module is electrically connected to the collector of the tenth IGBT module; the thirteenth IGBT module, the fourteenth IGBT module IGBT module, fifteenth IG The BT module and the sixteenth IGBT module are sequentially connected in series, the emitter of the thirteenth IGBT module is electrically connected to the collector of the fourteenth IGBT module, and the emitter of the fourteenth IGBT module is electrically connected to the collector of the fifteenth IGBT module. Connected, connected to the T-phase power supply, the emitter of the fifteenth IGBT module is electrically connected to the collector of the sixteenth IGBT module, the seventeenth IGBT module and the eighteenth IGBT module are connected in series, and the collector of the seventeenth IGBT module is electrically connected to the emitter of the thirteenth IGBT module, and the emitter of the eighteenth IGBT module is electrically connected to the collector of the sixteenth IGBT module.
变频整流回路为中点钳位三电平拓扑结构,输出谐波较小,电动状态时能够大大降低谐波对电网的影响,发电状态时,回馈波形为梯形波,经LC滤波后更接近于正弦波,更好的回馈电网,不会影响电网电压的畸变。The frequency conversion rectifier circuit is a three-level topology with neutral point clamping, the output harmonics are small, and the influence of harmonics on the power grid can be greatly reduced in the electric state. In the power generation state, the feedback waveform is a trapezoidal wave, which is closer to the LC filter after LC filtering. Sine wave, better feedback to the grid, will not affect the distortion of the grid voltage.
结合第一方面第三种可能的实现方式,在第一方面第四种可能的实现方式中,所述滤波分压回路包括:第四电容、第五电容、第六电容、第七电容、第八电容、第九电容、第十电容、第十一电容、第十二电容、第十三电容、第十四电容、第十五电容、第十六电容、第十七电容、第十八电容、第十九电容、第四电阻、第五电阻、第六电阻和第七电阻,其中:第四电容、第五电容、第六电容、第七电容、第八电容、第九电容、第十电容和第十一电容依次串联连接,第十二电容、第十三电容、第十四电容、第十五电容、第十六电容、第十七电容、第十八电容和第十九电容依次串联连接,第四电阻、第五电阻、第六电阻和第七电阻依次串联连接;第四电容的第一端和第十二电容的第一端分别与第四电阻的第一端电连接,第五电容的第一端和第十三电容的第一端分别与第四电阻的第二端电连接;第六电容的第一端和第十四电容的第一端分别与第五电阻的第一端电连接,第七电容的第一端和第十五电容的第一端分别与第五电阻的第二端电连接;第八电容的第一端和第十六电容的第一端分别与第六电阻的第一端电连接,第九电容的第一端和第十七电容的第一端分别与第六电阻的第二端电连接;第十电容的第一端和第十八电容的第一端分别与第七电阻的第一端电连接,第十一电容的第一端和第十九电容的第一端分别与第七电阻的第二端电连接;电阻R1-R4将直流电源分成两组,分别为+1、01、-1电位和+2、02、-2电位,其中-1和+2为等电位。With reference to the third possible implementation manner of the first aspect, in the fourth possible implementation manner of the first aspect, the filtering voltage dividing loop includes: a fourth capacitor, a fifth capacitor, a sixth capacitor, a seventh capacitor, a third capacitor Eighth capacitor, ninth capacitor, tenth capacitor, eleventh capacitor, twelfth capacitor, thirteenth capacitor, fourteenth capacitor, fifteenth capacitor, sixteenth capacitor, seventeenth capacitor, eighteenth capacitor , the nineteenth capacitor, the fourth resistor, the fifth resistor, the sixth resistor and the seventh resistor, among which: the fourth capacitor, the fifth capacitor, the sixth capacitor, the seventh capacitor, the eighth capacitor, the ninth capacitor, the tenth capacitor The capacitor and the eleventh capacitor are connected in series in sequence, and the twelfth capacitor, the thirteenth capacitor, the fourteenth capacitor, the fifteenth capacitor, the sixteenth capacitor, the seventeenth capacitor, the eighteenth capacitor and the nineteenth capacitor are in sequence. connected in series, the fourth resistor, the fifth resistor, the sixth resistor and the seventh resistor are connected in series in sequence; the first end of the fourth capacitor and the first end of the twelfth capacitor are respectively electrically connected to the first end of the fourth resistor, The first end of the fifth capacitor and the first end of the thirteenth capacitor are respectively electrically connected with the second end of the fourth resistor; the first end of the sixth capacitor and the first end of the fourteenth capacitor are respectively connected with the second end of the fifth resistor. The first end is electrically connected, the first end of the seventh capacitor and the first end of the fifteenth capacitor are respectively electrically connected to the second end of the fifth resistor; the first end of the eighth capacitor and the first end of the sixteenth capacitor are respectively electrically connected to the first end of the sixth resistor, the first end of the ninth capacitor and the first end of the seventeenth capacitor are respectively electrically connected to the second end of the sixth resistor; the first end of the tenth capacitor and the tenth The first end of the eighth capacitor is respectively electrically connected to the first end of the seventh resistor, the first end of the eleventh capacitor and the first end of the nineteenth capacitor are respectively electrically connected to the second end of the seventh resistor; the resistor R1- R4 divides the DC power supply into two groups, which are +1, 01, -1 potentials and +2, 02, -2 potentials, where -1 and +2 are equal potentials.
