CN111389411A - Perovskite electrocatalyst and preparation method and application thereof - Google Patents
Perovskite electrocatalyst and preparation method and application thereof Download PDFInfo
- Publication number
- CN111389411A CN111389411A CN201910005621.1A CN201910005621A CN111389411A CN 111389411 A CN111389411 A CN 111389411A CN 201910005621 A CN201910005621 A CN 201910005621A CN 111389411 A CN111389411 A CN 111389411A
- Authority
- CN
- China
- Prior art keywords
- perovskite
- electrocatalyst
- metal
- solution
- nitrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/894—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/036—Precipitation; Co-precipitation to form a gel or a cogel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及电催化水分解技术领域,更具体地说涉及一种钙钛矿电催化剂及其制备方法和应用。The invention relates to the technical field of electrocatalytic water splitting, and more particularly to a perovskite electrocatalyst and a preparation method and application thereof.
背景技术Background technique
随着世界化石燃料的急剧减少,能源问题引起大家的广泛关注。氢能是近年来得到认可的清洁再生能源,利用水分解可以产氢,但是平常的水分解过程效率低、产量少。因此在水分解过程中使用电催化剂可以大大提高氢能的产率。贵金属单质铂,氧化钌等对水分解具有优异的电催化性能,但是由于其储量低、成本高、稳定性差等缺点,一定程度上限制了贵金属催化剂在水分解方面的应用。一些替代催化剂例如过渡金属氧化物、碱金属氧化物以及钙钛矿型氧化物凭借成本低廉、化学稳定性好、热稳定性高等诸多优点,在电催化水分解方面扮演了重要的角色。With the sharp reduction of the world's fossil fuels, energy issues have attracted widespread attention. Hydrogen energy is a clean and renewable energy that has been recognized in recent years. Hydrogen can be produced by water splitting, but the usual water splitting process has low efficiency and low output. Therefore, the use of electrocatalysts in the water splitting process can greatly improve the yield of hydrogen energy. Precious metals such as platinum and ruthenium oxide have excellent electrocatalytic properties for water splitting. However, due to their low reserves, high cost, and poor stability, the application of noble metal catalysts in water splitting is limited to a certain extent. Some alternative catalysts, such as transition metal oxides, alkali metal oxides, and perovskite-type oxides, play an important role in electrocatalytic water splitting due to their low cost, good chemical stability, and high thermal stability.
钙钛矿型氧化物(ABO3)中B位过渡金属离子的种类决定氧化物的氧化还原特性和催化活性,A位碱金属离子主要起着晶体骨架和稳定结构的作用。通过对A位或B位部分取代或缺陷处理可以影响钙钛矿材料的电催化活性能。The types of transition metal ions at the B site in perovskite oxides (ABO 3 ) determine the redox properties and catalytic activity of the oxides, and the alkali metal ions at the A site mainly play the role of crystal skeleton and stable structure. The electrocatalytic activity of perovskite materials can be affected by partial substitution or defect treatment of A or B sites.
发明内容SUMMARY OF THE INVENTION
本发明克服了现有技术中的不足,现有的钙钛矿电催化剂催化活性低,提供了一种钙钛矿电催化剂及其制备方法和应用,经过B位掺杂微量贵金属Pt大大提高了催化剂的催化活性,进一步促进水分解催化研究的发展。The invention overcomes the deficiencies in the prior art, and the existing perovskite electrocatalyst has low catalytic activity, and provides a perovskite electrocatalyst and a preparation method and application thereof, which greatly improves the performance by doping a trace amount of precious metal Pt at the B site. The catalytic activity of the catalyst further promotes the development of water splitting catalysis research.
本发明的目的通过下述技术方案予以实现。The purpose of the present invention is achieved through the following technical solutions.
