CN111384663A - Gallium nitride-based semiconductor laser and method of making the same - Google Patents
Gallium nitride-based semiconductor laser and method of making the same Download PDFInfo
- Publication number
- CN111384663A CN111384663A CN201811627027.8A CN201811627027A CN111384663A CN 111384663 A CN111384663 A CN 111384663A CN 201811627027 A CN201811627027 A CN 201811627027A CN 111384663 A CN111384663 A CN 111384663A
- Authority
- CN
- China
- Prior art keywords
- layer
- ridge
- ridge portion
- ohmic contact
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 64
- 239000004065 semiconductor Substances 0.000 title claims abstract description 61
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims description 40
- 230000000903 blocking effect Effects 0.000 claims description 14
- 230000004888 barrier function Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229910002704 AlGaN Inorganic materials 0.000 claims 3
- 230000003287 optical effect Effects 0.000 abstract description 11
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 6
- 239000000969 carrier Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007648 laser printing Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0425—Electrodes, e.g. characterised by the structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2206—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
- H01S5/221—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials containing aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2214—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
- H01S5/2216—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34333—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
Abstract
本发明提出了一种氮化镓基半导体激光器,包括衬底和设于衬底底部的底电极以及依次层叠设置于衬底顶部的外延结构、绝缘层、顶电极,外延结构的顶部具有脊形半导体层,脊形半导体层具有第一脊形部和欧姆接触层,欧姆接触层设于第一脊形部上,绝缘层设有开口,开口的宽度小于欧姆接触层的宽度,顶电极通过开口与欧姆接触层接触。由于开口的宽度小于第一脊形部的宽度,使得第一脊形部中央的载流子密度大于第一脊形部两侧的载流子密度,基模的增益只有很小的降低,而高阶模的增益则降低很多,同时,由于第一脊形部的宽度足够大,可以增加氮化镓基半导体激光器的光功率,从而形成了具有较高光功率的单基模氮化镓基半导体激光器。
The present invention provides a gallium nitride-based semiconductor laser, comprising a substrate, a bottom electrode arranged on the bottom of the substrate, an epitaxial structure, an insulating layer and a top electrode arranged in sequence on the top of the substrate, and the top of the epitaxial structure has a ridge shape The semiconductor layer, the ridge-shaped semiconductor layer has a first ridge portion and an ohmic contact layer, the ohmic contact layer is provided on the first ridge portion, the insulating layer is provided with an opening, the width of the opening is smaller than the width of the ohmic contact layer, and the top electrode passes through the opening in contact with the ohmic contact layer. Since the width of the opening is smaller than the width of the first ridge portion, the carrier density in the center of the first ridge portion is greater than that on both sides of the first ridge portion, and the gain of the fundamental mode is only slightly reduced, while The gain of the high-order mode is greatly reduced. At the same time, since the width of the first ridge is large enough, the optical power of the GaN-based semiconductor laser can be increased, thereby forming a single-mode GaN-based semiconductor laser with higher optical power.
Description
技术领域technical field
本发明属于半导体器件领域,尤其涉及一种氮化镓基半导体激光器结构。The invention belongs to the field of semiconductor devices, and in particular relates to a gallium nitride-based semiconductor laser structure.
背景技术Background technique
氮化镓(GaN)基激光器以其体积小、寿命长、耦合效率高、结构简单的特点使其迅速崛起并且在激光显示、激光照明、激光打印、高分辨光刻等涵盖民用、军事等诸多领域中发挥着重要作用。与此同时,诸多领域对GaN基激光器的单模性也提出了更高要求。Gallium Nitride (GaN)-based lasers have risen rapidly due to their small size, long life, high coupling efficiency, and simple structure, and have been widely used in laser display, laser lighting, laser printing, high-resolution lithography, etc. play an important role in the field. At the same time, many fields also put forward higher requirements for the single-mode property of GaN-based lasers.