结合第一方面第四种可能的实现方式,在第一方面第五种可能的实现方式中,所述变频逆变回路包括:第十九IGBT模块、第二十IGBT模块、第二十一IGBT模块、第二十二IGBT模块、第二十三IGBT模块、第二十四IGBT模块、第二十五IGBT模块、第二十六IGBT模块、第二十七IGBT模块、第二十八IGBT模块、第二十九IGBT模块、第三十IGBT模块、第三十一IGBT模块、第三十二IGBT模块、第三十三IGBT模块、第三十四IGBT模块、第三十五IGBT模块、第三十六IGBT模块、第三十七IGBT模块、第三十八IGBT模块、第三十九IGBT模块、第四十IGBT模块、第四十一IGBT模块和第四十二IGBT模块,其中:每一个IGBT模块包括IGBT反向并联一个续流二极管,第二十一IGBT模块、第三十IGBT模块、第三十七IGBT模块的集电极均与+1电位电连接,第十九IGBT模块、第二十七IGBT模块、第三十五IGBT模块的集电极均与01电位电连接,第二十二IGBT模块、第三十一IGBT模块、第三十八IGBT模块的发射极均与-1电位电连接;第二十三IGBT模块、第三十二IGBT模块、第三十九IGBT模块的集电极均与+2电位电连接,第二十IGBT模块、第二十八IGBT模块、第三十六IGBT模块的集电极均与02电位电连接,第二十四IGBT模块、第三十三IGBT模块、第四十IGBT模块的发射极均与-2电位电连接;第十九IGBT模块的发射极与第二十五IGBT模块的集电极电连接,第二十七IGBT模块的发射极与第三十四IGBT模块的集电极电连接,第三十五IGBT模块的发射极与第四十一IGBT模块的集电极电连接,第二十IGBT模块的发射极与第二十六IGBT模块的集电极电连接,第二十八IGBT模块的发射极与第二十九IGBT模块的集电极电连接,第三十六IGBT模块的发射极与第四十二IGBT模块的集电极电连接;第二十一IGBT模块、第二十二IGBT模块、第二十三IGBT模块和第二十四IGBT模块串联连接,第二十一IGBT模块的发射极与第二十二IGBT模块的集电极电连接,第二十三IGBT模块的发射极与第二十四IGBT模块的集电极电连接;第三十IGBT模块、第三十一IGBT模块、第三十二IGBT模块和第三十三IGBT模块串联连接,第三十IGBT模块的发射极与第三十一IGBT模块的集电极电连接,第三十二IGBT模块的发射极与第三十三IGBT模块的集电极电连接;第三十七IGBT模块、第三十八IGBT模块、第三十九IGBT模块和第四十IGBT模块串联连接,第三十七IGBT模块的发射极与第三十八IGBT模块的集电极电连接,第三十九IGBT模块的发射极与第四十IGBT模块的集电极电连接。With reference to the fourth possible implementation manner of the first aspect, in the fifth possible implementation manner of the first aspect, the frequency conversion inverter circuit includes: a nineteenth IGBT module, a twentieth IGBT module, and a twenty-first IGBT module, twenty-second IGBT module, twenty-third IGBT module, twenty-fourth IGBT module, twenty-fifth IGBT module, twenty-sixth IGBT module, twenty-seventh IGBT module, twenty-eighth IGBT module , the 29th IGBT module, the 30th IGBT module, the 31st IGBT module, the 32nd IGBT module, the 33rd IGBT module, the 34th IGBT module, the 35th IGBT module, the 3rd IGBT module Thirty-six IGBT modules, thirty-seventh IGBT modules, thirty-eighth IGBT modules, thirty-ninth IGBT modules, fortieth IGBT modules, forty-first IGBT modules and forty-second IGBT modules, of which: each An IGBT module includes a freewheeling diode in reverse parallel connection of the IGBT. The collectors of the twenty-first IGBT module, the thirty-seventh IGBT module, and the thirty-seventh IGBT module are all electrically connected to +1 potential. The nineteenth IGBT module, the The collectors of the twenty-seventh IGBT module and the thirty-fifth IGBT module are all electrically connected to the 01 potential, and the emitters of the twenty-second IGBT module, the thirty-first IGBT module, and the thirty-eighth IGBT module are all connected to the -1 potential. Electrical connection; the collectors of the twenty-third IGBT module, the thirty-second IGBT module, and the thirty-ninth IGBT module are all electrically connected to the +2 potential, the twentieth IGBT module, the twenty-eighth IGBT module, the thirty-ninth IGBT module, and the The collectors of the six IGBT modules are all electrically connected to the 02 potential, and the emitters of the twenty-fourth IGBT module, the thirty-third IGBT module, and the fortieth IGBT module are all electrically connected to the -2 potential; the emitter of the nineteenth IGBT module is electrically connected to the -2 potential. The pole is electrically connected to the collector of the twenty-fifth IGBT module, the emitter of the twenty-seventh IGBT module is electrically connected to the collector of the thirty-fourth IGBT module, and the emitter of the thirty-fifth IGBT module is electrically connected to the forty-first IGBT module. The collector of the IGBT module is electrically connected, the emitter of the twentieth IGBT module is electrically connected to the collector of the twenty-sixth IGBT module, and the emitter of the twenty-eighth IGBT module is electrically connected to the collector of the twenty-ninth IGBT module , the emitter of the thirty-sixth IGBT module is electrically connected to the collector of the forty-second IGBT module; the twenty-first IGBT module, the twenty-second IGBT module, the twenty-third IGBT module and the twenty-fourth IGBT module connected in series, the emitter of the twenty-first IGBT module is electrically connected to the collector of the twenty-second IGBT module, and the emitter of the twenty-third IGBT module is electrically connected to the collector of the twenty-fourth IGBT module; The IGBT module, the thirty-first IGBT module, the thirty-second IGBT module, and the thirty-third IGBT module are connected in series, and the emitter of the thirty-first IGBT module is electrically connected to the collector of the thirty-first IGBT module, and the thirty-first IGBT module is electrically connected to the collector. two The emitter of the IGBT module is electrically connected to the collector of the thirty-third IGBT module; the thirty-seventh IGBT module, the thirty-eighth IGBT module, the thirty-ninth IGBT module and the fortieth IGBT module are connected in series, The emitter of the seventh IGBT module is electrically connected to the collector of the thirty-eighth IGBT module, and the emitter of the thirty-ninth IGBT module is electrically connected to the collector of the fortieth IGBT module.
变频逆变回路采用两组T型三电平拓扑结构,保证性能的同时能够有效减少IGBT模块的使用,第二十一IGBT模块的发射极与第二十二IGBT模块的集电极电连接,输出作为第一组T型三电平拓扑结构的U相输出(U1),第二十三IGBT模块的发射极与第二十四IGBT模块的集电极电连接,输出作为第二组T型三电平拓扑结构的U相输出(U2)。第三十IGBT模块的发射极与第三十一IGBT模块的集电极电连接,输出作为第一组T型三电平拓扑结构的V相输出(V1),第三十二IGBT模块的发射极与第三十三IGBT模块的集电极电连接,输出作为第二组T型三电平拓扑结构的V相输出(V2)。第三十七IGBT模块的发射极与第三十八IGBT模块的集电极电连接,输出作为第一组T型三电平拓扑结构的W相输出(W1),第三十九IGBT模块的发射极与第四十IGBT模块的集电极电连接,输出作为第二组T型三电平拓扑结构的W相输出(W2)。其中,每相输出上都接有独立的霍尔采样模块。The frequency conversion inverter circuit adopts two sets of T-type three-level topology, which can effectively reduce the use of IGBT modules while ensuring performance. The emitter of the twenty-first IGBT module is electrically connected to the collector of the twenty-second IGBT module, and the output As the U-phase output (U1) of the first group of T-type three-level topology, the emitter of the twenty-third IGBT module is electrically connected to the collector of the twenty-fourth IGBT module, and the output is used as the second group of T-type three-level topology. U-phase output (U2) for flat topology. The emitter of the thirtieth IGBT module is electrically connected to the collector of the thirty-first IGBT module, and the output is the V-phase output (V1) of the first group of T-type three-level topology, and the emitter of the thirty-second IGBT module It is electrically connected to the collector of the thirty-third IGBT module, and the output is the V-phase output (V2) of the second group of T-type three-level topology. The emitter of the thirty-seventh IGBT module is electrically connected to the collector of the thirty-eighth IGBT module, and the output is the W-phase output (W1) of the first group of T-type three-level topology, and the emitter of the thirty-ninth IGBT module The pole is electrically connected to the collector of the fortieth IGBT module, and the output is the W-phase output (W2) of the second group of T-type three-level topology. Among them, each phase output is connected with an independent Hall sampling module.
变频逆变回路为T型三电平串联结构,所用IGBT模块较少,能够大大降低生产成本。多相输出,能够提高电机的输出转矩,同时能够降低对电机绝缘耐压的要求。输出波形为梯形波,谐波含量少,电压尖峰低,能够有效降低对电动机的绝缘氧化损伤,有利于大大延长电机的使用寿命。The frequency conversion inverter circuit is a T-type three-level series structure, and fewer IGBT modules are used, which can greatly reduce the production cost. Multi-phase output can improve the output torque of the motor, and at the same time can reduce the requirements for the insulation voltage of the motor. The output waveform is a trapezoidal wave, with less harmonic content and low voltage spike, which can effectively reduce the insulation oxidation damage to the motor and greatly prolong the service life of the motor.