一种钙钛矿电催化剂及其制备方法,钙钛矿电催化剂化学表达式为LaCo1- xPtxO3-δ,其中,x=0-0.08,δ为材料LaCoO3掺杂微量贵金属Pt后由于电中性原理而引起的氧空位的数量,按照下述步骤进行:A perovskite electrocatalyst and a preparation method thereof. The chemical expression of the perovskite electrocatalyst is LaCo 1- x Pt x O 3-δ , wherein x=0-0.08, and δ is the material LaCoO 3 doped with trace precious metal Pt After the number of oxygen vacancies caused by the principle of electrical neutrality, follow the following steps:
步骤1,将硝酸镧(La(NO3)3·6H2O)、硝酸钴(Co(NO3)2·6H2O)和硝酸铂(Pt(NO3)2)加入到去离子水中配成溶液,向上述溶液中加入乙二胺四乙酸和柠檬酸,其中,金属离子(金属镧、金属钴和金属铂之和)、乙二胺四乙酸和柠檬酸的摩尔比为(1-2):(1-2):(2-4),钙钛矿溶液的浓度为0.08-0.12mol/L,向上述溶液中滴加20-30%氨水(NH3·H2O)调节溶液PH值为6-7,将上述溶液超声分散后转移到带水浴的磁力搅拌器上进行匀速搅拌至得到湿凝胶;
步骤2,将步骤1中得到的湿凝胶转移到坩埚中并置于鼓风干燥箱中进行干燥,干燥温度为100-150℃,干燥时间为20-30h,制得干凝胶,将上述干凝胶置于马弗炉中烧结,以2-6℃/min的速率自室温20-25℃升高到400-500℃,保持温度2-4h,使前驱体中的硝酸盐完全分解,再以6-12℃/min的速率升高到800-1000℃,煅烧3-5h,随后随炉冷却至室温20-25℃,最终得到钙钛矿电催化剂。
在步骤1中,金属离子(金属镧、金属钴和金属铂之和)、乙二胺四乙酸和柠檬酸的摩尔比为1:1:2,钙钛矿溶液的浓度为0.10mol/L。In
在步骤1中,超声分散后,将水溶液置于水浴温度为70-90℃,优选80℃的水浴装置内磁力搅拌,磁力搅拌速度为300-500r/min,优选400r/min,以得到湿凝胶。In
在步骤2中,湿凝胶的干燥温度为120℃,干燥时间为24h。In
在步骤2中,干凝胶在马弗炉中煅烧的气氛为空气。In
在步骤2中,以3-5℃/min的速率自室温20-25℃升高到400-450℃,保持温度2-3h,使前驱体中的硝酸盐完全分解,再以8-10℃/min的速率升高到800-850℃,煅烧4-5h。In
本发明的有益效果为:本发明采用溶胶凝胶法制备钙钛矿电催化剂(LaCo1- xPtxO3-δ),通过在B位掺杂微量贵金属Pt使样品催化水分解析氧反应(OER)和析氢反应(HER)的过电势分别为0.42-0.48V和0.26-0.32V(电流密度为10mA/cm2),相比于未掺杂的LaCoO3,掺铂电催化剂催化性能有了一定的提高。The beneficial effects of the present invention are as follows: the present invention adopts a sol-gel method to prepare a perovskite electrocatalyst (LaCo 1- x Pt x O 3-δ ), and by doping a trace amount of precious metal Pt at the B site, the sample catalyzes the water desorption oxygen reaction ( The overpotentials of OER) and hydrogen evolution reaction (HER) are 0.42-0.48V and 0.26-0.32V (current density is 10mA/cm 2 ), respectively. Compared with undoped LaCoO 3 , the catalytic performance of platinum-doped electrocatalysts is better than that of undoped LaCoO 3 . certain improvement.
附图说明Description of drawings
图1为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ)的XRD谱图(1),其中,LC为LaCoO3,LCP2为LaCo0.98Pt0.02O3-δ,LCP4为LaCo0.96Pt0.04O3-δ,LCP6为LaCo0.94Pt0.06O3-δ,LCP8为LaCo0.92Pt0.08O3-δ。Fig. 1 is the XRD pattern (1) of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ ) prepared by the present invention, wherein, LC is LaCoO 3 , LCP2 is LaCo 0.98 Pt 0.02 O 3-δ , LCP4 is LaCo 0.96 Pt 0.04 O 3-δ , LCP6 is LaCo 0.94 Pt 0.06 O 3-δ , and LCP8 is LaCo 0.92 Pt 0.08 O 3-δ .
图2为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ)的XRD谱图(2),其中,LC为LaCoO3,LCP2为LaCo0.98Pt0.02O3-δ,LCP4为LaCo0.96Pt0.04O3-δ,LCP6为LaCo0.94Pt0.06O3-δ,LCP8为LaCo0.92Pt0.08O3-δ。Figure 2 is the XRD pattern (2) of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ ) prepared by the present invention, wherein LC is LaCoO 3 , LCP2 is LaCo 0.98 Pt 0.02 O 3-δ , LCP4 is LaCo 0.96 Pt 0.04 O 3-δ , LCP6 is LaCo 0.94 Pt 0.06 O 3-δ , and LCP8 is LaCo 0.92 Pt 0.08 O 3-δ .
图3为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ,x=0)的TEM照片。FIG. 3 is a TEM photograph of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ , x=0) prepared by the present invention.
图4为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ,x=0.06)的TEM照片。FIG. 4 is a TEM photograph of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ , x=0.06) prepared by the present invention.
