CN111378006A - Novel double-arm intermediate LND1026-035 for antibody coupling drug and synthetic method thereof - Google Patents
Novel double-arm intermediate LND1026-035 for antibody coupling drug and synthetic method thereof Download PDFInfo
- Publication number
- CN111378006A CN111378006A CN201811617966.4A CN201811617966A CN111378006A CN 111378006 A CN111378006 A CN 111378006A CN 201811617966 A CN201811617966 A CN 201811617966A CN 111378006 A CN111378006 A CN 111378006A
- Authority
- CN
- China
- Prior art keywords
- compound
- structural formula
- lnd1026
- dichloromethane
- purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003814 drug Substances 0.000 title claims abstract description 8
- 230000008878 coupling Effects 0.000 title claims abstract description 7
- 238000010168 coupling process Methods 0.000 title claims abstract description 7
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 7
- 229940079593 drug Drugs 0.000 title claims abstract description 6
- 238000010189 synthetic method Methods 0.000 title description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 79
- 150000001875 compounds Chemical class 0.000 claims description 34
- 239000012071 phase Substances 0.000 claims description 34
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 238000000746 purification Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 15
- 230000009471 action Effects 0.000 claims description 13
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 claims description 12
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 12
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 9
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 claims description 8
- 239000012074 organic phase Substances 0.000 claims description 8
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 229940126062 Compound A Drugs 0.000 claims description 6
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 claims description 6
- 238000006482 condensation reaction Methods 0.000 claims description 6
- 229960000549 4-dimethylaminophenol Drugs 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 5
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 239000007821 HATU Substances 0.000 claims description 4
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 claims description 4
- 239000012043 crude product Substances 0.000 claims description 4
- 238000010511 deprotection reaction Methods 0.000 claims description 3
- 125000006239 protecting group Chemical group 0.000 claims description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 claims description 2
- 238000009987 spinning Methods 0.000 claims 1
- 231100000599 cytotoxic agent Toxicity 0.000 abstract description 10
- 239000002619 cytotoxin Substances 0.000 abstract description 10
- 231100000433 cytotoxic Toxicity 0.000 abstract description 2
- 230000001472 cytotoxic effect Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000001308 synthesis method Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 9
- 229940049595 antibody-drug conjugate Drugs 0.000 description 8
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 8
- 101710112752 Cytotoxin Proteins 0.000 description 6
- 239000000611 antibody drug conjugate Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000001819 mass spectrum Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000003053 toxin Substances 0.000 description 4
- 231100000765 toxin Toxicity 0.000 description 4
- 108700012359 toxins Proteins 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- UCPYLLCMEDAXFR-UHFFFAOYSA-N triphosgene Chemical compound ClC(Cl)(Cl)OC(=O)OC(Cl)(Cl)Cl UCPYLLCMEDAXFR-UHFFFAOYSA-N 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 239000012623 DNA damaging agent Substances 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 229930126263 Maytansine Natural products 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical compound OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 2