结合第一方面第三种可能的实现方式,在第一方面第六种可能的实现方式中,在电动状态时,经过LC滤波回路和上电缓冲回路后的三相交流电源通过IGBT模块的续流二极管整流成直流;在发电状态时,通过IGBT的开通关断,将直流电源经PWM调制后回馈到三相交流电源侧。Combined with the third possible implementation manner of the first aspect, in the sixth possible implementation manner of the first aspect, in the electric state, the three-phase AC power supply after passing through the LC filter circuit and the power-on buffer circuit passes through the IGBT module. The current diode is rectified into DC; in the power generation state, the DC power is fed back to the three-phase AC power side after PWM modulation through the on-off of the IGBT.
结合第一方面第四种可能的实现方式,在第一方面第七种可能的实现方式中,所述滤波分压回路中的电容均为薄膜电容。With reference to the fourth possible implementation manner of the first aspect, in the seventh possible implementation manner of the first aspect, the capacitors in the filtering voltage dividing loop are all film capacitors.
结合第一方面第五种可能的实现方式,在第一方面第八种可能的实现方式中,所述变频逆变回路在电动状态时,将滤波分压回路分成的两路直流电源分别通过IGBT模块的开通关断,PWM调制逆变成两路交流电源,输出给永磁同步电动机提供能量;在发电状态时,通过IGBT模块的续流二极管整流成直流电源回馈到变频整流回路侧。In combination with the fifth possible implementation manner of the first aspect, in the eighth possible implementation manner of the first aspect, when the variable frequency inverter circuit is in an electric state, the two DC power sources divided by the filtering and voltage dividing circuit respectively pass through the IGBT When the module is turned on and off, the PWM modulates and inverts it into two AC power supplies, and the output provides energy to the permanent magnet synchronous motor; in the power generation state, it is rectified into a DC power supply through the freewheeling diode of the IGBT module and fed back to the side of the variable frequency rectifier circuit.
结合第一方面或第一方面第一至八种任一可能的实现方式,在第一方面第九种可能的实现方式中,所述永磁同步电动机为多相永磁同步电机,各组绕组采用独立结构且参数一致。In combination with the first aspect or any of the first to eight possible implementations of the first aspect, in a ninth possible implementation of the first aspect, the permanent magnet synchronous motor is a multi-phase permanent magnet synchronous motor, and each group of windings is It adopts independent structure and has the same parameters.
附图说明Description of drawings
图1为本申请实施例提供的一种三相输入多相输出式四象限一体机电路的框架示意图;1 is a schematic frame diagram of a three-phase input and multi-phase output type four-quadrant integrated machine circuit provided by an embodiment of the present application;
图2为本申请实施例提供的LC滤波回路的结构示意图;2 is a schematic structural diagram of an LC filter loop provided by an embodiment of the present application;
图3为本申请实施例提供的上电缓冲回路的结构示意图;3 is a schematic structural diagram of a power-on buffer loop provided by an embodiment of the present application;
图4为本申请实施例提供的变频整流回路的结构示意图;FIG. 4 is a schematic structural diagram of a frequency conversion rectifier circuit provided by an embodiment of the present application;
图5为本申请实施例提供的滤波分压回路的结构示意图;FIG. 5 is a schematic structural diagram of a filter voltage divider loop provided by an embodiment of the present application;
图6为本申请实施例提供的变频逆变回路的结构示意图;6 is a schematic structural diagram of a frequency conversion inverter circuit provided by an embodiment of the present application;
图1-6中符号表示为:The symbols in Figure 1-6 are represented as:
L-电抗器,SW-控制开关,C1-第一电容,C2-第二电容,C3-第三电容,C4-第四电容,C5-第五电容,C6-第六电容,C7-第七电容,C8-第八电容,C9-第九电容,C10-第十电容,C11-第十一电容,C12-第十二电容,C13-第十三电容,C14-第十四电容,C15-第十五电容,C16-第十六电容,C17-第十七电容,C18-第十八电容,C19-第十九电容,R1-第一电阻,R2-第二电阻,R3-第三电阻,R4-第四电阻,R5-第五电阻,R6-第六电阻,R7-第六电阻,Q1-第一IGBT模块,Q2-第二IGBT模块,Q3-第三IGBT模块,Q4-第四IGBT模块,Q5-第五IGBT模块,Q6-第六IGBT模块,Q7-第七IGBT模块,Q8-第八IGBT模块,Q9-第九IGBT模块,Q10-第十IGBT模块,Q11-第十一IGBT模块,Q12-第十二IGBT模块,Q13-第十三IGBT模块,Q14-第十四IGBT模块,Q15-第十五IGBT模块,Q16-第十六IGBT模块,Q17-第十七IGBT模块,Q18-第十八IGBT模块,Q19-第十九IGBT模块,Q20-第二十IGBT模块,Q21-第二十一IGBT模块,Q22-第二十二IGBT模块,Q23-第二十三IGBT模块,Q24-第二十四IGBT模块,Q25-第二十五IGBT模块,Q26-第二十六IGBT模块,Q27-第二十七IGBT模块,Q28-第二十八IGBT模块,Q29-第二十九IGBT模块,Q30-第三十IGBT模块,Q31-第三十一IGBT模块,Q32-第三十二IGBT模块,Q33-第三十三IGBT模块,Q34-第三十四IGBT模块,Q35-第三十五IGBT模块,Q36-第三十六IGBT模块,Q37-第三十七IGBT模块,Q38-第三十八IGBT模块,Q39-第三十九IGBT模块,Q40-第四十IGBT模块,Q41-第四十一IGBT模块,Q42-第四十二IGBT模块。L-reactor, SW-control switch, C1-first capacitor, C2-second capacitor, C3-third capacitor, C4-fourth capacitor, C5-fifth capacitor, C6-sixth capacitor, C7-seventh Capacitor, C8-Eighth Capacitor, C9-Ninth Capacitor, C10-Tenth Capacitor, C11-Eleventh Capacitor, C12-Twelfth Capacitor, C13-Thirteenth Capacitor, C14-Fourteenth Capacitor, C15- The fifteenth capacitor, C16-the sixteenth capacitor, C17-the seventeenth capacitor, C18-the eighteenth capacitor, C19-the nineteenth capacitor, R1-the first resistor, R2-the second resistor, R3-the third resistor , R4- fourth resistor, R5- fifth resistor, R6- sixth resistor, R7- sixth resistor, Q1- first IGBT module, Q2- second IGBT module, Q3- third IGBT module, Q4- fourth IGBT module, Q5-fifth IGBT module, Q6-sixth IGBT module, Q7-seventh IGBT module, Q8-eighth IGBT module, Q9-ninth IGBT module, Q10-tenth IGBT module, Q11-eleventh IGBT module IGBT module, Q12-12th IGBT module, Q13-13th IGBT module, Q14-14th IGBT module, Q15-15th IGBT module, Q16-16th IGBT module, Q17-17th IGBT module , Q18-18th IGBT module, Q19-19th IGBT module, Q20-20th IGBT module, Q21-21st IGBT module, Q22-22nd IGBT module, Q23-23rd IGBT Module, Q24-Twenty-fourth IGBT module, Q25-Twenty-fifth IGBT module, Q26-Twenty-sixth IGBT module, Q27-Twenty-seventh IGBT module, Q28-Twenty-eighth IGBT module, Q29-No. Twenty-nine IGBT modules, Q30-thirtieth IGBT modules, Q31- thirty-first IGBT modules, Q32- thirty-second IGBT modules, Q33- thirty-third IGBT modules, Q34- thirty-fourth IGBT modules, Q35-35th IGBT module, Q36-36th IGBT module, Q37-37th IGBT module, Q38-38th IGBT module, Q39-39th IGBT module, Q40-40th IGBT module IGBT module, Q41-41st IGBT module, Q42-42nd IGBT module.