图5为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ)的OER线性扫描伏安曲线,其中电解液为0.1M的KOH水溶液,LC为LaCoO3,LCP2为LaCo0.98Pt0.02O3-δ,LCP4为LaCo0.96Pt0.04O3-δ,LCP6为LaCo0.94Pt0.06O3-δ,LCP8为LaCo0.92Pt0.08O3-δ。Figure 5 is the OER linear sweep voltammetry curve of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ ) prepared by the present invention, wherein the electrolyte is 0.1M KOH aqueous solution, LC is LaCoO 3 , and LCP2 is LaCo 0.98 Pt 0.02 O 3-δ , LCP4 is LaCo 0.96 Pt 0.04 O 3-δ , LCP6 is LaCo 0.94 Pt 0.06 O 3-δ , LCP8 is LaCo 0.92 Pt 0.08 O 3-δ .
图6为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ)的HER线性扫描伏安曲线,其中电解液为0.1M的KOH水溶液,LC为LaCoO3,LCP2为LaCo0.98Pt0.02O3-δ,LCP4为LaCo0.96Pt0.04O3-δ,LCP6为LaCo0.94Pt0.06O3-δ,LCP8为LaCo0.92Pt0.08O3-δ。Figure 6 is the HER linear sweep voltammetry curve of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ ) prepared by the present invention, wherein the electrolyte is 0.1M KOH aqueous solution, LC is LaCoO 3 , and LCP2 is LaCo 0.98 Pt 0.02 O 3-δ , LCP4 is LaCo 0.96 Pt 0.04 O 3-δ , LCP6 is LaCo 0.94 Pt 0.06 O 3-δ , LCP8 is LaCo 0.92 Pt 0.08 O 3-δ .
图7为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ)的OER塔菲尔斜率,其中,LC为LaCoO3,LCP2为LaCo0.98Pt0.02O3-δ,LCP4为LaCo0.96Pt0.04O3-δ,LCP6为LaCo0.94Pt0.06O3-δ,LCP8为LaCo0.92Pt0.08O3-δ。Figure 7 is the OER Tafel slope of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ ) prepared by the present invention, wherein LC is LaCoO 3 , LCP2 is LaCo 0.98 Pt 0.02 O 3-δ , LCP4 is LaCo 0.96 Pt 0.04 O 3-δ , LCP6 is LaCo 0.94 Pt 0.06 O 3-δ , and LCP8 is LaCo 0.92 Pt 0.08 O 3-δ .
图8为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ)的HER塔菲尔斜率,其中,LC为LaCoO3,LCP2为LaCo0.98Pt0.02O3-δ,LCP4为LaCo0.96Pt0.04O3-δ,LCP6为LaCo0.94Pt0.06O3-δ,LCP8为LaCo0.92Pt0.08O3-δ。Figure 8 is the HER Tafel slope of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ ) prepared by the present invention, wherein, LC is LaCoO 3 , LCP2 is LaCo 0.98 Pt 0.02 O 3-δ , LCP4 is LaCo 0.96 Pt 0.04 O 3-δ , LCP6 is LaCo 0.94 Pt 0.06 O 3-δ , and LCP8 is LaCo 0.92 Pt 0.08 O 3-δ .
图9为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ)的OER电化学阻抗谱,其中,LC为LaCoO3,LCP2为LaCo0.98Pt0.02O3-δ,LCP4为LaCo0.96Pt0.04O3-δ,LCP6为LaCo0.94Pt0.06O3-δ,LCP8为LaCo0.92Pt0.08O3-δ。Figure 9 is the OER electrochemical impedance spectrum of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ ) prepared by the present invention, wherein LC is LaCoO 3 , LCP2 is LaCo 0.98 Pt 0.02 O 3-δ , LCP4 is LaCo 0.96 Pt 0.04 O 3-δ , LCP6 is LaCo 0.94 Pt 0.06 O 3-δ , and LCP8 is LaCo 0.92 Pt 0.08 O 3-δ .
图10为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ)的HER电化学阻抗谱,其中,LC为LaCoO3,LCP2为LaCo0.98Pt0.02O3-δ,LCP4为LaCo0.96Pt0.04O3-δ,LCP6为LaCo0.94Pt0.06O3-δ,LCP8为LaCo0.92Pt0.08O3-δ。Figure 10 is the HER electrochemical impedance spectrum of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ ) prepared by the present invention, wherein LC is LaCoO 3 , LCP2 is LaCo 0.98 Pt 0.02 O 3-δ , LCP4 is LaCo 0.96 Pt 0.04 O 3-δ , LCP6 is LaCo 0.94 Pt 0.06 O 3-δ , and LCP8 is LaCo 0.92 Pt 0.08 O 3-δ .
图11为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ,x=0.06)循环前后OER线性扫描伏安曲线。Figure 11 shows the OER linear sweep voltammetry curves before and after cycling of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ , x=0.06) prepared by the present invention.
图12为本发明制备得到钙钛矿电催化剂(LaCo1-xPtxO3-δ,x=0.06)循环前后HER线性扫描伏安曲线。Figure 12 shows the HER linear sweep voltammetry curves before and after cycling of the perovskite electrocatalyst (LaCo 1-x Pt x O 3-δ , x=0.06) prepared by the present invention.