脊形波导结构具有结构简单、稳定、易加工的优点,因此该结构被广泛应用于GaN基激光器的设计中。然而,对于脊形波导结构而言,由于光波导导引机制的竞争和模式竞争同时存在,使得侧向模式控制更为困难,当注入载流子变化时,有源区不能很好地限制住侧向电流及光场,从而使得激光器内部产生多模激荡。虽然通过减小脊形部宽度、严格控制刻蚀深度可以增强侧向有效折射率、限制模式数量,但是,这样将会因为注入电流密度减小而使得激光器的光功率也相应降低,难以实现大功率的要求。The ridge waveguide structure has the advantages of simple structure, stability and easy processing, so this structure is widely used in the design of GaN-based lasers. However, for the ridge waveguide structure, the lateral mode control is more difficult due to the coexistence of the competition of the optical waveguide guiding mechanism and the mode competition, and the active region cannot well confine when the injected carriers change. Lateral current and optical field, so that multi-mode excitation is generated inside the laser. Although the lateral effective refractive index can be enhanced and the number of modes limited by reducing the width of the ridge and strictly controlling the etching depth, this will reduce the optical power of the laser due to the reduction of the injection current density, making it difficult to achieve large power requirements.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术的不足,本发明提供一种氮化镓基半导体激光器及其制作方法,能够实现基模激荡的同时增加光功率。In order to solve the deficiencies of the prior art, the present invention provides a gallium nitride-based semiconductor laser and a manufacturing method thereof, which can realize fundamental mode excitation and increase optical power at the same time.
本发明采用了如下的技术方案:The present invention adopts the following technical scheme:
一种氮化镓基半导体激光器,包括衬底、设于所述衬底底部的底电极以及依次层叠设置于所述衬底顶部的外延结构、绝缘层、顶电极,所述外延结构的顶部具有脊形半导体层,所述脊形半导体层具有第一脊形部和欧姆接触层,所述欧姆接触层设于所述第一脊形部上,所述绝缘层设有开口,所述开口的宽度小于所述第一脊形部的宽度,所述顶电极通过所述开口与所述欧姆接触层接触。A gallium nitride-based semiconductor laser, comprising a substrate, a bottom electrode arranged at the bottom of the substrate, and an epitaxial structure, an insulating layer, and a top electrode sequentially stacked and arranged at the top of the substrate, wherein the top of the epitaxial structure has A ridge-shaped semiconductor layer, the ridge-shaped semiconductor layer has a first ridge portion and an ohmic contact layer, the ohmic contact layer is provided on the first ridge portion, the insulating layer is provided with an opening, and the opening is The width is smaller than the width of the first ridge portion, and the top electrode is in contact with the ohmic contact layer through the opening.
优选地,所述脊形半导体层还具有第二脊形部,所述第二脊形部设于所述第一脊形部上,所述第二脊形部的宽度小于所述第一脊形部的宽度,所述欧姆接触层设于所述第二脊形部上,所述第二脊形部和所述欧姆接触层位于所述开口内。Preferably, the ridge-shaped semiconductor layer further has a second ridge-shaped part, the second ridge-shaped part is provided on the first ridge-shaped part, and the width of the second ridge-shaped part is smaller than that of the first ridge-shaped part the width of the shaped portion, the ohmic contact layer is provided on the second ridge portion, and the second ridge portion and the ohmic contact layer are located in the opening.
优选地,所述第二脊形部的厚度为0.1~0.2μm。Preferably, the thickness of the second ridge portion is 0.1-0.2 μm.
优选地,所述开口的宽度为3~5μm。Preferably, the width of the opening is 3˜5 μm.
优选地,所述第一脊形部的宽度为10~15μm。Preferably, the width of the first ridge portion is 10-15 μm.
优选地,所述外延结构包括依次层叠设置于所述衬底顶部的下限制层、下波导层、有源层、上波导层、电子阻挡层、上限制层,所述上限制层为所述脊形半导体层。Preferably, the epitaxial structure includes a lower confinement layer, a lower waveguide layer, an active layer, an upper waveguide layer, an electron blocking layer, and an upper confinement layer stacked on top of the substrate in sequence, and the upper confinement layer is the Ridge-shaped semiconductor layer.
优选地,所述衬底的材质为氮化镓,所述下限制层的材质为N型掺杂的氮化铝镓,所述下波导层的材质为N型掺杂的氮化镓,所述上波导层的材质为氮化镓,所述电子阻挡层的材质为P型掺杂的氮化铝镓,所述第一脊型部的材质为P型掺杂的氮化铝镓,所述欧姆接触层的材质为P型掺杂的氮化镓,所述绝缘层的材质为二氧化硅,所述有源层为量子阱,其包括多个周期交替生长的氮化镓势垒层和氮化铟镓势阱层。Preferably, the material of the substrate is gallium nitride, the material of the lower confinement layer is N-type doped aluminum gallium nitride, and the material of the lower waveguide layer is N-type doped gallium nitride. The material of the above-mentioned waveguide layer is gallium nitride, the material of the electron blocking layer is P-type doped aluminum gallium nitride, the material of the first ridge portion is P-type doped aluminum gallium nitride, so The material of the ohmic contact layer is P-type doped gallium nitride, the material of the insulating layer is silicon dioxide, and the active layer is a quantum well, which includes a plurality of gallium nitride barrier layers grown alternately in cycles and indium gallium nitride well layers.
本发明还提供了一种氮化镓基半导体激光器的制作方法,所述制作方法包括步骤:The present invention also provides a manufacturing method of a gallium nitride-based semiconductor laser, the manufacturing method comprising the steps of:
提供一衬底;providing a substrate;
在所述衬底的顶部生长形成外延结构,所述外延结构的顶部具有脊形半导体层,所述脊形半导体层具有第一脊形部和欧姆接触层,所述欧姆接触层设于所述第一脊形部上;An epitaxial structure is grown on the top of the substrate, the top of the epitaxial structure has a ridge-shaped semiconductor layer, the ridge-shaped semiconductor layer has a first ridge portion and an ohmic contact layer, and the ohmic contact layer is provided on the on the first ridge;
在所述外延结构上形成绝缘层,所述绝缘层设有开口,所述开口的宽度小于所述第一脊形部的宽度;forming an insulating layer on the epitaxial structure, the insulating layer is provided with an opening, and the width of the opening is smaller than the width of the first ridge portion;
在所述绝缘层上形成顶电极,所述顶电极通过所述开口与所述欧姆接触层接触;forming a top electrode on the insulating layer, the top electrode is in contact with the ohmic contact layer through the opening;
在所述衬底的底部形成底电极。A bottom electrode is formed on the bottom of the substrate.
优选地,在所述衬底的顶部生长形成外延结构具体包括:Preferably, growing and forming an epitaxial structure on the top of the substrate specifically includes:
在所述衬底的顶部依次生长形成下限制层、下波导层、有源层、上波导层、电子阻挡层、上限制材料层;A lower confinement layer, a lower waveguide layer, an active layer, an upper waveguide layer, an electron blocking layer, and an upper confinement material layer are sequentially grown on top of the substrate;
刻蚀所述上限制材料层,以形成脊形部层;etching the upper confinement material layer to form a ridge layer;
刻蚀所述脊形部层,以形成脊形半导体层,所述脊形半导体层具有第一脊形部、第二脊形部和欧姆接触层,所述第二脊形部设于所述第一脊形部上,所述第二脊形部的宽度小于所述第一脊形部的宽度,所述欧姆接触层设于所述第二脊形部上。etching the ridge portion layer to form a ridge semiconductor layer, the ridge semiconductor layer has a first ridge portion, a second ridge portion and an ohmic contact layer, the second ridge portion is provided on the On the first ridge portion, the width of the second ridge portion is smaller than the width of the first ridge portion, and the ohmic contact layer is provided on the second ridge portion.
本发明中的氮化镓(GaN)基激光器包括依次层叠设置于所述衬底顶部的外延结构、绝缘层、顶电极,外延结构的顶部具有脊形半导体层,所述脊形半导体层具有第一脊形部和欧姆接触层,所述绝缘层设有开口,所述开口的宽度小于所述第一脊形部的宽度,所述顶电极通过所述开口与所述欧姆接触层接触。由于开口的宽度小于第一脊形部的宽度,即第一脊形部的顶部与顶电极之间的接触面的宽度小于第一脊形部的宽度,使得第一脊形部中央的载流子密度大于第一脊形部两侧的载流子密度,基模的增益只有很小的降低,而高阶模的增益则降低很多,同时,由于第一脊形部的宽度足够大,可以增加氮化镓基半导体激光器的光功率,从而形成了具有较高光功率的单基模氮化镓基半导体激光器。The gallium nitride (GaN)-based laser in the present invention includes an epitaxial structure, an insulating layer, and a top electrode sequentially stacked on the top of the substrate, and the top of the epitaxial structure has a ridge-shaped semiconductor layer, and the ridge-shaped semiconductor layer has a first A ridge portion and an ohmic contact layer, the insulating layer is provided with an opening, the width of the opening is smaller than the width of the first ridge portion, and the top electrode is in contact with the ohmic contact layer through the opening. Since the width of the opening is smaller than the width of the first ridge portion, that is, the width of the contact surface between the top of the first ridge portion and the top electrode is smaller than the width of the first ridge portion, the current carrying in the center of the first ridge portion is The carrier density is greater than the carrier density on both sides of the first ridge, and the gain of the fundamental mode is only slightly reduced, while the gain of the higher-order mode is greatly reduced. At the same time, since the width of the first ridge is large enough, nitrogen The optical power of the gallium nitride-based semiconductor laser is reduced, thereby forming a single-mode gallium nitride-based semiconductor laser with higher optical power.
附图说明Description of drawings
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。的The technical solutions and other beneficial effects of the present invention will be apparent through the detailed description of the specific embodiments of the present invention with reference to the accompanying drawings. of
图1为实施例1中的氮化镓基半导体激光器的结构示意图;1 is a schematic structural diagram of a GaN-based semiconductor laser in
图2a~2e为实施例1中的氮化镓基半导体激光器的制作方法示意图;2a-2e are schematic diagrams of a method for fabricating a GaN-based semiconductor laser in
图3为实施例2中的氮化镓基半导体激光器的结构示意图;3 is a schematic structural diagram of a GaN-based semiconductor laser in
图4a~4g为实施例2中的氮化镓基半导体激光器的制作方法示意图。FIGS. 4 a to 4 g are schematic diagrams of the fabrication method of the gallium nitride-based semiconductor laser in the second embodiment.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。In order to make the objectives, technical solutions and advantages of the present invention clearer, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Examples of these preferred embodiments are illustrated in the accompanying drawings. The embodiments of the invention shown in the drawings and described with reference to the drawings are merely exemplary and the invention is not limited to these embodiments.
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。Here, it should also be noted that, in order to avoid obscuring the present invention due to unnecessary details, only the structures and/or processing steps closely related to the solution according to the present invention are shown in the drawings, and the related structures and/or processing steps are omitted. Other details not relevant to the invention.
实施例1Example 1
如图1所示,本实施例提供的氮化镓基半导体激光器包括衬底1、设于衬底1底部的底电极4b以及依次层叠设置于衬底1顶部的外延结构2、绝缘层3、顶电极4a。外延结构2的顶部具有脊形半导体层,脊形半导体层具有第一脊形部2a和欧姆接触层27,欧姆接触层27设于第一脊形部2a上,绝缘层3设有开口3a,开口3a的宽度小于第一脊形部2a的宽度,顶电极4a通过开口3a与欧姆接触层27接触。As shown in FIG. 1 , the gallium nitride-based semiconductor laser provided in this embodiment includes a
欧姆接触层27至少完全覆盖第一脊型部2a的顶部,其面积与第一脊型部2a的面积相等。欧姆接触层27用于与顶电极4a形成欧姆接触。绝缘层3覆盖于外延结构2未被欧姆接触层27覆盖的表面并延伸至欧姆接触层27的边缘,开口3a位于欧姆接触层27的顶部。The
本实施例中,由于开口3a的宽度小于第一脊形部2a的宽度,即第一脊形部2a的顶部与顶电极之间的接触面的宽度小于第一脊形部2a的宽度,使得第一脊形部2a中央的载流子密度大于第一脊形部2a两侧的载流子密度,使得基模的增益只有很小的降低,而高阶模的增益则降低很多,同时,由于第一脊形部2a的宽度足够大,可以增加氮化镓基半导体激光器的光功率,从而形成了具有较高光功率的单基模氮化镓基半导体激光器。In this embodiment, since the width of the
本实施例中,第一脊形部2a的厚度大于欧姆接触层27的厚度,在实际制作过程中,第一脊形部2a的厚度根据欧姆接触层27的厚度来确定。开口3a的宽度为3~5μm,第一脊形部2a的宽度为10~15μm。例如,开口3a的宽度为3μm、4μm、5μm,第一脊形部2a的宽度为10μm、12μm、15μm。第一脊形部2a的宽度能够保证整个氮化镓基半导体激光器具有较高的光功率,开口3a的宽度能够保证整个氮化镓基半导体激光器以基模稳定工作。In this embodiment, the thickness of the
具体地,外延结构2包括依次层叠在衬底1顶部的下限制层21、下波导层22、有源层23、上波导层24、电子阻挡层25、上限制层26,上限制层26即为脊形半导体层。Specifically, the
衬底1的材质优选为氮化镓,下限制层21的材质优选为N型掺杂的氮化铝镓,下波导层22的材质优选为N型掺杂的氮化镓,上波导层24的材质优选为氮化镓,电子阻挡层25的材质优选为P型掺杂的氮化铝镓,第一脊型部2a的材质优选为P型掺杂的氮化铝镓,欧姆接触层27的材质优选为P型掺杂的氮化镓,绝缘层3的材质优选为二氧化硅,其用于防止电流泄漏。顶电极4a和底电极4b为金属电极,用于形成欧姆接触,便于引出电极引线。有源层23为量子阱,其包括多个周期交替生长的氮化镓势垒层和氮化铟镓势阱层。The material of the
下限制层21用于限制光场在朝向衬底1的方向上扩展,上限制层26用于限制光场在背离衬底1的方向上扩展。下波导层22和上波导层24用于增加对载流子的限制作用,增加载流子在有源区的分布,提高光限制因子,减小阈值,增加发光效率。有源层23用于提供光增益,电子阻挡层25用于阻挡有源层23中溢出的电子。The
参照图2a~2e,本实施例还提供了一种氮化镓基半导体激光器的制作方法,所述制作方法包括步骤:2a-2e, the present embodiment also provides a method for fabricating a gallium nitride-based semiconductor laser, the fabrication method comprising the steps of:
S1、提供一衬底1,如图2a所示;S1, providing a
S2、在衬底1的顶部生长形成外延结构2,外延结构2的顶部具有脊形半导体层,脊形半导体层具有第一脊形部2a和欧姆接触层27,欧姆接触层27设于第一脊形部2a上,如图2b所示。S2, growing on the top of the
S3、在外延结构2上形成绝缘层3,绝缘层3设有开口3a,开口3a的宽度小于欧姆接触层27的宽度,如图2c所示。S3. An insulating
S4、在绝缘层3上形成顶电极4a,顶电极4a通过开口3a与欧姆接触层27接触,如图2d所示;S4, a
S5、在衬底1的底部形成底电极4b,如图2e所示。S5. A
在步骤S2中,形成外延结构2具体包括:In step S2, forming the
S21、在衬底1的顶部依次生长形成下限制层21、下波导层22、有源层23、上波导层24、电子阻挡层25、上限制材料层20,如图2b所示。具体地,利用MOCVD方法依序生长下限制层21,下限制层21的材质为N型掺杂的Al0.1Ga0.9N,厚度为1.2m,掺杂浓度为3×1017cm-3)。下波导层22的材质为N型掺杂的GaN,其厚度为0.08m,掺杂浓度为5×1015cm-3。有源层23包括2个周期交替生长的势垒层和势阱层,其中,势垒层的材质为非掺杂的GaN,其垒宽为8nm;势阱层的材质为非掺杂的In0.18Ga0.82N,其阱宽为3.5nm。上波导层24的材质为非掺杂的GaN,其厚度为0.08m。电子阻挡层25的材质为掺杂的Al0.2Ga0.8N,其厚度为20nm,掺杂浓度为5×1018cm-3。S21. A
S22、刻蚀上限值材料层20,形成脊形半导体层,脊形半导体层具有第一脊形部2a和欧姆接触层27,欧姆接触层27设于第一脊形部2a上,如图2c所示。第一脊形部2a的材质为P型掺杂的Al0.08Ga0.92N,其厚度为0.6m,掺杂浓度为8×1018cm-3。欧姆接触层27的材质为掺杂的GaN,其厚度为0.05m,掺杂浓度为2.4×1020cm-3。S22, etching the upper limit
实施例2Example 2
如图2所示,本实施例与实施例1不同的是,脊形半导体层还具有第二脊形部2b。第二脊形部2b设于第一脊形部2a上,第二脊形部2b的宽度小于第一脊形部2a的宽度。欧姆接触层27设于第二脊形部2b上,第二脊形部2b和欧姆接触层27位于开口3a内。As shown in FIG. 2 , the difference between this embodiment and
第二脊形部2b和欧姆接触层27的面积等于开口3a的面积。欧姆接触层27至少完全覆盖第二脊型部2b的顶部。绝缘层3覆盖于外延结构2未被欧姆接触层27覆盖的表面,第一脊型部2a和第二脊形部2b的侧面均被绝缘层3覆盖。The area of the
顶电极4a通过开口3a与欧姆接触层27接触,由于第二脊形部2b的宽度小于第一脊形部2a的宽度,且第二脊形部2b的侧面被绝缘层3覆盖,进一步地阻止了载流子的侧向扩散,从而进一步地提高了第一脊形部2a中央的载流子密度,提高了氮化镓基半导体激光器基模的增益效果。The
较佳地,第二脊形部2b的厚度为0.1~0.2μm。第二脊形部2b的厚度大于欧姆接触层27的厚度,在实际制作过程中,第二脊形部2b的厚度根据欧姆接触层27的厚度来确定。Preferably, the thickness of the
参照图4a~4g,本实施例提供了一种氮化镓基半导体激光器的制作方法,所述制作方法包括步骤:Referring to FIGS. 4a-4g, the present embodiment provides a manufacturing method of a gallium nitride-based semiconductor laser, and the manufacturing method includes the steps:
S1、提供一衬底1,如图4a所示。S1. Provide a
S2、在衬底1的顶部依次生长形成下限制层21、下波导层22、有源层23、上波导层24、电子阻挡层25、上限制材料层20,如图4b所示。具体地,利用MOCVD方法依序生长下限制层21,下限制层21的材质为N型掺杂的Al0.1Ga0.9N,厚度为1.2m,掺杂浓度为3×1017cm-3)。下波导层22的材质为N型掺杂的GaN,其厚度为0.08m,掺杂浓度为5×1015cm-3。有源层23包括2个周期交替生长的势垒层和势阱层,其中,势垒层的材质为非掺杂的GaN,其垒宽为8nm;势阱层的材质为非掺杂的In0.18Ga0.82N,其阱宽为3.5nm。上波导层24的材质为非掺杂的GaN,其厚度为0.08m。电子阻挡层25的材质为掺杂的Al0.2Ga0.8N,其厚度为20nm,掺杂浓度为5×1018cm-3。S2. A
S3、刻蚀上限制材料层20,形成脊形部层A,如图4c所示。S3, etching the upper
S4、刻蚀脊型部层A,以形成脊形半导体层,脊形半导体层具有第一脊形部2a、第二脊形部2b和欧姆接触层27。第二脊形部2b设于第一脊形部2a上,第二脊形部2b的宽度小于第一脊形部2a的宽度,欧姆接触层27设于第二脊形部2b上。第一脊形部2a和第二脊形部2b的材质均为P型掺杂的Al0.08Ga0.92N,掺杂浓度为8×1018cm-3;第一脊型部2a的宽度为8μm,第二脊形部2b的高度为0.2μm、宽度为4μm。欧姆接触层27的材质为掺杂的GaN,其厚度为0.05m,掺杂浓度为2.4×1020cm-3,如图4d所示。S4, the ridge portion layer A is etched to form a ridge semiconductor layer, the ridge semiconductor layer has a
S5、在外延结构2上形成绝缘层3,绝缘层3设有开口3a,第二脊形部2b和欧姆接触层27位于开口3a内,如图4e所示。S5. An insulating
S6、在绝缘层3上形成顶电极4a,顶电极4a通过开口3a与欧姆接触层27接触,如图4f所示;S6, the
S7、在衬底1的底部形成底电极4b,如图4g所示。S7. A
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, and substitutions can be made in these embodiments without departing from the principle and spirit of the invention and modifications, the scope of the present invention is defined by the appended claims and their equivalents.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811627027.8A CN111384663A (en) | 2018-12-28 | 2018-12-28 | Gallium nitride-based semiconductor laser and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811627027.8A CN111384663A (en) | 2018-12-28 | 2018-12-28 | Gallium nitride-based semiconductor laser and method of making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111384663A true CN111384663A (en) | 2020-07-07 |
Family