具体实施方式Detailed ways
下面结合附图与具体实施方式对本方案进行阐述。The solution will be described below with reference to the accompanying drawings and specific embodiments.
图1为本申请实施例提供的一种三相输入多相输出式四象限一体机电路的框架示意图,参见图1,本申请实施例提供的三相输入多相输出式四象限一体机电路包括:LC滤波回路、上电缓冲回路、变频整流回路、滤波分压回路、变频逆变回路、永磁同步电动机,所述LC滤波回路的第一端与三相交流电源电连接,第二端与所述上电缓冲回路的第一端电连接,所述变频整流回路的两端分别与所述上电缓冲回路的第二端和所述滤波分压回路的第一端电连接,所述变频逆变回路的两端分别与所述滤波分压回路的第二端和永磁同步电动机电连接,上述回路的能量双向流动,永磁同步电动机电动发电状态下产生的能量回馈给所述三相交流电源。所述永磁同步电动机为多相永磁同步电机,各组绕组采用独立结构且参数一致。1 is a schematic frame diagram of a three-phase input and multi-phase output four-quadrant integrated machine circuit provided by an embodiment of the present application. Referring to FIG. 1 , the three-phase input and multi-phase output four-quadrant integrated computer circuit provided by the embodiment of the present application includes: : LC filter circuit, power-on buffer circuit, frequency conversion rectifier circuit, filter voltage divider circuit, frequency conversion inverter circuit, permanent magnet synchronous motor, the first end of the LC filter circuit is electrically connected to the three-phase AC power supply, and the second end is electrically connected to the three-phase AC power supply. The first end of the power-on buffer loop is electrically connected, the two ends of the frequency conversion rectifier loop are respectively electrically connected with the second end of the power-on buffer loop and the first end of the filter voltage divider loop, the frequency conversion Two ends of the inverter circuit are respectively electrically connected with the second end of the filter voltage dividing circuit and the permanent magnet synchronous motor, the energy of the above-mentioned circuit flows bidirectionally, and the energy generated in the motor-generating state of the permanent magnet synchronous motor is fed back to the three-phase AC power. The permanent magnet synchronous motor is a multi-phase permanent magnet synchronous motor, and each group of windings adopts an independent structure and has the same parameters.
参见图2,所述LC滤波回路包括第一电容C1、第二电容C2、第三电容C3和电抗器L,所述电抗器L的三相绕组第一端分别串联在三相交流电源中,第二端与所述上电缓冲回路电连接;所述第一电容C1的第一端、第二电容C2的第一端和第三电容C3的第一端连接在一起,所述第一电容C1的第二端、第二电容C2的第二端和第三电容C3的第二端分别连接到三相交流电源的不同相端。与传统的LCL滤波回路相比,保证性能的同时,省略掉一个交流电抗器L,结构更简单,有效降低产品的生产成本。Referring to FIG. 2, the LC filter circuit includes a first capacitor C1, a second capacitor C2, a third capacitor C3 and a reactor L, and the first ends of the three-phase windings of the reactor L are respectively connected in series with the three-phase AC power supply, The second end is electrically connected to the power-on buffer loop; the first end of the first capacitor C1, the first end of the second capacitor C2 and the first end of the third capacitor C3 are connected together, and the first capacitor The second terminal of C1 , the second terminal of the second capacitor C2 and the second terminal of the third capacitor C3 are respectively connected to different phase terminals of the three-phase AC power supply. Compared with the traditional LCL filter circuit, while ensuring the performance, an AC reactor L is omitted, the structure is simpler, and the production cost of the product is effectively reduced.
参见图3,所述上电缓冲回路包括控制开关SW、第一电阻R1、第二电阻R2和第三电阻R3,所述控制开关SW包括三个子开关,所述第一电阻R1、所述第二电阻R2和所述第三电阻R3的两端分别与不同的子开关的两端电连接,所述第一电阻R1的第一端、所述第二电阻R2的第一端和所述第三电阻R3的第一端分别与所述电抗器L的第二端电连接,所述第一电阻R1的第二端、所述第二电阻R2的第二端和所述第三电阻R3的第二端分别与所述变频整流回路的第一端电连接。Referring to FIG. 3, the power-on buffer loop includes a control switch SW, a first resistor R1, a second resistor R2 and a third resistor R3, the control switch SW includes three sub-switches, the first resistor R1, the third resistor R1 Two ends of the second resistor R2 and the third resistor R3 are electrically connected to two ends of different sub-switches, respectively. The first end of the first resistor R1, the first end of the second resistor R2 and the second The first ends of the three resistors R3 are respectively electrically connected to the second ends of the reactor L, the second ends of the first resistor R1 , the second ends of the second resistor R2 and the third resistor R3 The second ends are respectively electrically connected to the first ends of the variable frequency rectification loop.
参见图4,所述变频整流回路包括:第一IGBT模块Q1、第二IGBT模块Q2、第三IGBT模块Q3、第四IGBT模块Q4、第五IGBT模块Q5、第六IGBT模块Q6、第七IGBT模块Q7、第八IGBT模块Q8、第九IGBT模块Q9、第十IGBT模块Q10、第十一IGBT模块Q11、第十二IGBT模块Q12、第十三IGBT模块Q13、第十四IGBT模块Q14、第十五IGBT模块Q15、第十六IGBT模块Q16、第十七IGBT模块Q17和第十八IGBT模块Q18,其中:每一个IGBT模块包括IGBT反向并联一个续流二极管。Referring to FIG. 4 , the frequency conversion rectifier circuit includes: a first IGBT module Q1, a second IGBT module Q2, a third IGBT module Q3, a fourth IGBT module Q4, a fifth IGBT module Q5, a sixth IGBT module Q6, and a seventh IGBT module Module Q7, Eighth IGBT Module Q8, Ninth IGBT Module Q9, Tenth IGBT Module Q10, Eleventh IGBT Module Q11, Twelfth IGBT Module Q12, Thirteenth IGBT Module Q13, Fourteenth IGBT Module Q14, The fifteenth IGBT module Q15, the sixteenth IGBT module Q16, the seventeenth IGBT module Q17 and the eighteenth IGBT module Q18, wherein: each IGBT module includes a freewheeling diode in reverse parallel connection of the IGBT.
第一IGBT模块Q1、第二IGBT模块Q2、第三IGBT模块Q3、第四IGBT模块Q4、第五IGBT模块Q5和第六IGBT模块Q6组成一相桥臂,第七IGBT模块Q7、第八IGBT模块Q8、第九IGBT模块Q9、第十IGBT模块Q10、第十一IGBT模块Q11和第十二IGBT模块Q12组成一相桥臂,第十三IGBT模块Q13、第十四IGBT模块Q14、第十五IGBT模块Q15、第十六IGBT模块Q16、第十七IGBT模块Q17和第十八IGBT模块Q18组成一相桥臂。The first IGBT module Q1, the second IGBT module Q2, the third IGBT module Q3, the fourth IGBT module Q4, the fifth IGBT module Q5 and the sixth IGBT module Q6 form a one-phase bridge arm, the seventh IGBT module Q7 and the eighth IGBT module The module Q8, the ninth IGBT module Q9, the tenth IGBT module Q10, the eleventh IGBT module Q11 and the twelfth IGBT module Q12 form a one-phase bridge arm, the thirteenth IGBT module Q13, the fourteenth IGBT module Q14, and the tenth IGBT module Q14. The five IGBT modules Q15, the sixteenth IGBT module Q16, the seventeenth IGBT module Q17 and the eighteenth IGBT module Q18 form a one-phase bridge arm.