具体实施方式Detailed ways
下面通过具体的实施例对本发明的技术方案作进一步的说明。The technical solutions of the present invention will be further described below through specific embodiments.
其中,硝酸镧、硝酸钴、乙二胺四乙酸、柠檬酸,氨水购于天津市科密欧化学试剂有限公司,硝酸铂溶液(含Pt的质量分数为13.29%)购于上海阿拉丁公司。Among them, lanthanum nitrate, cobalt nitrate, ethylenediaminetetraacetic acid, citric acid, ammonia water were purchased from Tianjin Kemeiou Chemical Reagent Co., Ltd., and platinum nitrate solution (containing Pt mass fraction of 13.29%) was purchased from Shanghai Aladdin Company.
实施例1Example 1
称取12.9900g硝酸镧(La(NO3)3·6H2O)、8.7309g硝酸钴(Co(NO3)2·6H2O)溶解于300mL去离子水中配成浓度为0.1mol/L的溶液,然后向混合溶液中加入17.5344g乙二胺四乙酸和25.2168g柠檬酸,搅拌至混合均匀,然后用25%的氨水调节溶液PH到6-7。将混合液置于80℃水浴中磁力搅拌(搅拌速度为400r/min),直到形成蜂蜜状的湿凝胶;Weigh 12.9900 g of lanthanum nitrate (La(NO 3 ) 3 ·6H 2 O) and 8.7309 g of cobalt nitrate (Co(NO 3 ) 2 ·6H 2 O) and dissolve them in 300 mL of deionized water to prepare a concentration of 0.1 mol/L. solution, then add 17.5344g ethylenediaminetetraacetic acid and 25.2168g citric acid to the mixed solution, stir until the mixture is uniform, and then adjust the pH of the solution to 6-7 with 25% ammonia water. The mixture was placed in a water bath at 80°C and magnetically stirred (stirring speed was 400r/min) until a honey-like wet gel was formed;
然后将湿凝胶转移到坩埚中并置于烘箱中120℃(空气气氛)干燥24h得到蓬松、易碎、紫红色干凝胶;Then the wet gel was transferred to a crucible and dried in an oven at 120°C (air atmosphere) for 24 hours to obtain a fluffy, brittle, purple-red xerogel;
在马弗炉空气气氛下3℃/min升温到400℃并保持3h使前驱体中的硝酸盐完全分解,然后10℃/min升温到800℃煅烧5h制得不掺杂铂元素的钙钛矿电催化剂LaCoO3。Under the air atmosphere of muffle furnace, the temperature was raised to 400°C at 3°C/min and kept for 3h to completely decompose the nitrate in the precursor, and then the temperature was raised to 800°C at 10°C/min and calcined for 5h to obtain perovskite without platinum element. Electrocatalyst LaCoO 3 .
实施例2Example 2
称取12.9900g硝酸镧(La(NO3)3·6H2O)、8.5563g硝酸钴(Co(NO3)2·6H2O)、0.8807g硝酸铂(Pt(NO3)2)溶解于去离子水中配成浓度为0.08mol/L的溶液,然后向混合溶液中加入17.5344g乙二胺四乙酸和25.2168g柠檬酸,搅拌至混合均匀,然后用20%的氨水调节溶液PH到6-7。将混合液置于70℃水浴中磁力搅拌(搅拌速度为300r/min),直到形成蜂蜜状的湿凝胶;Weigh 12.9900 g of lanthanum nitrate (La(NO 3 ) 3 ·6H 2 O), 8.5563 g of cobalt nitrate (Co(NO 3 ) 2 ·6H 2 O), and 0.8807 g of platinum nitrate (Pt(NO 3 ) 2 ) and dissolve them in Make a solution with a concentration of 0.08mol/L in deionized water, then add 17.5344g ethylenediaminetetraacetic acid and 25.2168g citric acid to the mixed solution, stir until the mixture is uniform, and then adjust the pH of the solution to 6- 7. Place the mixture in a 70°C water bath with magnetic stirring (stirring speed is 300r/min) until a honey-like wet gel is formed;
然后将湿凝胶转移到坩埚中并置于烘箱中100℃(空气气氛)干燥30h得到蓬松、易碎、紫红色干凝胶;Then the wet gel was transferred to a crucible and dried in an oven at 100°C (air atmosphere) for 30 hours to obtain a fluffy, brittle, purple-red xerogel;
在马弗炉空气气氛下5℃/min升温到450℃并保持2h使前驱体中的硝酸盐完全分解,然后8℃/min升温到850℃煅烧4h制得掺杂铂元素的钙钛矿电催化剂LaCo0.98Pt0.02O3-δ。Under the air atmosphere of muffle furnace, the temperature was raised to 450°C at 5°C/min and kept for 2h to completely decompose the nitrate in the precursor, and then the temperature was raised to 850°C at 8°C/min and calcined for 4h to obtain platinum-doped perovskite electricity. Catalyst LaCo 0.98 Pt 0.02 O 3-δ .