- AMRJKAQTDDKMCE-UHFFFAOYSA-N dolastatin Chemical compound CC(C)C(N(C)C)C(=O)NC(C(C)C)C(=O)N(C)C(C(C)C)C(OC)CC(=O)N1CCCC1C(OC)C(C)C(=O)NC(C=1SC=CN=1)CC1=CC=CC=C1 AMRJKAQTDDKMCE-UHFFFAOYSA-N 0.000 description 2
- 229930188854 dolastatin Natural products 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- WKPWGQKGSOKKOO-RSFHAFMBSA-N maytansine Chemical compound CO[C@@H]([C@@]1(O)C[C@](OC(=O)N1)([C@H]([C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(C)=O)CC(=O)N1C)C)[H])\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 WKPWGQKGSOKKOO-RSFHAFMBSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000011403 purification operation Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- MFRNYXJJRJQHNW-DEMKXPNLSA-N (2s)-2-[[(2r,3r)-3-methoxy-3-[(2s)-1-[(3r,4s,5s)-3-methoxy-5-methyl-4-[methyl-[(2s)-3-methyl-2-[[(2s)-3-methyl-2-(methylamino)butanoyl]amino]butanoyl]amino]heptanoyl]pyrrolidin-2-yl]-2-methylpropanoyl]amino]-3-phenylpropanoic acid Chemical compound CN[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MFRNYXJJRJQHNW-DEMKXPNLSA-N 0.000 description 1
- BLUGYPPOFIHFJS-UUFHNPECSA-N (2s)-n-[(2s)-1-[[(3r,4s,5s)-3-methoxy-1-[(2s)-2-[(1r,2r)-1-methoxy-2-methyl-3-oxo-3-[[(1s)-2-phenyl-1-(1,3-thiazol-2-yl)ethyl]amino]propyl]pyrrolidin-1-yl]-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]-3-methyl-2-(methylamino)butanamid Chemical compound CN[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C=1SC=CN=1)CC1=CC=CC=C1 BLUGYPPOFIHFJS-UUFHNPECSA-N 0.000 description 1
- 208000007934 ACTH-independent macronodular adrenal hyperplasia Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- IEDXPSOJFSVCKU-HOKPPMCLSA-N [4-[[(2S)-5-(carbamoylamino)-2-[[(2S)-2-[6-(2,5-dioxopyrrolidin-1-yl)hexanoylamino]-3-methylbutanoyl]amino]pentanoyl]amino]phenyl]methyl N-[(2S)-1-[[(2S)-1-[[(3R,4S,5S)-1-[(2S)-2-[(1R,2R)-3-[[(1S,2R)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-N-methylcarbamate Chemical compound CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)c1ccccc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)OCc1ccc(NC(=O)[C@H](CCCNC(N)=O)NC(=O)[C@@H](NC(=O)CCCCCN2C(=O)CCC2=O)C(C)C)cc1)C(C)C IEDXPSOJFSVCKU-HOKPPMCLSA-N 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229940125644 antibody drug Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 231100000782 microtubule inhibitor Toxicity 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- YTJSFYQNRXLOIC-UHFFFAOYSA-N octadecylsilane Chemical group CCCCCCCCCCCCCCCCCC[SiH3] YTJSFYQNRXLOIC-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06008—Dipeptides with the first amino acid being neutral
- C07K5/06017—Dipeptides with the first amino acid being neutral and aliphatic
- C07K5/06026—Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atom, i.e. Gly or Ala
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The invention provides a novel double-arm intermediate LND1026-035 for antibody coupling drug and its synthesis method, LND1026-035 can connect two cytotoxic molecules on one antibody connection site, thereby can reduce the administration concentration, or can increase the treatment effect under the same administration concentration. Meanwhile, one antibody carries more cytotoxins, so that the utilization rate of the antibody can be improved, and the production cost of the medicine can be reduced.
Description
Technical Field
The invention relates to the field of organic synthesis, in particular to a molecular structure of a novel double-arm intermediate for antibody coupled drugs and a preparation method thereof.
Background
Antibody Drug Conjugates (ADC) are a novel anti-tumor drug, and the principle is that cytotoxin is connected to an Antibody, and the cytotoxin is transported to a target point through recognition of a specific antigen on the surface of a cancer cell by the Antibody and entering the cancer cell through endocytosis, so that the aim of targeted therapy of malignant tumor is achieved. Compared with the traditional micromolecule antitumor drugs, the ADC has higher specificity and effectiveness due to the fact that the target recognition of the antibody and the high activity of the toxin can be used.