第一IGBT模块Q1、第二IGBT模块Q2、第三IGBT模块Q3和第四IGBT模块Q4依次串联连接,第一IGBT模块Q1的集电极、第七IGBT模块Q7的集电极和第十三IGBT模块Q13的集电极与母线DC+端电连接,第一IGBT模块Q1的发射极与第二IGBT模块Q2的集电极电连接,第二IGBT模块Q2的发射极与第三IGBT模块Q3的集电极电连接,连接到R相电源。第三IGBT模块Q3的发射极与第四IGBT模块Q4的集电极电连接,第四IGBT模块Q4的发射极发射极、第十IGBT模块Q10的集电极和第十六IGBT模块Q16的发射极均与母线DC-端电连接。第五IGBT模块Q5和第六IGBT模块Q6串联连接,第五IGBT模块Q5的集电极与第一IGBT模块Q1的发射极电连接,第六IGBT模块Q6的发射极与第四IGBT模块Q4的集电极电连接。The first IGBT module Q1, the second IGBT module Q2, the third IGBT module Q3 and the fourth IGBT module Q4 are connected in series in sequence, the collector of the first IGBT module Q1, the collector of the seventh IGBT module Q7 and the thirteenth IGBT module The collector of Q13 is electrically connected to the DC+ terminal of the bus bar, the emitter of the first IGBT module Q1 is electrically connected to the collector of the second IGBT module Q2, and the emitter of the second IGBT module Q2 is electrically connected to the collector of the third IGBT module Q3 , connected to the R-phase power supply. The emitter of the third IGBT module Q3 is electrically connected to the collector of the fourth IGBT module Q4, the emitter of the fourth IGBT module Q4, the collector of the tenth IGBT module Q10 and the emitter of the sixteenth IGBT module Q16 are all It is electrically connected to the DC- terminal of the bus bar. The fifth IGBT module Q5 and the sixth IGBT module Q6 are connected in series, the collector of the fifth IGBT module Q5 is electrically connected to the emitter of the first IGBT module Q1, and the emitter of the sixth IGBT module Q6 is electrically connected to the collector of the fourth IGBT module Q4. Electrodes are electrically connected.
第七IGBT模块Q7、第八IGBT模块Q8、第九IGBT模块Q9和第十IGBT模块Q10依次串联连接,第七IGBT模块Q7的发射极与第八IGBT模块Q8的集电极电连接,第八IGBT模块Q8的发射极与第九IGBT模块Q9的集电极电连接,连接到S相电源。第九IGBT模块Q9的发射极与第十IGBT模块Q10的集电极电连接,第十一IGBT模块Q11和第十二IGBT模块Q12串联连接,第十一IGBT模块Q11的集电极与第七IGBT模块Q7的发射极电连接,第十二IGBT模块Q12的发射极与第十IGBT模块Q10的集电极电连接。The seventh IGBT module Q7, the eighth IGBT module Q8, the ninth IGBT module Q9 and the tenth IGBT module Q10 are sequentially connected in series, the emitter of the seventh IGBT module Q7 is electrically connected to the collector of the eighth IGBT module Q8, and the eighth IGBT module Q7 is electrically connected to the collector of the eighth IGBT module Q8. The emitter of the module Q8 is electrically connected to the collector of the ninth IGBT module Q9 to the S-phase power supply. The emitter of the ninth IGBT module Q9 is electrically connected to the collector of the tenth IGBT module Q10, the eleventh IGBT module Q11 and the twelfth IGBT module Q12 are connected in series, and the collector of the eleventh IGBT module Q11 is connected to the seventh IGBT module The emitter of Q7 is electrically connected, and the emitter of the twelfth IGBT module Q12 is electrically connected to the collector of the tenth IGBT module Q10.
第十三IGBT模块Q13、第十四IGBT模块Q14、第十五IGBT模块Q15和第十六IGBT模块Q16依次串联连接,第十三IGBT模块Q13的发射极与第十四IGBT模块Q14的集电极电连接,第十四IGBT模块Q14的发射极与第十五IGBT模块Q15的集电极电连接,连接到T相电源。第十五IGBT模块Q15的发射极与第十六IGBT模块Q16的集电极电连接,第十七IGBT模块Q17和第十八IGBT模块Q18串联连接,第十七IGBT模块Q17的集电极与第十三IGBT模块Q13的发射极电连接,第十八IGBT模块Q18的发射极与第十六IGBT模块Q16的集电极电连接。The thirteenth IGBT module Q13, the fourteenth IGBT module Q14, the fifteenth IGBT module Q15 and the sixteenth IGBT module Q16 are sequentially connected in series, and the emitter of the thirteenth IGBT module Q13 and the collector of the fourteenth IGBT module Q14 Electrically connected, the emitter of the fourteenth IGBT module Q14 is electrically connected to the collector of the fifteenth IGBT module Q15, and is connected to the T-phase power supply. The emitter of the fifteenth IGBT module Q15 is electrically connected to the collector of the sixteenth IGBT module Q16, the seventeenth IGBT module Q17 and the eighteenth IGBT module Q18 are connected in series, and the collector of the seventeenth IGBT module Q17 is connected to the tenth IGBT module Q17. The emitters of the three IGBT modules Q13 are electrically connected, and the emitters of the eighteenth IGBT module Q18 are electrically connected to the collectors of the sixteenth IGBT module Q16.
变频整流回路为中点钳位三电平拓扑结构,输出谐波较小,电动状态时能够大大降低谐波对电网的影响,发电状态时,回馈波形为梯形波,经LC滤波后更接近于正弦波,更好的回馈电网,不会影响电网电压的畸变。The frequency conversion rectifier circuit is a three-level topology with neutral point clamping, the output harmonics are small, and the influence of harmonics on the power grid can be greatly reduced in the electric state. In the power generation state, the feedback waveform is a trapezoidal wave, which is closer to the LC filter after LC filtering. Sine wave, better feedback to the grid, will not affect the distortion of the grid voltage.
在电动状态时,经过LC滤波回路和上电缓冲回路后的三相交流电源通过IGBT模块的续流二极管整流成直流;在发电状态时,通过IGBT的开通关断,将直流电源经PWM调制后回馈到三相交流电源侧。In the electric state, the three-phase AC power after passing through the LC filter circuit and the power-on buffer circuit is rectified into DC through the freewheeling diode of the IGBT module; in the power generation state, the DC power is modulated by PWM through the on-off of the IGBT. Feedback to the three-phase AC power supply side.
参见图5,所述滤波分压回路包括:第四电容C4、第五电容C5、第六电容C6、第七电容C7、第八电容C8、第九电容C9、第十电容C10、第十一电容C11、第十二电容C12、第十三电容C13、第十四电容C14、第十五电容C15、第十六电容C16、第十七电容C17、第十八电容C18、第十九电容C19、第四电阻R4、第五电阻R5、第六电阻R6和第七电阻R7,所述滤波分压回路中的电容均为薄膜电容。Referring to FIG. 5 , the filtering voltage dividing loop includes: a fourth capacitor C4, a fifth capacitor C5, a sixth capacitor C6, a seventh capacitor C7, an eighth capacitor C8, a ninth capacitor C9, a tenth capacitor C10, an eleventh capacitor Capacitor C11, Twelfth Capacitor C12, Thirteenth Capacitor C13, Fourteenth Capacitor C14, Fifteenth Capacitor C15, Sixteenth Capacitor C16, Seventeenth Capacitor C17, Eighteenth Capacitor C18, Nineteenth Capacitor C19 , the fourth resistor R4, the fifth resistor R5, the sixth resistor R6 and the seventh resistor R7, the capacitors in the filtering voltage dividing loop are all film capacitors.