实施例3Example 3
称取12.9900g硝酸镧(La(NO3)3·6H2O)、8.3817g硝酸钴(Co(NO3)2·6H2O)、1.7614g硝酸铂(Pt(NO3)2)溶解于去离子水中配成浓度为0.12mol/L的溶液,然后向混合溶液中加入17.5344g乙二胺四乙酸和25.2168g柠檬酸,搅拌至混合均匀,然后用30%的氨水调节溶液PH到6-7。将混合液置于90℃水浴中磁力搅拌(搅拌速度为500r/min),直到形成蜂蜜状的湿凝胶;Weigh 12.9900 g of lanthanum nitrate (La(NO 3 ) 3 ·6H 2 O), 8.3817 g of cobalt nitrate (Co(NO 3 ) 2 ·6H 2 O), and 1.7614 g of platinum nitrate (Pt(NO 3 ) 2 ) and dissolve them in Prepare a solution with a concentration of 0.12mol/L in deionized water, then add 17.5344g of ethylenediaminetetraacetic acid and 25.2168g of citric acid to the mixed solution, stir until the mixture is uniform, and then use 30% ammonia water to adjust the pH of the solution to 6- 7. Place the mixture in a 90°C water bath with magnetic stirring (stirring speed is 500r/min) until a honey-like wet gel is formed;
然后将湿凝胶转移到坩埚中并置于烘箱中150℃(空气气氛)干燥20h得到蓬松、易碎、紫红色干凝胶;Then, the wet gel was transferred to a crucible and dried in an oven at 150°C (air atmosphere) for 20 hours to obtain a fluffy, brittle, purple-red dry gel;
在马弗炉空气气氛下4℃/min升温到420℃并保持2.5h使前驱体中的硝酸盐完全分解,然后9℃/min升温到820℃煅烧4.5h制得掺杂铂元素的钙钛矿电催化剂LaCo0.96Pt0.04O3-δ。In a muffle furnace air atmosphere, the temperature was raised to 420°C at 4°C/min and held for 2.5h to completely decompose the nitrate in the precursor, and then the temperature was raised to 820°C at 9°C/min and calcined for 4.5h to obtain platinum-doped perovskite. Mineral electrocatalyst LaCo 0.96 Pt 0.04 O 3-δ .
实施例4Example 4
称取12.9900g硝酸镧(La(NO3)3·6H2O)、8.2070g硝酸钴(Co(NO3)2·6H2O)、2.6422g硝酸铂(Pt(NO3)2)溶解于300mL去离子水中配成浓度为0.1mol/L的溶液,然后向混合溶液中加入17.5344g乙二胺四乙酸和25.2168g柠檬酸,搅拌至混合均匀,然后用24%的氨水调节溶液PH到6-7。将混合液置于75℃水浴中磁力搅拌(搅拌速度为450r/min),直到形成蜂蜜状的湿凝胶;Weigh 12.9900 g of lanthanum nitrate (La(NO 3 ) 3 ·6H 2 O), 8.2070 g of cobalt nitrate (Co(NO 3 ) 2 ·6H 2 O), and 2.6422 g of platinum nitrate (Pt(NO 3 ) 2 ) and dissolve them in 300mL of deionized water is made into a solution with a concentration of 0.1mol/L, then add 17.5344g of ethylenediaminetetraacetic acid and 25.2168g of citric acid to the mixed solution, stir until the mixture is uniform, and then adjust the pH of the solution to 6 with 24% ammonia water -7. The mixture was placed in a 75°C water bath with magnetic stirring (stirring speed was 450r/min) until a honey-like wet gel was formed;
然后将湿凝胶转移到坩埚中并置于烘箱中110℃(空气气氛)干燥26h得到蓬松、易碎、紫红色干凝胶;Then the wet gel was transferred to a crucible and dried in an oven at 110°C (air atmosphere) for 26 hours to obtain a fluffy, brittle, purple-red xerogel;
在马弗炉空气气氛下6℃/min升温到50℃并保持2h使前驱体中的硝酸盐完全分解,然后12℃/min升温到1000℃煅烧3h制得掺杂铂元素的钙钛矿电催化剂LaCo0.94Pt0.06O3-δ。In a muffle furnace air atmosphere, the temperature was raised to 50°C at 6°C/min and held for 2h to completely decompose the nitrate in the precursor, and then the temperature was raised to 1000°C at 12°C/min and calcined for 3h to obtain platinum-doped perovskite electricity. Catalyst LaCo 0.94 Pt 0.06 O 3-δ .