ADCs comprise three distinct components, namely antibodies, linkers and cytotoxins. The antibody realizes targeting, the linker ensures the stability of the ADC in the blood transportation process, and after the ADC reaches an action target, the toxin plays a role in killing cancer cells. Depending on the mechanism of action, the toxins suitable for ADCs are classified into microtubule-like inhibitors (microtubuliinhibitors), DNA damaging agents (DNA damaging agents), RNA polymerase inhibitors (RNA polymerase inhibitors), and the like. Currently, the toxins used in ADCs marketed and in clinical trials are mainly microtubule inhibitors, mainly including compounds designed based on Dolastatin-based (Dolastatin-based) such as MMAE, MMAF and MMAD, and compounds designed based on Maytansine-based (Maytansine-based) such as DM1 and DM 4. In the linker context, the main applications are non-cleavable types, such as Valine-citrulline (Valine-Citriline) and cyclohexyl carboxylic acid (MCC), which remain active after lysosomal hydrolysis and bind to an amino acid residue via a linker region.
In the existing antibody coupling technology, a cytotoxin is usually connected to a connection site of each antibody, the antibody carries the cytotoxin to reach the interior of a tumor cell, and the cytotoxin is released under the action of enzyme, so that the aim of killing the tumor cell is fulfilled.
Disclosure of Invention
The existing antibody coupling technology has limited sites capable of connecting cytotoxin on each antibody, one antibody can carry less than 10 cytotoxins, and in order to kill tumor cells, high antibody drug concentration is generally required.
One of the purposes of the invention is to provide a novel double-arm intermediate LND1026-035 used for antibody coupling drug, which has the structural formula
Another object of the present invention is to provideA novel intermediate compound F of a double-arm intermediate LND1026-035, the structural formula of which is
It is a further object of this invention to provide a method of synthesis of a novel dual arm intermediate LND 1026-035.
The technical scheme for achieving the purpose of the invention is as follows.
A method for synthesizing a double-arm intermediate LND1026-035, the structural formula of LND1026-035 isThe method comprises the following steps:
1) a compound A with a structural formula A and DMAP are dissolved in dichloromethane, wherein the structural formula A isStirring for reaction under the action of triphosgene, and adding a compound B with a structural formula BStirring for condensation reaction, and separating to obtain compound C with structural formula C
2) Dissolving the compound C in dichloromethane, performing deprotection reaction under the action of diethylamine, and separating to obtain compound D with structural formula D
3) Dissolving a compound D, a compound E with a structural formula E and HATU in dichloromethane, wherein the structural formula E isCondensation reaction under the action of DIEA, and separationTo obtain a compound F with a structural formula F
4) And dissolving the compound F in dichloromethane, removing a protecting group under the action of diethylamine, and separating to obtain LND 1026-035.
Optionally, the separation method in the step 1) is to dilute the product with dichloromethane, wash the product with water, dry the product with anhydrous sodium sulfate, spin-dry the product, purify the crude product with medium-pressure reversed phase, select 80g of industrial packed C18 reversed phase column, optionally, the volume ratio of purification gradient of the medium-pressure reversed phase purification is 90/10-10/90, and the time is 1 hour.
Alternatively, the separation method in step 2) is adding water and DCM for extraction, washing the organic phase with saturated common salt water, drying with anhydrous sodium sulfate, and concentrating.
Optionally, the separation method in the step 3) is to concentrate the reaction solution, perform medium-pressure reverse-phase purification, select 40g of industrial packed C18 reverse-phase column, and optionally perform medium-pressure reverse-phase purification with a purification gradient volume ratio of water/acetonitrile of 90/10-10/90 for 1 hour.
Optionally, the separation method in the step 4) includes adding water and DCM for extraction, washing the organic phase with saturated common salt water, drying with anhydrous sodium sulfate, concentrating, performing medium-pressure reverse phase purification, selecting 25g of industrial packed C18 reverse phase column, and optionally performing medium-pressure reverse phase purification with a purification gradient volume ratio of water/acetonitrile 90/10-10/90 for 1 hour.
The above-mentioned raw materials, reagents and the like are commercially available unless otherwise specified.