第四电容C4、第五电容C5、第六电容C6、第七电容C7、第八电容C8、第九电容C9、第十电容C10和第十一电容C11依次串联连接,第十二电容C12、第十三电容C13、第十四电容C14、第十五电容C15、第十六电容C16、第十七电容C17、第十八电容C18和第十九电容C19依次串联连接,第四电阻R4、第五电阻R5、第六电阻R6和第七电阻R7依次串联连接。The fourth capacitor C4, the fifth capacitor C5, the sixth capacitor C6, the seventh capacitor C7, the eighth capacitor C8, the ninth capacitor C9, the tenth capacitor C10 and the eleventh capacitor C11 are connected in series in sequence, and the twelfth capacitor C12, The thirteenth capacitor C13, the fourteenth capacitor C14, the fifteenth capacitor C15, the sixteenth capacitor C16, the seventeenth capacitor C17, the eighteenth capacitor C18 and the nineteenth capacitor C19 are connected in series in sequence, and the fourth resistor R4, The fifth resistor R5, the sixth resistor R6 and the seventh resistor R7 are sequentially connected in series.
第四电容C4的第一端和第十二电容C12的第一端分别与第四电阻R4的第一端电连接,第五电容C5的第一端和第十三电容C13的第一端分别与第四电阻R4的第二端电连接。第六电容C6的第一端和第十四电容C14的第一端分别与第五电阻R5的第一端电连接,第七电容C7的第一端和第十五电容C15的第一端分别与第五电阻R5的第二端电连接。第八电容C8的第一端和第十六电容C16的第一端分别与第六电阻R6的第一端电连接,第九电容C9的第一端和第十七电容C17的第一端分别与第六电阻R6的第二端电连接。第十电容C10的第一端和第十八电容C18的第一端分别与第七电阻R7的第一端电连接,第十一电容C11的第一端和第十九电容C19的第一端分别与第七电阻R7的第二端电连接。电阻R1-R4将直流电源分成两组,分别为+1、01、-1电位和+2、02、-2电位,其中-1和+2为等电位。The first end of the fourth capacitor C4 and the first end of the twelfth capacitor C12 are respectively electrically connected to the first end of the fourth resistor R4, the first end of the fifth capacitor C5 and the first end of the thirteenth capacitor C13 are respectively It is electrically connected to the second end of the fourth resistor R4. The first end of the sixth capacitor C6 and the first end of the fourteenth capacitor C14 are respectively electrically connected to the first end of the fifth resistor R5, the first end of the seventh capacitor C7 and the first end of the fifteenth capacitor C15 are respectively It is electrically connected to the second end of the fifth resistor R5. The first end of the eighth capacitor C8 and the first end of the sixteenth capacitor C16 are respectively electrically connected to the first end of the sixth resistor R6, the first end of the ninth capacitor C9 and the first end of the seventeenth capacitor C17 are respectively It is electrically connected to the second end of the sixth resistor R6. The first end of the tenth capacitor C10 and the first end of the eighteenth capacitor C18 are respectively electrically connected to the first end of the seventh resistor R7, the first end of the eleventh capacitor C11 and the first end of the nineteenth capacitor C19 They are respectively electrically connected to the second ends of the seventh resistors R7. Resistors R1-R4 divide the DC power supply into two groups, which are +1, 01, -1 potentials and +2, 02, -2 potentials, where -1 and +2 are equal potentials.
参见图6,所述变频逆变回路包括:第十九IGBT模块Q19、第二十IGBT模块Q20、第二十一IGBT模块Q21、第二十二IGBT模块Q22、第二十三IGBT模块Q23、第二十四IGBT模块Q24、第二十五IGBT模块Q25、第二十六IGBT模块Q26、第二十七IGBT模块Q27、第二十八IGBT模块Q28、第二十九IGBT模块Q29、第三十IGBT模块Q30、第三十一IGBT模块Q31、第三十二IGBT模块Q32、第三十三IGBT模块Q33、第三十四IGBT模块Q34、第三十五IGBT模块Q35、第三十六IGBT模块Q36、第三十七IGBT模块Q37、第三十八IGBT模块Q38、第三十九IGBT模块Q39、第四十IGBT模块Q40、第四十一IGBT模块Q41和第四十二IGBT模块Q42,其中:每一个IGBT模块包括IGBT反向并联一个续流二极管。Referring to FIG. 6, the frequency conversion inverter circuit includes: a nineteenth IGBT module Q19, a twentieth IGBT module Q20, a twenty-first IGBT module Q21, a twenty-second IGBT module Q22, a twenty-third IGBT module Q23, The twenty-fourth IGBT module Q24, the twenty-fifth IGBT module Q25, the twenty-sixth IGBT module Q26, the twenty-seventh IGBT module Q27, the twenty-eighth IGBT module Q28, the twenty-ninth IGBT module Q29, the third Ten IGBT modules Q30, thirty-first IGBT modules Q31, thirty-second IGBT modules Q32, thirty-third IGBT modules Q33, thirty-fourth IGBT modules Q34, thirty-fifth IGBT modules Q35, thirty-sixth IGBT modules module Q36, thirty-seventh IGBT module Q37, thirty-eighth IGBT module Q38, thirty-ninth IGBT module Q39, fortieth IGBT module Q40, forty-first IGBT module Q41 and forty-second IGBT module Q42, Wherein: each IGBT module includes a freewheeling diode in reverse parallel connection with the IGBT.
第二十一IGBT模块Q21、第三十IGBT模块Q30、第三十七IGBT模块Q37的集电极均与+1电位电连接。第十九IGBT模块Q19、第二十七IGBT模块Q27、第三十五IGBT模块Q35的集电极均与01电位电连接。第二十二IGBT模块Q22、第三十一IGBT模块Q31、第三十八IGBT模块Q38的发射极均与-1电位电连接。第二十三IGBT模块Q23、第三十二IGBT模块Q32、第三十九IGBT模块Q39的集电极均与+2电位电连接。第二十IGBT模块Q20、第二十八IGBT模块Q28、第三十六IGBT模块Q36的集电极均与02电位电连接。第二十四IGBT模块Q24、第三十三IGBT模块Q33、第四十IGBT模块Q40的发射极均与-2电位电连接。Collectors of the twenty-first IGBT module Q21, the thirtieth IGBT module Q30, and the thirty-seventh IGBT module Q37 are all electrically connected to +1 potential. The collectors of the nineteenth IGBT module Q19, the twenty-seventh IGBT module Q27, and the thirty-fifth IGBT module Q35 are all electrically connected to the 01 potential. The emitters of the twenty-second IGBT module Q22, the thirty-first IGBT module Q31, and the thirty-eighth IGBT module Q38 are all electrically connected to the -1 potential. Collectors of the twenty-third IGBT module Q23, the thirty-second IGBT module Q32, and the thirty-ninth IGBT module Q39 are all electrically connected to the +2 potential. The collectors of the twentieth IGBT module Q20, the twenty-eighth IGBT module Q28, and the thirty-sixth IGBT module Q36 are all electrically connected to the 02 potential. The emitters of the twenty-fourth IGBT module Q24, the thirty-third IGBT module Q33, and the fortieth IGBT module Q40 are all electrically connected to the -2 potential.