实施例5Example 5
称取12.9900g硝酸镧(La(NO3)3·6H2O)、8.0324g硝酸钴(Co(NO3)2·6H2O)、3.5229g硝酸铂(Pt(NO3)2)溶解于300mL去离子水中配成浓度为0.1mol/L的溶液,然后向混合溶液中加入17.5344g乙二胺四乙酸和25.2168g柠檬酸,搅拌至混合均匀,然后用27%的氨水调节溶液PH到6-7。将混合液置于85℃水浴中磁力搅拌(搅拌速度为450r/min),直到形成蜂蜜状的湿凝胶;Weigh 12.9900 g of lanthanum nitrate (La(NO 3 ) 3 ·6H 2 O), 8.0324 g of cobalt nitrate (Co(NO 3 ) 2 ·6H 2 O), and 3.5229 g of platinum nitrate (Pt(NO 3 ) 2 ) and dissolve them in 300mL of deionized water was made into a solution with a concentration of 0.1mol/L, then 17.5344g of ethylenediaminetetraacetic acid and 25.2168g of citric acid were added to the mixed solution, stirred until the mixture was uniform, and then the pH of the solution was adjusted to 6 with 27% ammonia water. -7. The mixture was placed in an 85°C water bath with magnetic stirring (stirring speed was 450r/min) until a honey-like wet gel was formed;
然后将湿凝胶转移到坩埚中并置于烘箱中130℃(空气气氛)干燥27h得到蓬松、易碎、紫红色干凝胶;Then the wet gel was transferred to a crucible and dried in an oven at 130°C (air atmosphere) for 27 hours to obtain a fluffy, brittle, purple-red xerogel;
在马弗炉空气气氛下2℃/min升温到400℃并保持4h使前驱体中的硝酸盐完全分解,然后6℃/min升温到800℃煅烧5h制得掺杂铂元素的钙钛矿电催化剂LaCo0.92Pt0.08O3-δ。Under the air atmosphere of muffle furnace, the temperature was raised to 400°C at 2°C/min and kept for 4h to completely decompose the nitrate in the precursor, and then the temperature was raised to 800°C at 6°C/min and calcined for 5h to obtain platinum-doped perovskite electricity. Catalyst LaCo 0.92 Pt 0.08 O 3-δ .
如图1所示,图中的峰分别对应LaCo1-xO3(JCPDSNo.84-0848)的特征峰晶相较为纯净。As shown in FIG. 1 , the peaks in the figure correspond to the characteristic peaks of LaCo 1-x O 3 (JCPDS No. 84-0848) and the crystals are relatively pure.
如图2所示,随着贵金属Pt掺杂量的增加,约32.9°和33.3°处的主峰向左偏移,这是由于掺杂Pt的离子半径大于Co离子半径而引起的。As shown in Fig. 2, the main peaks at about 32.9° and 33.3° shift to the left as the doping amount of noble metal Pt increases, which is caused by the ion radius of doped Pt being larger than that of Co ion.
如图3和4所示,产物的晶格条纹间距大约为0.27nm,对应于LaCo1-xO3(JCPDSNo.84-0848)的晶面间距,表明贵金属成功掺入LaCoO3。As shown in Figures 3 and 4, the lattice fringe spacing of the product is about 0.27 nm, corresponding to the The interplanar spacing indicates that the noble metal is successfully incorporated into LaCoO 3 .
如图5和6所示,掺铂钙钛矿的电催化水产氧OER和产氢HER的过电势(电流密度为10mA/cm2处对应的电压)均低于未掺杂钙钛矿LaCoO3,表明微量掺杂贵金属Pt确实提高了钙钛矿的电催化性能,其中LaCo0.94Pt0.06O3-δ电催化水产氧和产氢的过电势最低,分别为0.45V和0.29V,说明其电催化水分解的性能相比于其他产物是最好的。As shown in Figures 5 and 6, the overpotentials (corresponding voltages at a current density of 10 mA/ cm2 ) for electrocatalytic oxygen production OER and hydrogen production HER of Pt-doped perovskite are both lower than those of undoped perovskite LaCoO3 , indicating that trace doping of noble metal Pt indeed improves the electrocatalytic performance of perovskite, among which LaCo 0.94 Pt 0.06 O 3-δ has the lowest overpotentials of 0.45 V and 0.29 V for electrocatalytic water production of oxygen and hydrogen, respectively, indicating that its electrocatalytic performance is The performance of catalytic water splitting is the best compared to other products.
如图7和8所示,LaCo0.94Pt0.06O3-δ具有最小的OER和HER的塔菲尔斜率。As shown in Figures 7 and 8, LaCo 0.94 Pt 0.06 O 3-δ has the smallest Tafel slopes for OER and HER.