ID=71222873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811627027.8A Pending CN111384663A (en) | 2018-12-28 | 2018-12-28 | Gallium nitride-based semiconductor laser and method of making the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111384663A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111641103A (en) * | 2020-06-09 | 2020-09-08 | 厦门市三安光电科技有限公司 | Laser diode and manufacturing method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05299763A (en) * | 1992-04-23 | 1993-11-12 | Matsushita Electric Ind Co Ltd | Semiconductor laser and its manufacture |
US5987048A (en) * | 1996-07-26 | 1999-11-16 | Kabushiki Kaisha Toshiba | Gallium nitride-based compound semiconductor laser and method of manufacturing the same |
JP3656454B2 (en) * | 1999-04-01 | 2005-06-08 | 日亜化学工業株式会社 | Nitride semiconductor laser device |
JP2006121010A (en) * | 2004-10-25 | 2006-05-11 | Sumitomo Electric Ind Ltd | Surface emitting laser element and surface emitting laser array |
CN100391013C (en) * | 2002-11-15 | 2008-05-28 | 三星电子株式会社 | Method for manufacturing gallium nitride semiconductor light emitting device |
CN101467314A (en) * | 2006-06-08 | 2009-06-24 | 索尼株式会社 | Planar light emission semiconductor laser and its manufacturing method |
CN104682195A (en) * | 2015-02-13 | 2015-06-03 | 北京牡丹视源电子有限责任公司 | Edge emitting semiconductor laser with tunnel junction structure and preparation method thereof |
US9787060B1 (en) * | 2013-05-09 | 2017-10-10 | Soraa Laser Diode, Inc. | Magnesium based gettering regions for gallium and nitrogen containing laser diode devices |
-
2018
- 2018-12-28 CN CN201811627027.8A patent/CN111384663A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05299763A (en) * | 1992-04-23 | 1993-11-12 | Matsushita Electric Ind Co Ltd | Semiconductor laser and its manufacture |
US5987048A (en) * | 1996-07-26 | 1999-11-16 | Kabushiki Kaisha Toshiba | Gallium nitride-based compound semiconductor laser and method of manufacturing the same |
JP3656454B2 (en) * | 1999-04-01 | 2005-06-08 | 日亜化学工業株式会社 | Nitride semiconductor laser device |
CN100391013C (en) * | 2002-11-15 | 2008-05-28 | 三星电子株式会社 | Method for manufacturing gallium nitride semiconductor light emitting device |
JP2006121010A (en) * | 2004-10-25 | 2006-05-11 | Sumitomo Electric Ind Ltd | Surface emitting laser element and surface emitting laser array |
CN101467314A (en) * | 2006-06-08 | 2009-06-24 | 索尼株式会社 | Planar light emission semiconductor laser and its manufacturing method |
US9787060B1 (en) * | 2013-05-09 | 2017-10-10 | Soraa Laser Diode, Inc. | Magnesium based gettering regions for gallium and nitrogen containing laser diode devices |
CN104682195A (en) * | 2015-02-13 | 2015-06-03 | 北京牡丹视源电子有限责任公司 | Edge emitting semiconductor laser with tunnel junction structure and preparation method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111641103A (en) * | 2020-06-09 | 2020-09-08 | 厦门市三安光电科技有限公司 | Laser diode and manufacturing method thereof |
CN111641103B (en) * | 2020-06-09 | 2022-07-01 | 厦门市三安光电科技有限公司 | Laser diode and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4441563B2 (en) | Nitride semiconductor laser device | |
CN102299482B (en) | Gallium nitride based semiconductor laser epitaxial structure and preparation method thereof | |
JP2019012744A (en) | Semiconductor light-emitting element and manufacturing method thereof | |
JP2002016312A (en) | Nitride based semiconductor device and method of manufacturing | |
CN104795730B (en) | A kind of basic mode semiconductor laser made using quantum well mixing and preparation method | |
US7596160B2 (en) | Nitride semiconductor lasers and its manufacturing method | |
KR20100098565A (en) | Semiconductor light-emitting device | |
CN101820136A (en) | Asymmetrical 980nm semiconductor laser structure with high power and wide waveguide | |
CN115133399A (en) | A kind of semiconductor laser and its preparation method | |
CN103384046A (en) | Super-lattice waveguide semiconductor laser structure | |
CN116667143A (en) | a semiconductor laser | |
CN116454731A (en) | Semiconductor laser element with hyperbolic dispersion layer | |
JP4126878B2 (en) | Gallium nitride compound semiconductor laser | |
JP5858659B2 (en) | Photonic crystal surface emitting laser and manufacturing method thereof | |
CN111384663A (en) | Gallium nitride-based semiconductor laser and method of making the same | |
CN105048285B (en) | A kind of method for improving GaN base laser performance | |
US20250149861A1 (en) | Oxide-confined semiconductor laser having high aluminum content and method of fabricating the same | |
JP5507792B2 (en) | Group III nitride semiconductor optical device | |
JP2006229172A (en) | Nitride semiconductor laser device and manufacturing method thereof | |
JP2013102043A (en) | Semiconductor laser element and semiconductor laser element manufacturing method | |
CN112134143A (en) | Gallium nitride based laser and method of making the same | |
CN107645121B (en) | Ridge array semiconductor laser and its making method | |
CN113345987B (en) | Infrared light-emitting diode chip and preparation method thereof | |
JP2003163418A (en) | Nitride gallium system compound semiconductor laser | |
JP6496906B2 (en) | Semiconductor light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200707 |