第十九IGBT模块Q19的发射极与第二十五IGBT模块Q25的集电极电连接,第二十七IGBT模块Q27的发射极与第三十四IGBT模块Q34的集电极电连接,第三十五IGBT模块Q35的发射极与第四十一IGBT模块Q41的集电极电连接,第二十IGBT模块Q20的发射极与第二十六IGBT模块Q26的集电极电连接,第二十八IGBT模块Q28的发射极与第二十九IGBT模块Q29的集电极电连接,第三十六IGBT模块Q36的发射极与第四十二IGBT模块Q42的集电极电连接。The emitter of the nineteenth IGBT module Q19 is electrically connected to the collector of the twenty-fifth IGBT module Q25, the emitter of the twenty-seventh IGBT module Q27 is electrically connected to the collector of the thirty-fourth IGBT module Q34, and the thirty-fourth IGBT module Q34 is electrically connected to the emitter. The emitter of the fifth IGBT module Q35 is electrically connected to the collector of the forty-first IGBT module Q41, the emitter of the twentieth IGBT module Q20 is electrically connected to the collector of the twenty-sixth IGBT module Q26, and the twenty-eighth IGBT module The emitter of Q28 is electrically connected to the collector of the twenty-ninth IGBT module Q29, and the emitter of the thirty-sixth IGBT module Q36 is electrically connected to the collector of the forty-second IGBT module Q42.
第二十一IGBT模块Q21、第二十二IGBT模块Q22、第二十三IGBT模块Q23和第二十四IGBT模块Q24串联连接,第二十一IGBT模块Q21的发射极与第二十二IGBT模块Q22的集电极电连接,第二十三IGBT模块Q23的发射极与第二十四IGBT模块Q24的集电极电连接。The twenty-first IGBT module Q21, the twenty-second IGBT module Q22, the twenty-third IGBT module Q23, and the twenty-fourth IGBT module Q24 are connected in series, and the emitter of the twenty-first IGBT module Q21 is connected to the twenty-second IGBT module Q21. The collector of the module Q22 is electrically connected, and the emitter of the twenty-third IGBT module Q23 is electrically connected to the collector of the twenty-fourth IGBT module Q24.
第三十IGBT模块Q30、第三十一IGBT模块Q31、第三十二IGBT模块Q32和第三十三IGBT模块Q33串联连接,第三十IGBT模块Q30的发射极与第三十一IGBT模块Q31的集电极电连接,第三十二IGBT模块Q32的发射极与第三十三IGBT模块Q33的集电极电连接。The thirtieth IGBT module Q30, the thirty-first IGBT module Q31, the thirty-second IGBT module Q32 and the thirty-third IGBT module Q33 are connected in series, and the emitter of the thirty-first IGBT module Q30 is connected to the thirty-first IGBT module Q31 The collector of the thirty-second IGBT module Q32 is electrically connected to the collector of the thirty-third IGBT module Q33.
第三十七IGBT模块Q37、第三十八IGBT模块Q38、第三十九IGBT模块Q39和第四十IGBT模块Q40串联连接,第三十七IGBT模块Q37的发射极与第三十八IGBT模块Q38的集电极电连接,第三十九IGBT模块Q39的发射极与第四十IGBT模块Q40的集电极电连接。The thirty-seventh IGBT module Q37, the thirty-eighth IGBT module Q38, the thirty-ninth IGBT module Q39 and the fortieth IGBT module Q40 are connected in series, and the emitter of the thirty-seventh IGBT module Q37 is connected to the thirty-eighth IGBT module The collector of Q38 is electrically connected, and the emitter of the thirty-ninth IGBT module Q39 is electrically connected to the collector of the fortieth IGBT module Q40.
变频逆变回路采用两组T型三电平拓扑结构,保证性能的同时能够有效减少IGBT模块的使用,第二十一IGBT模块Q21的发射极与第二十二IGBT模块Q22的集电极电连接,输出作为第一组T型三电平拓扑结构的U相输出(U1),第二十三IGBT模块Q23的发射极与第二十四IGBT模块Q24的集电极电连接,输出作为第二组T型三电平拓扑结构的U相输出(U2)。第三十IGBT模块Q30的发射极与第三十一IGBT模块Q31的集电极电连接,输出作为第一组T型三电平拓扑结构的V相输出(V1),第三十二IGBT模块Q32的发射极与第三十三IGBT模块Q33的集电极电连接,输出作为第二组T型三电平拓扑结构的V相输出(V2)。第三十七IGBT模块Q37的发射极与第三十八IGBT模块Q38的集电极电连接,输出作为第一组T型三电平拓扑结构的W相输出(W1),第三十九IGBT模块Q39的发射极与第四十IGBT模块Q40的集电极电连接,输出作为第二组T型三电平拓扑结构的W相输出(W2)。其中,每相输出上都接有独立的霍尔采样模块。The frequency conversion inverter circuit adopts two sets of T-type three-level topology, which can effectively reduce the use of IGBT modules while ensuring performance. The emitter of the twenty-first IGBT module Q21 is electrically connected to the collector of the twenty-second IGBT module Q22. , the output is the U-phase output (U1) of the first group of T-type three-level topology, the emitter of the twenty-third IGBT module Q23 is electrically connected to the collector of the twenty-fourth IGBT module Q24, and the output is the second group of U-phase output (U2) for T-type 3-level topology. The emitter of the thirtieth IGBT module Q30 is electrically connected to the collector of the thirty-first IGBT module Q31, and the output is the V-phase output (V1) of the first group of T-type three-level topology, and the thirty-second IGBT module Q32 The emitter of IGBT is electrically connected to the collector of the thirty-third IGBT module Q33, and the output is the V-phase output (V2) of the second group of T-type three-level topology. The emitter of the thirty-seventh IGBT module Q37 is electrically connected to the collector of the thirty-eighth IGBT module Q38, and the output is the W-phase output (W1) of the first group of T-type three-level topology, and the thirty-ninth IGBT module The emitter of Q39 is electrically connected to the collector of the fortieth IGBT module Q40, and the output is the W-phase output (W2) of the second group of T-type three-level topology. Among them, each phase output is connected with an independent Hall sampling module.
变频逆变回路为T型三电平串联结构,所用IGBT模块较少,能够大大降低生产成本。多相输出,能够提高电机的输出转矩,同时能够降低对电机绝缘耐压的要求。输出波形为梯形波,谐波含量少,电压尖峰低,能够有效降低对电动机的绝缘氧化损伤,有利于大大延长电机的使用寿命。The frequency conversion inverter circuit is a T-type three-level series structure, and fewer IGBT modules are used, which can greatly reduce the production cost. Multi-phase output can improve the output torque of the motor, and at the same time can reduce the requirements for the insulation voltage of the motor. The output waveform is a trapezoidal wave, with less harmonic content and low voltage spike, which can effectively reduce the insulation oxidation damage to the motor and greatly prolong the service life of the motor.