如图9和10所示,LaCo0.94Pt0.06O3-δ具有最小的OER和HER的电化学阻抗值,最小的塔菲尔斜率和最小的电化学阻抗值也说明LaCo0.94Pt0.06O3-δ具有优于其他产物的电催化水分解的性能。As shown in Figures 9 and 10, LaCo 0.94 Pt 0.06 O 3-δ has the smallest electrochemical impedance values for OER and HER, the smallest Tafel slope and the smallest electrochemical impedance values also illustrate that LaCo 0.94 Pt 0.06 O 3- δ has better performance than other products for electrocatalytic water splitting.
如图11和12所示,LaCo0.94Pt0.06O3-δ循环500次后的过电势增加幅度均较小,分别为20mV和28mV,表明其稳定性也较好。As shown in Figures 11 and 12, the overpotential increases of LaCo 0.94 Pt 0.06 O 3-δ after 500 cycles are both small, 20 mV and 28 mV, respectively, indicating that its stability is also good.
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。The present invention has been exemplarily described above. It should be noted that, without departing from the core of the present invention, any simple deformations, modifications or other equivalent replacements that those skilled in the art can do without creative effort fall into the scope of the present invention. the scope of protection of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910005621.1A CN111389411A (en) | 2019-01-03 | 2019-01-03 | Perovskite electrocatalyst and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910005621.1A CN111389411A (en) | 2019-01-03 | 2019-01-03 | Perovskite electrocatalyst and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111389411A true CN111389411A (en) | 2020-07-10 |
Family
ID=71414986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910005621.1A Pending CN111389411A (en) | 2019-01-03 | 2019-01-03 | Perovskite electrocatalyst and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111389411A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112962116A (en) * | 2021-02-09 | 2021-06-15 | 江南大学 | ABO3Type double perovskite LaCoyNi1-yO3Nano-rod electrocatalytic material and preparation method thereof |
CN113737214A (en) * | 2021-09-26 | 2021-12-03 | 江南大学 | ABO3Type high entropy perovskite Bax(FeCoNiZrY)0.2O3-δElectrocatalytic material and preparation thereof |
CN114086196A (en) * | 2021-11-04 | 2022-02-25 | 北京科技大学 | Oxygen evolution perovskite catalyst with low overpotential and high stability and preparation method thereof |
CN115074747A (en) * | 2021-03-12 | 2022-09-20 | 中国科学院物理研究所 | Quadruple perovskite oxide, preparation method and application thereof, and method for electrolyzing water |
CN115386907A (en) * | 2022-08-19 | 2022-11-25 | 南京工业大学 | Oxide-doped hydrogen evolution electrocatalyst and preparation method and application thereof |
CN117488342A (en) * | 2023-09-28 | 2024-02-02 | 兰州大学 | Nickel-doped RP perovskite material, and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102862960A (en) * | 2011-07-07 | 2013-01-09 | 中国石油化工股份有限公司 | Application and preparation of high-activity composite oxide oxygen carrier in chemical link circulation hydrogen production |
CN106179368A (en) * | 2016-07-25 | 2016-12-07 | 福建师范大学泉港石化研究院 | The higher LaCoO with core-shell structure of a kind of catalytic performance3@La (OH)3composite catalyst and preparation method thereof |
CN107078309A (en) * | 2014-07-21 | 2017-08-18 | Lg燃料电池系统股份有限公司 | Compositions for fuel cell electrodes |
CN107376964A (en) * | 2017-07-21 | 2017-11-24 | 湘潭大学 | A kind of composite photo-catalyst using adulterated with Ca and Ti ore as carrier prepares and its application |
CN109088077A (en) * | 2018-08-17 | 2018-12-25 | 武汉理工大学 | A kind of A omission type perovskite VPO catalysts and its preparation method and application |
-
2019
- 2019-01-03 CN CN201910005621.1A patent/CN111389411A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102862960A (en) * | 2011-07-07 | 2013-01-09 | 中国石油化工股份有限公司 | Application and preparation of high-activity composite oxide oxygen carrier in chemical link circulation hydrogen production |
CN107078309A (en) * | 2014-07-21 | 2017-08-18 | Lg燃料电池系统股份有限公司 | Compositions for fuel cell electrodes |
CN106179368A (en) * | 2016-07-25 | 2016-12-07 | 福建师范大学泉港石化研究院 | The higher LaCoO with core-shell structure of a kind of catalytic performance3@La (OH)3composite catalyst and preparation method thereof |
CN107376964A (en) * | 2017-07-21 | 2017-11-24 | 湘潭大学 | A kind of composite photo-catalyst using adulterated with Ca and Ti ore as carrier prepares and its application |
CN109088077A (en) * | 2018-08-17 | 2018-12-25 | 武汉理工大学 | A kind of A omission type perovskite VPO catalysts and its preparation method and application |
Non-Patent Citations (4)
Title |
---|
M.SURENDAR ET AL.: "Pt doped LaCoO3 perovskite: A precursor for a highly efficient catalyst for hydrogen production from glycerol", 《I N T E R N A T I O N A L JOURNAL O F HYDROGEN ENERGY》 * |
THATTARATHODY RAJESH ET AL.: "Effect of Pt incorporation in LaBO3(B = Mn, Fe, Co) perovskites onwater gas shift activity", 《JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL》 * |
明彩兵等: "Pt取代的LaCoO3 催化氧化碳烟的研究", 《仲恺农业工程学院学报》 * |
明彩兵等: "由贵金属取代的钙钛矿催化剂对碳烟的催化性能", 《中国环境科学》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112962116A (en) * | 2021-02-09 | 2021-06-15 | 江南大学 | ABO3Type double perovskite LaCoyNi1-yO3Nano-rod electrocatalytic material and preparation method thereof |
CN115074747A (en) * | 2021-03-12 | 2022-09-20 | 中国科学院物理研究所 | Quadruple perovskite oxide, preparation method and application thereof, and method for electrolyzing water |
CN115074747B (en) * | 2021-03-12 | 2023-08-08 | 中国科学院物理研究所 | Quadruple perovskite oxide, preparation method and use thereof, method for electrolyzing water |
CN113737214A (en) * | 2021-09-26 | 2021-12-03 | 江南大学 | ABO3Type high entropy perovskite Bax(FeCoNiZrY)0.2O3-δElectrocatalytic material and preparation thereof |
CN113737214B (en) * | 2021-09-26 | 2022-08-02 | 江南大学 | ABO3 type high-entropy perovskite Bax(FeCoNiZrY)0.2O3-δ electrocatalytic material and its preparation |
CN114086196A (en) * | 2021-11-04 | 2022-02-25 | 北京科技大学 | Oxygen evolution perovskite catalyst with low overpotential and high stability and preparation method thereof |
CN115386907A (en) * | 2022-08-19 | 2022-11-25 | 南京工业大学 | Oxide-doped hydrogen evolution electrocatalyst and preparation method and application thereof |
CN117488342A (en) * | 2023-09-28 | 2024-02-02 | 兰州大学 | Nickel-doped RP perovskite material, and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111389411A (en) | Perovskite electrocatalyst and preparation method and application thereof | |
CN109046408B (en) | A kind of composite hydrogen evolution electrocatalytic material and preparation method and application thereof | |
CN110479329B (en) | Preparation and application of a phosphorus-doped cobalt telluride nanomaterial | |
CN108579751B (en) | Layered perovskite oxide, preparation method and application thereof in oxygen evolution reaction electrocatalysis | |
CN103318978B (en) | Preparation method of mesoporous nickel cobaltate fiber and application thereof | |
CN108579718B (en) | Preparation method and application of indium-doped nano porous carbon material | |
CN111905718B (en) | A method of plasma-assisted preparation of perovskite-type methane combustion catalyst | |
WO2024066179A1 (en) | Surface-modified perovskite oxide electrocatalyst as well as preparation method therefor and use thereof | |
CN110860292A (en) | Cation co-doped perovskite catalyst for oxygen evolution reaction and preparation method thereof | |
CN109126804A (en) | A kind of boron doping LaCoO3Bifunctional catalyst and its preparation method and application | |
CN110681402A (en) | A carbon paper supported Fe-NiCoP heterostructure and its preparation method and application | |
CN109786770A (en) | A kind of CuNNi with anti-perovskite structure3Oxygen material and preparation method thereof is analysed in type electro-catalysis | |
CN109665525B (en) | Preparation method of dumbbell-shaped iron-nitrogen double-doped porous carbon | |
CN113718270A (en) | Carbon-supported NiO/NiFe2O4Preparation method and application of spinel type solid solution water electrolysis oxygen evolution catalyst | |
CN101623638A (en) | Preparation of visible light response composite cuprate photocatalysis material and application thereof | |
CN110227452A (en) | Bismuth-doped yttrium ruthenate, preparation method and oxygen evolution application thereof | |
CN111041508A (en) | Cobalt tetroxide array/titanium mesh electrode for water splitting and oxygen production and preparation method thereof | |
CN113201759B (en) | A three-dimensional porous carbon-supported bismuth sulfide/bismuth oxide composite catalyst and its preparation method and application | |
CN117187870B (en) | Preparation method of low iridium catalyst for hydrogen production by water electrolysis | |
CN110479335B (en) | A kind of copper in-situ doped molybdenum carbide carbon composite material and preparation method thereof | |
CN110013823A (en) | A noble metal-transition metal oxide composite material and its preparation method and application | |
CN102658152B (en) | Method for preparing oxygen electrode perovskite-type catalyst | |
CN117987843A (en) | Method, material and application of ether-promoted growth of nickel hydroxide nanosheets on nickel surface | |
CN115872460A (en) | A method to effectively improve the catalytic performance of perovskite catalysts | |
CN108435178B (en) | A kind of hexagonal crystal structure oxide, preparation method and use thereof in oxygen evolution reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200710 |