The novel double arm intermediate LND1026-035 allows for the attachment of two cytotoxic molecules to one antibody attachment site, allowing for lower dosing concentrations or increased therapeutic efficacy at the same dosing concentration. Meanwhile, one antibody carries more cytotoxins, so that the utilization rate of the antibody can be improved, and the production cost of the medicine can be reduced. .
Drawings
FIG. 1 is a mass spectrum of Compound C synthesized according to the present invention.
FIG. 2 is a liquid chromatogram of Compound C synthesized according to the present invention.
FIG. 3 is a mass spectrum of Compound D synthesized according to the present invention.
FIG. 4 is a liquid chromatogram of Compound D synthesized according to the present invention.
FIG. 5 is a mass spectrum of Compound F synthesized according to the present invention.
FIG. 6 is a liquid chromatogram of Compound F synthesized according to the present invention.
FIG. 7 is a mass spectrum of the target product LND1026-035 synthesized by the present invention.
FIG. 8 is a liquid chromatogram of the target product LND1026-035 synthesized by the present invention.
Detailed Description
As used herein, the abbreviations commonly used have the conventional meaning in the art, e.g., the abbreviation DMAP for 4-dimethylaminopyridine and the abbreviation DIEA for N, N-diisopropylethylamine.
The technical solution of the present invention will be further described in non-limiting detail with reference to the following embodiments. It should be noted that the following embodiments are only for illustrating the technical concept and features of the present invention, and the purpose of the present invention is to enable those skilled in the art to understand the content of the present invention and implement the present invention, and not to limit the protection scope of the present invention. All equivalent changes and modifications made according to the spirit of the present invention should be covered within the protection scope of the present invention.
The invention provides a method for synthesizing a double-arm intermediate LND1026-035, the reaction route of the synthetic method is as follows:
the method for synthesizing the double-arm intermediate LND1026-035 comprises the following steps:
1) a compound A with a structural formula A and DMAP are dissolved in dichloromethane, wherein the structural formula A isAdding three under the protection of nitrogen at 0 DEG CPhosgene, stirring and reacting for 5 minutes under the action of triphosgene, adding a compound B with a structural formula B, wherein the structural formula B isThe condensation reaction took place with stirring at 0 ℃ for 5 minutes and LCMS showed less than 5% of compound A in the reaction solution as the end of the reaction. Diluting with dichloromethane, washing with water, drying with anhydrous sodium sulfate, spin-drying, performing medium-pressure reverse-phase purification on the crude product, selecting 80g of industrial packed C18 reverse-phase column, filling C18 (octadecylsilane bonded silica gel filler) in the reverse-phase column, performing medium-pressure reverse-phase purification with a purification gradient volume ratio of water/acetonitrile (90/10-10/90) for 1 hour to obtain a compound C with a structural formula C (C is
2) Dissolving the compound C in dichloromethane, performing deprotection reaction under the action of diethylamine, reacting for 4 hours, and determining that the reaction is finished when LCMS shows that less than 3% of the compound C in the reaction solution. Adding water and DCM for extraction, washing the organic phase with saturated salt water, drying with anhydrous sodium sulfate, and concentrating to obtain compound D with structural formula D
3) Dissolving a compound D, a compound E with a structural formula E and HATU in dichloromethane, wherein the structural formula E isCondensation reaction occurred by DIEA reaction for 16 hours at room temperature, and LCMS showed less than 3% of compound D in the reaction solution as the end of the reaction. Concentrating the reaction solution, performing medium-pressure reversed-phase purification, selecting 40g of industrial packed C18 reversed-phase column, performing medium-pressure reversed-phase purification operation with a purification gradient volume ratio of water/acetonitrile of 90/10-10/90 for 1 hour to obtain a compound F with a structural formula F, wherein the structural formula F is
4) Dissolving the compound F in dichloromethane, removing the protecting group under the action of diethylamine, reacting at room temperature for 4 hours, and determining that the reaction is finished when LCMS shows that less than 3 percent of the compound F in the reaction liquid. Adding water and DCM for extraction, washing an organic phase with saturated common salt, drying with anhydrous sodium sulfate, concentrating, performing medium-pressure reverse phase purification, selecting 25g of industrial packed C18 reverse phase column, wherein the volume ratio of purification gradient of the medium-pressure reverse phase purification operation is 90/10-10/90, and obtaining LND1026-035 within 1 hour.
Example 1
Dissolving compound A (769mg, 1.52mmol) and DMAP (551mg, 4.52mmol) in dichloromethane (10mL), adding triphosgene (225mg, 0.76mmol) at 0 ℃ under the protection of nitrogen, stirring for 5 minutes to obtain a yellow solution, adding compound B (717mg, 1.52mmol), stirring for 5 minutes at 0 ℃, and LCMS to show that less than 5% of compound A in the reaction solution is considered to be the end of the reaction, adding 40mL of dichloromethane to the reaction solution, washing with water (2 × 50mL), drying with anhydrous sodium sulfate, spin-drying, purifying the crude product by medium pressure reverse phase (80 g of industrial packed C18 reverse phase column is selected), purifying gradient water/acetonitrile (90/10-10/90, v/v), and collecting the pure product for 1 hour, and freeze-drying to obtain compound C as a white solid (550mg, yield 36%).
Compound C (550mg, 0.44mmol) was dissolved in dichloromethane (10mL), diethylamine (2mL) was added and the reaction was allowed to react at room temperature for 4 hours, LCMS showed less than 3% of compound C in the reaction solution as the end of the reaction, water (50mL) was added, DCM (2 × 50mL) was extracted, the organic phase was washed with saturated brine, then dried over anhydrous sodium sulfate, and concentrated to give compound D as a yellow solid (380mg, yield 83%).
Compound D (380mg, 0.36mmol), compound E (64mg, 0.18mmol) and HATU (206mg, 0.54mmol) were added to dichloromethane (5mL) followed by DIEA (93mg, 0.72mmol) and reacted at room temperature for 16 h, LCMS showed less than 3% of compound D in the reaction solution as the end of the reaction. After the reaction solution is concentrated, medium-pressure reversed-phase purification (40 g of industrial packed C18 reversed-phase column is selected), and gradient water/acetonitrile (90/10-10/90, v/v) is purified for 1 hour. The pure product was collected and lyophilized to give compound F as a white solid (104mg, 24% yield).
Dissolving compound F (104mg, 0.043mmol) in dichloromethane (2mL), adding diethylamine (0.5mL), reacting at room temperature for 4 hours, LCMS shows that less than 3% of compound F in the reaction solution is regarded as the reaction is finished, adding water (10mL), DCM (2 × 10mL), extracting, washing the organic phase with saturated common salt, drying with anhydrous sodium sulfate, concentrating, and performing medium-pressure reverse-phase purification (25 g of an industrial packed C18 reverse-phase column is selected), purifying gradient water/acetonitrile (90/10-10/90, v/v) for 1 hour, collecting pure product and freeze-drying to obtain a white solid compound LND1026-035(23mg, yield 24%).
Claims (10)
3. A method for synthesizing a double-arm intermediate LND1026-035, the structural formula of LND1026-035 isCharacterized in that the method comprises the following steps:
1) a compound A with a structural formula A and DMAP are dissolved in dichloromethane, wherein the structural formula A isUnder the action of triphosgeneStirring for reaction, and adding a compound B with a structural formula BStirring for condensation reaction, and separating to obtain compound C with structural formula C
2) Dissolving the compound C in dichloromethane, performing deprotection reaction under the action of diethylamine, and separating to obtain compound D with structural formula D
3) Dissolving a compound D, a compound E with a structural formula E and HATU in dichloromethane, wherein the structural formula E isCondensation reaction is carried out under the action of DIEA, and a compound F with a structural formula F is obtained through separation operation
4) And dissolving the compound F in dichloromethane, removing a protecting group under the action of diethylamine, and separating to obtain LND 1026-035.
4. The process of claim 3, wherein the separation method in step 1) is that after dichloromethane is diluted, the dichloromethane is washed with water, dried by anhydrous sodium sulfate, dried by spinning, and the crude product is purified by medium pressure reverse phase, and 80g of industrial packed C18 reverse phase column is selected.
5. The process of claim 4, wherein the medium pressure reversed phase purification is performed at a purification gradient volume ratio of water/acetonitrile of 90/10-10/90 for 1 hour.
6. The process of claim 3, wherein the separation in step 2) is performed by adding water, extracting with DCM, washing the organic phase with saturated brine, drying over anhydrous sodium sulfate, and concentrating.
7. The method as claimed in claim 3, wherein the separation method in step 3) is to concentrate the reaction solution and purify the reaction solution by medium pressure reverse phase, and 40g of industrial packed C18 reverse phase column is selected.
8. The process of claim 7, wherein the medium pressure reversed phase purification is performed at a purification gradient volume ratio of water/acetonitrile 90/10-10/90 for 1 hour.
9. The process of claim 3, wherein the separation in step 4) is carried out by adding water, DCM for extraction, washing the organic phase with saturated brine, drying over anhydrous sodium sulfate, concentrating, medium pressure reverse phase purification, and using 25g of industrial packed C18 reverse phase column.
10. The process of claim 9, wherein the medium pressure reversed phase purification is performed at a purification gradient volume ratio of water/acetonitrile 90/10-10/90 for 1 hour.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811617966.4A CN111378006A (en) | 2018-12-28 | 2018-12-28 | Novel double-arm intermediate LND1026-035 for antibody coupling drug and synthetic method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811617966.4A CN111378006A (en) | 2018-12-28 | 2018-12-28 | Novel double-arm intermediate LND1026-035 for antibody coupling drug and synthetic method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111378006A true CN111378006A (en) | 2020-07-07 |
Family
ID=71213179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811617966.4A Pending CN111378006A (en) | 2018-12-28 | 2018-12-28 | Novel double-arm intermediate LND1026-035 for antibody coupling drug and synthetic method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111378006A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114874287A (en) * | 2022-05-20 | 2022-08-09 | 联宁(苏州)生物制药有限公司 | Synthetic method of antibody coupled drug-linker LND1042 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0622084A1 (en) * | 1993-04-28 | 1994-11-02 | Eli Lilly And Company | Antibody-drug conjugates |
CN105669559A (en) * | 2016-01-12 | 2016-06-15 | 南京林业大学 | Pinanyl pyrazole compound and its synthesis method and use |
CN107915770A (en) * | 2016-10-11 | 2018-04-17 | 联宁(苏州)生物制药有限公司 | A kind of antibody drug conjugates intermediate and preparation method thereof |
TW201827085A (en) * | 2016-12-14 | 2018-08-01 | 美商西雅圖遺傳學公司 | Multiple drug antibody drug conjugate |
CN108404138A (en) * | 2018-03-09 | 2018-08-17 | 中国药科大学 | A kind of conjugate and its application of targeting CD24 monoclonal antibodies and two alkoxide of diethylamine azo |
CN108853514A (en) * | 2017-08-18 | 2018-11-23 | 四川百利药业有限责任公司 | There are two types of the antibody drug conjugates of different pharmaceutical for tool |
-
2018
- 2018-12-28 CN CN201811617966.4A patent/CN111378006A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0622084A1 (en) * | 1993-04-28 | 1994-11-02 | Eli Lilly And Company | Antibody-drug conjugates |
CN105669559A (en) * | 2016-01-12 | 2016-06-15 | 南京林业大学 | Pinanyl pyrazole compound and its synthesis method and use |
CN107915770A (en) * | 2016-10-11 | 2018-04-17 | 联宁(苏州)生物制药有限公司 | A kind of antibody drug conjugates intermediate and preparation method thereof |
TW201827085A (en) * | 2016-12-14 | 2018-08-01 | 美商西雅圖遺傳學公司 | Multiple drug antibody drug conjugate |
CN108853514A (en) * | 2017-08-18 | 2018-11-23 | 四川百利药业有限责任公司 | There are two types of the antibody drug conjugates of different pharmaceutical for tool |
CN108404138A (en) * | 2018-03-09 | 2018-08-17 | 中国药科大学 | A kind of conjugate and its application of targeting CD24 monoclonal antibodies and two alkoxide of diethylamine azo |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114874287A (en) * | 2022-05-20 | 2022-08-09 | 联宁(苏州)生物制药有限公司 | Synthetic method of antibody coupled drug-linker LND1042 |
CN114874287B (en) * | 2022-05-20 | 2024-04-02 | 联宁(苏州)生物制药有限公司 | Synthesis method of antibody coupling drug-linker LND1042 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111620927B (en) | One-pot preparation process of antibody drug conjugate intermediate | |
CN107915770A (en) | A kind of antibody drug conjugates intermediate and preparation method thereof | |
CN112386707B (en) | Tumor targeting polypeptide drug conjugate and preparation method thereof | |
JP7292751B2 (en) | Method for preparing drug linker MC-MMAF for antibody-drug conjugate and its intermediate | |
CN109928908B (en) | Preparation method and intermediate of drug-linker MC-MMAF for antibody drug conjugate | |
CN113583086B (en) | Synthesis method of intermediate LND1035 of antibody coupled drug | |
KR102440763B1 (en) | One-pot method for preparing intermediates of antibody-drug conjugates | |
CN111362926B (en) | Synthetic method of intermediate CLA-SN38 for antibody coupled drug and intermediate thereof | |
CN111378006A (en) | Novel double-arm intermediate LND1026-035 for antibody coupling drug and synthetic method thereof | |
CN111499685A (en) | Antibody coupling drug intermediate with maleimide connector and synthetic method thereof | |
CN104710605A (en) | Methoxypolyethylene glycol with single-end amino (mPEG-NH2) and preparation method thereof | |
CN104774161B (en) | Polypeptide, protein PEG dressing agent synthetic methods | |
CN111670053B (en) | One-pot method preparation technology of antibody drug conjugate intermediate | |
CN101564537B (en) | 3,5-dihydroxy-4-isopropyl stilbene-ethyl bromoacetate-polyethylene glycol complex and its synthesis method | |
WO2020181686A1 (en) | Preparation method for drug-linker mc-mmaf used for antibody drug conjugates and intermediate thereof | |
CN111363005B (en) | Synthetic method for antibody-coupled drug intermediate CLB-SN38 | |
CN102875453B (en) | A kind of preparation method of the pyridine medical intermediate for the synthesis of anticancer assisted class medicine | |
CN111560078A (en) | Double-arm intermediate with maleimide joint and synthetic method thereof | |
CN113336823A (en) | Synthetic method for antibody-conjugated drug linker LND1067 | |
CN102250342B (en) | PEG/mPEG (Polyethylene Glycol) multi-carboxyl chemical modifying agent connected with citric acid, preparation method and application thereof in modification of toluylene compound | |
CN114874287B (en) | Synthesis method of antibody coupling drug-linker LND1042 | |
CN103351424B (en) | The preparation method of a kind of taxol or Docetaxel Octreotide conjugate | |
CN107652348A (en) | A kind of pyrophosphoric acid salinization cholesterol and its production and use | |
CN115873066A (en) | Synthetic method of antibody-conjugated drug linker | |
CN111195353B (en) | Maytansine antibody drug conjugate and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200707 |