所述变频逆变回路在电动状态时,将滤波分压回路分成的两路直流电源分别通过IGBT模块的开通关断,PWM调制逆变成两路交流电源,输出给永磁同步电动机提供能量;在发电状态时,通过IGBT模块的续流二极管整流成直流电源回馈到变频整流回路侧。When the frequency conversion and inverter circuit is in the electric state, the two-way DC power supply divided by the filtering and voltage-dividing circuit is respectively turned on and off by the IGBT module, and the PWM modulation inverter is converted into two-way AC power supply, and the output provides energy to the permanent magnet synchronous motor; In the power generation state, the DC power is rectified by the freewheeling diode of the IGBT module and fed back to the side of the variable frequency rectification circuit.
由上述实施例可知,本实施例提供的三相输入多相输出式四象限一体机电路,三相输入多相输出,能够有效提高电机的输出转矩。具备能量回馈功能,能够将电机所发的电回馈利用,更加节能高效。It can be seen from the above embodiments that the three-phase input and multi-phase output type four-quadrant integrated machine circuit provided in this embodiment has three-phase input and multi-phase output, which can effectively improve the output torque of the motor. With the function of energy feedback, it can use the electricity generated by the motor to feedback, which is more energy-saving and efficient.
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this document, relational terms such as "first" and "second" etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply these There is no such actual relationship or sequence between entities or operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
当然,上述说明也并不仅限于上述举例,本申请未经描述的技术特征可以通过或采用现有技术实现,在此不再赘述;以上实施例及附图仅用于说明本申请的技术方案并非是对本申请的限制,如来替代,本申请仅结合并参照优选的实施方式进行了详细说明,本领域的普通技术人员应当理解,本技术领域的普通技术人员在本申请的实质范围内所做出的变化、改型、添加或替换都不脱离本申请的宗旨,也应属于本申请的权利要求保护范围。Of course, the above description is not limited to the above examples, and the technical features not described in this application can be realized by or using existing technologies, and will not be repeated here; the above embodiments and drawings are only used to illustrate the technical solutions of this application, not It is a limitation of the present application. If it is replaced, the present application is only described in detail with reference to the preferred embodiments. Those of ordinary skill in the art should understand that those of ordinary skill in the art can make Changes, modifications, additions or substitutions do not depart from the purpose of the present application, and should also belong to the protection scope of the claims of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010283447.XA CN111404444A (en) | 2020-04-13 | 2020-04-13 | A three-phase input multi-phase output four-quadrant integrated machine circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010283447.XA CN111404444A (en) | 2020-04-13 | 2020-04-13 | A three-phase input multi-phase output four-quadrant integrated machine circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111404444A true CN111404444A (en) | 2020-07-10 |
Family
ID=71431626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010283447.XA Pending CN111404444A (en) | 2020-04-13 | 2020-04-13 | A three-phase input multi-phase output four-quadrant integrated machine circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111404444A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104901579A (en) * | 2015-06-26 | 2015-09-09 | 青岛海能阿尔派轨道电力设备工程科技有限公司 | Four-quadrant current-variable regeneration energy inversion feedback device |
CN105829225A (en) * | 2013-12-18 | 2016-08-03 | 奥的斯电梯公司 | Bus capacitor bank configuration for a regenerative drive |
US20160308474A1 (en) * | 2013-12-18 | 2016-10-20 | Otis Elevator Company | Multilevel drive half dc bus power supplies |
CN106341050A (en) * | 2015-07-17 | 2017-01-18 | 台达电子企业管理(上海)有限公司 | Multi-level frequency converter and control method thereof |
CN108390514A (en) * | 2018-06-01 | 2018-08-10 | 孙乃辉 | A kind of 6kV high voltage permanents variable-frequency motor all-in-one machine |
CN109412425A (en) * | 2018-11-07 | 2019-03-01 | 北京星航机电装备有限公司 | A kind of band inhibits the three level-four-quadrant frequency converter and control method of vertical compression fluctuation |
CN211860005U (en) * | 2020-04-13 | 2020-11-03 | 山东欧瑞安电气有限公司 | Three-phase input multiphase output type four-quadrant all-in-one machine circuit |
-
2020
- 2020-04-13 CN CN202010283447.XA patent/CN111404444A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105829225A (en) * | 2013-12-18 | 2016-08-03 | 奥的斯电梯公司 | Bus capacitor bank configuration for a regenerative drive |
US20160308474A1 (en) * | 2013-12-18 | 2016-10-20 | Otis Elevator Company | Multilevel drive half dc bus power supplies |
CN104901579A (en) * | 2015-06-26 | 2015-09-09 | 青岛海能阿尔派轨道电力设备工程科技有限公司 | Four-quadrant current-variable regeneration energy inversion feedback device |
CN106341050A (en) * | 2015-07-17 | 2017-01-18 | 台达电子企业管理(上海)有限公司 | Multi-level frequency converter and control method thereof |
CN108390514A (en) * | 2018-06-01 | 2018-08-10 | 孙乃辉 | A kind of 6kV high voltage permanents variable-frequency motor all-in-one machine |
CN109412425A (en) * | 2018-11-07 | 2019-03-01 | 北京星航机电装备有限公司 | A kind of band inhibits the three level-four-quadrant frequency converter and control method of vertical compression fluctuation |
CN211860005U (en) * | 2020-04-13 | 2020-11-03 | 山东欧瑞安电气有限公司 | Three-phase input multiphase output type four-quadrant all-in-one machine circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109391166B (en) | Conversion circuit, control method and power supply equipment | |
Kolar et al. | Review of three-phase PWM AC–AC converter topologies | |
Li et al. | An SiC MOSFET and Si diode hybrid three-phase high-power three-level rectifier | |
CN1732618A (en) | Motor drive unit for air conditioner | |
CN103368427A (en) | Single-phase inverter and system thereof and three-phase inverter and system thereof | |
TW201338378A (en) | Wind power generation system, and power circuit and converter structure thereof | |
CN110247568B (en) | A three-phase diode-clamped three-level dual-output inverter topology | |
WO2022028238A1 (en) | Power conversion system | |
CN103956927A (en) | Voltage-active-clamping non-transformer-type single-phase photovoltaic inverter | |
Haq et al. | Performance analysis of switching techniques in modular multilevel converter fed induction motor | |
CN104333249A (en) | Seven-level inverter circuit and control method thereof, multi-phase inverter and frequency converter | |
CN211860005U (en) | Three-phase input multiphase output type four-quadrant all-in-one machine circuit | |
CN109495004B (en) | Discontinuous pulse width modulation method of odd-phase three-level converter | |
CN108521232B (en) | Three-phase three-level inverter based on switched capacitor | |
CN104065293A (en) | A Transformerless Single-Phase Photovoltaic Inverter with Voltage Hybrid Clamping | |
CN111934558B (en) | Medium-high voltage variable frequency speed regulating circuit without transformer isolation and control method | |
CN112838769A (en) | Transformer-isolation-free star-connection medium-high voltage variable frequency speed regulation system and control method | |
CN107834888A (en) | A kind of Transformer-free single-phase photovoltaic inverter of voltage hybrid clamp | |
CN106033947A (en) | Three-phase inverter circuit for driving three-phase AC motor and vector modulation control method thereof | |
CN111404444A (en) | A three-phase input multi-phase output four-quadrant integrated machine circuit | |
Jyothi et al. | Modeling and Simulation of Five-phase Induction Motor Fed with Five-phase Inverter Topologies | |
JP3326790B2 (en) | Control device for power converter | |
Parlindungan et al. | Input current ripple analysis of double stator AC drive systems | |
Chai et al. | Space vector PWM for three-to-five phase indirect matrix converters with d 2-q 2 vector elimination | |
CN215498755U (en) | A clamped five-level voltage source converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |