CN111377605B - Method for manufacturing base material for optical fiber - Google Patents
Method for manufacturing base material for optical fiber Download PDFInfo
- Publication number
- CN111377605B CN111377605B CN201911346999.4A CN201911346999A CN111377605B CN 111377605 B CN111377605 B CN 111377605B CN 201911346999 A CN201911346999 A CN 201911346999A CN 111377605 B CN111377605 B CN 111377605B
- Authority
- CN
- China
- Prior art keywords
- glass
- sintering
- particle deposit
- glass particle
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 title claims abstract description 63
- 239000013307 optical fiber Substances 0.000 title claims abstract description 51
- 239000000463 material Substances 0.000 title claims abstract description 42
- 239000011521 glass Substances 0.000 claims abstract description 130
- 238000005245 sintering Methods 0.000 claims abstract description 80
- 239000002245 particle Substances 0.000 claims abstract description 77
- 238000000151 deposition Methods 0.000 claims abstract description 29
- 239000002994 raw material Substances 0.000 claims abstract description 14
- 230000008021 deposition Effects 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000004017 vitrification Methods 0.000 claims description 2
- 239000010419 fine particle Substances 0.000 abstract description 27
- 239000007789 gas Substances 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000725 suspension Substances 0.000 description 7
- 239000000567 combustion gas Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
- C03B37/01453—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering for doping the preform with flourine
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
[课题]本发明的目的在于提供一种使所得到的光纤用玻璃母材的尺寸没有偏差的光纤用玻璃母材的制造方法。[解决手段]一种光纤用母材(28)的制造方法,具备:将向燃烧器(15)的火焰中供给玻璃原料而合成的玻璃微粒沉积在旋转的初始棒(12)的外周的玻璃微粒沉积体(18)制造工序,以及在玻璃微粒沉积体(18)的制造工序之后对玻璃微粒沉积体(18)进行烧结的烧结工序,其中,与玻璃微粒沉积体(18)的制造工序结束后直至所述烧结工序开始时之间的时间相对应,来变更所述烧结工序的制造条件。
[Problem] An object of the present invention is to provide a method for producing a glass preform for an optical fiber in which there is no variation in the size of the obtained glass preform for an optical fiber. [Solution] A method of manufacturing a base material (28) for an optical fiber, comprising: glass particles synthesized by supplying glass raw materials to the flame of a burner (15) and depositing them on the outer periphery of a rotating initial rod (12). A fine particle deposit body (18) manufacturing process, and a sintering process of sintering the glass fine particle deposit body (18) after the glass fine particle deposit body (18) manufacturing process, wherein the manufacturing process of the glass fine particle deposit body (18) ends Then, the manufacturing conditions of the sintering process are changed corresponding to the time between the start of the sintering process and the sintering process.
Description
技术领域technical field
本发明涉及光纤用母材的制造方法。The present invention relates to a method for manufacturing a base material for an optical fiber.
背景技术Background technique
在专利文献1中,记载了一种将玻璃微粒沉积在玻璃棒上以形成玻璃微粒沉积体,并对其加热使其透明化的透明玻璃体的制造方法。更详细而言,公开了以下内容。对所述玻璃微粒沉积体进行加热,直至所述玻璃微粒沉积体的外表面温度与所述玻璃微粒沉积体的所述玻璃棒之间的边界部分温度的温度差成为100℃以下。然后,在比所述加热的加热温度高10℃以上60℃以下的条件下对所述玻璃微粒沉积体进行加热。Patent Document 1 describes a method for producing a transparent glass body in which glass particles are deposited on a glass rod to form a glass particle deposit and heated to make it transparent. In more detail, the following are disclosed. The glass particle deposit is heated until a temperature difference between an outer surface temperature of the glass particle deposit and a boundary portion temperature between the glass rods of the glass particle deposit becomes 100° C. or less. Then, the glass fine particle deposition body is heated under the condition that the heating temperature of the heating is 10° C. or more and 60° C. or less.
现有技术文献prior art literature
专利文献patent documents
专利文献1:日本特开2009-7227号公报Patent Document 1: Japanese Unexamined Patent Publication No. 2009-7227
发明内容Contents of the invention
[发明要解决的课题][Problem to be solved by the invention]
一般来说,由芯和包层构成的光纤是将光纤用的玻璃母材在拉丝炉内进行拉丝(拉丝工序)而制造的。光纤用母材按以下工序制造。通过VAD法(气相轴向沉积法)或OVD法(外部气相沉积法)等气相合成法,将燃烧器的火焰中生成的玻璃微粒沉积在由石英等构成的棒的周围,从而制造玻璃微粒沉积体(玻璃微粒沉积体制造工序)。然后,将该玻璃微粒沉积体在加热炉内进行加热以脱水和烧结,以使其透明玻璃化(烧结工序)。Generally, an optical fiber composed of a core and a cladding is manufactured by drawing a glass base material for an optical fiber in a drawing furnace (drawing process). The optical fiber base material is produced in the following steps. Glass particle deposition is produced by depositing glass particles generated in the flame of a burner around a rod made of quartz or the like by vapor phase synthesis methods such as VAD (Vapor Axial Deposition) or OVD (Outside Vapor Deposition) body (glass particle deposition body manufacturing process). Then, the glass fine particle deposit is heated in a heating furnace to dehydrate and sinter to make it transparent and vitrified (sintering process).
然而,光纤用母材有时候根据制造批次的不同因而尺寸(直径或长度)不同,并且有时候成为无法容纳在用于所述拉丝工序的拉丝炉内的尺寸。However, the base material for an optical fiber may vary in size (diameter or length) depending on the production lot, and may be of a size that cannot be accommodated in the drawing furnace used in the above-mentioned drawing step.
当光纤用玻璃母材的直径过大时,需要对玻璃母材进行再次烧结工序,使玻璃母材软化后进行拉伸,而当玻璃母材过长时则需要切断端部等一些繁杂的处理。When the diameter of the glass base material for optical fiber is too large, it is necessary to re-sinter the glass base material to soften the glass base material and then stretch it. When the glass base material is too long, it is necessary to cut off the end and other complicated processing. .
因此,本发明的目的在于提供一种使所得到的光纤用玻璃母材的尺寸难以产生偏差的光纤用玻璃母材的制造方法。Therefore, an object of the present invention is to provide a method for producing a glass preform for an optical fiber in which variations in the dimensions of the obtained glass preform for an optical fiber are less likely to occur.
[解决课题的手段][means to solve the problem]
根据本发明的一个方式的光纤用母材的制造方法为,A method of manufacturing a preform for an optical fiber according to an aspect of the present invention is as follows:
(1)一种光纤用母材的制造方法,具备:(1) A method for manufacturing a base material for an optical fiber, comprising:
将向燃烧器火焰中供给玻璃原料而合成的玻璃微粒沉积在旋转的初始棒外周的玻璃微粒沉积体制造工序,以及在所述玻璃微粒沉积体制造工序之后对所述玻璃微粒沉积体进行烧结的烧结工序,A process of depositing glass particles synthesized by supplying glass raw material to a burner flame on the outer periphery of a rotating initial rod, and a process of sintering the glass particle deposit after the glass particle production process sintering process,
其中,与所述玻璃微粒沉积体制造工序结束后直至所述烧结工序开始时之间的时间相对应,来变更所述烧结工序的制造条件。Here, the production conditions of the sintering process are changed corresponding to the time from the completion of the glass fine particle deposit production process to the start of the sintering process.
[发明的效果][Effect of the invention]
如上所述,能够使所得到的光纤用玻璃母材的尺寸难以产生偏差。As described above, it is possible to make it difficult to cause variations in the size of the obtained glass preform for an optical fiber.
附图说明Description of drawings
[图1]是表示在本发明的玻璃微粒沉积体的制造工序中使用的装置的一个例子的示意图。[ Fig. 1 ] is a schematic view showing an example of an apparatus used in the manufacturing process of the glass fine particle deposit of the present invention.
[图2]是表示在本发明的烧结工序中使用的装置的一个例子的示意图。[ Fig. 2 ] is a schematic view showing an example of an apparatus used in the sintering step of the present invention.
[符号的说明][explanation of the symbol]
1 沉积体制造装置1 Sediment manufacturing device
11 反应容器11 reaction vessel
11A 内壁面11A inner wall
12 初始棒12 starter sticks
13 籽晶棒13 seed sticks
13 悬挂装置13 Suspension
15 燃烧器15 burners
16 气体流量控制装置16 Gas flow control device
17 气体供给路径17 Gas supply path
18 玻璃微粒沉积体18 Glass particle deposits
18A 沉积面18A deposition surface
110 排气管110 exhaust pipe
111 投光器111 light projector
112 受光器112 Receiver
113 线路113 line
114 排气口114 Exhaust port
115 激光115 laser
2 烧结炉2 sintering furnace
21 炉心管21 furnace core tube
22 加热器22 heater
23 挡热板23 heat shield
24 真空容器24 vacuum container
25 排气用配管25 Piping for exhaust
26 真空泵26 vacuum pump
27 气体导入管27 Gas inlet pipe
28 光纤用母材28 Base material for optical fiber
29 压力调整阀29 Pressure adjustment valve
具体实施方式Detailed ways
[本发明实施方式的说明][Description of Embodiments of the Present Invention]
首先,对本发明的实施方式的内容进行说明。First, the contents of the embodiments of the present invention will be described.
本发明的一个方式涉及的光纤用母材的制造方法为:A method of manufacturing an optical fiber base material according to an aspect of the present invention is as follows:
(1)一种光纤用母材的制造方法,具备:(1) A method for manufacturing a base material for an optical fiber, comprising:
将向燃烧器火焰中供给玻璃原料而合成的玻璃微粒沉积在旋转的初始棒外周的玻璃微粒沉积体制造工序,以及在所述玻璃微粒沉积体制造工序之后对所述玻璃微粒沉积体进行烧结的烧结工序,A process of depositing glass particles synthesized by supplying glass raw material to a burner flame on the outer periphery of a rotating initial rod, and a process of sintering the glass particle deposit after the glass particle production process sintering process,
其中,与所述玻璃微粒沉积体制造工序结束后直至所述烧结工序开始时之间的时间相对应,来变更所述烧结工序的制造条件。Here, the production conditions of the sintering process are changed corresponding to the time from the completion of the glass fine particle deposit production process to the start of the sintering process.
根据该构成,即使从玻璃微粒沉积体制造工序结束时到烧结工序开始时之间的时间有长有短,也可以基于该时间来改变烧结条件,从而可以减少烧结时的纵向上的收缩程度的偏差,且可以降低烧结后的母材外径的变动量。According to this configuration, even if the time between the end of the glass particle deposit manufacturing process and the start of the sintering process varies, the sintering conditions can be changed based on this time, thereby reducing the degree of shrinkage in the longitudinal direction during sintering. Deviation, and can reduce the variation of the outer diameter of the base material after sintering.
(2)所述烧结工序具备在所述玻璃微粒沉积体不收缩的温度下对所述玻璃微粒沉积体进行加热的预热工序,且所述玻璃微粒沉积体制造工序结束后直至所述烧结工序开始时之间的时间越长,则优选越延长所述预热工序的时间。(2) The sintering step includes a preheating step of heating the glass particle deposit at a temperature at which the glass particle deposit does not shrink, and after the glass particle deposit manufacturing step is completed until the sintering step The longer the time between the start times, the longer the time of the preheating step is preferably.
从所述玻璃微粒沉积体制造工序结束时到所述烧结工序开始时之间的时间较长时,玻璃微粒沉积体内部的温度会降低,因此该时间越长,则越延长预热工序时间,以使玻璃微粒沉积体内部和初始棒被充分加热。由此,即使在烧结工序中进行预定时间的处理,也能够得到烧结时的纵向上的收缩程度的偏差减少、且烧结后的母材外径的变动量降低了的光纤用母材。If the time between the end of the glass particle deposit manufacturing process and the start of the sintering process is long, the temperature inside the glass particle deposit body will decrease, so the longer the time, the longer the preheating process time, So that the interior of the glass particle deposit and the initial rod are sufficiently heated. Thereby, even if the treatment is performed for a predetermined time in the sintering step, it is possible to obtain a preform for an optical fiber in which variation in shrinkage in the longitudinal direction during sintering is reduced and variation in the outer diameter of the preform after sintering is reduced.
(3)所述预热工序的温度优选为1200℃以下。(3) The temperature in the preheating step is preferably 1200° C. or lower.
(4)在所述玻璃微粒沉积体制造工序结束后直至所述烧结工序开始时之间的时间为3小时以下的情况下,所述预热工序优选为1小时以下。(4) When the time from the end of the glass fine particle deposit manufacturing step to the start of the sintering step is 3 hours or less, the preheating step is preferably 1 hour or less.
根据(3)~(4)的构成,能够有效地制造出烧结时的纵向上的收缩程度的偏差减少、且烧结后的母材外径的变动量降低了的光纤用母材。According to the configurations (3) to (4), it is possible to efficiently manufacture a preform for an optical fiber in which variation in shrinkage in the longitudinal direction during sintering is reduced and variation in the outer diameter of the preform after sintering is reduced.
(5)所述烧结工序具备对所述玻璃微粒沉积体进行逐渐升温加热直到使所述玻璃微粒沉积体发生透明玻璃化的温度为止的升温工序,且从所述玻璃微粒沉积体制造工序结束后直至所述烧结工序开始时之间的时间越长,则优选越减小所述升温工序的升温速度。(5) The sintering step includes a step of gradually raising the temperature of the glass particle deposit to a temperature at which the glass particle deposit becomes transparent and vitrified, and after the completion of the glass particle deposit manufacturing step The longer the time until the start of the sintering step is, the slower the temperature increase rate in the temperature increase step is preferably.
通过该构成,能够无损伤地制造出烧结时的纵向上的收缩程度的偏差减少、且烧结后的母材外径的变动量降低了的光纤用母材。With this configuration, it is possible to manufacture a base material for an optical fiber with reduced variations in the degree of shrinkage in the longitudinal direction during sintering and a reduced variation in the outer diameter of the base material after sintering without damage.
(6)所述升温速度优选为1℃/分钟以上10℃/分钟以下。(6) The temperature increase rate is preferably not less than 1° C./min and not more than 10° C./min.
根据该构成,能够在无损伤的情况下更可靠地制造出烧结时的纵向上的收缩程度的偏差减少、且烧结后的母材外径的变动量降低了的光纤用母材。According to this configuration, it is possible to more reliably manufacture a base material for an optical fiber with less variation in shrinkage in the longitudinal direction during sintering and less variation in the outer diameter of the base material after sintering without damage.
[本发明实施方式的详细情况][Details of Embodiments of the Invention]
以下,基于附图对本发明实施方式涉及的光纤用母材的制造方法的例子进行说明。Hereinafter, an example of a method for manufacturing an optical fiber preform according to an embodiment of the present invention will be described with reference to the drawings.
(玻璃微粒沉积体制造工序)(Glass particle deposit manufacturing process)
图1为在本实施方式的光纤用母材的制造方法中实施玻璃微粒沉积体制造工序的装置(以下也称为“玻璃微粒沉积体制造装置”或“沉积体制造装置”)1的示意图。沉积体制造装置1具有反应容器11。在反应容器11的外侧上方设置有悬挂装置14,且籽晶棒13通过悬挂装置14而被悬挂。在悬挂的籽晶棒13的下端安装有初始棒12,且初始棒12被插入到反应容器11的内部。1 is a schematic diagram of an apparatus (hereinafter also referred to as "glass particle deposit manufacturing apparatus" or "deposit manufacturing apparatus") 1 for performing a glass particle deposit manufacturing step in the method for manufacturing an optical fiber base material according to this embodiment. The deposit production device 1 has a
悬挂装置14可以使安装在籽晶棒13上的初始棒12在轴上旋转,并且能够在轴向上移动,另外能够改变初始棒12的轴向的移动速度(初始棒12的上升速度)。The
若将玻璃微粒沉积在该初始棒12的外周,则可以制造出中心具有初始棒12的近似圆柱状的玻璃微粒沉积体18。If the glass particles are deposited on the outer periphery of the
在反应容器11的下方,设置生成玻璃微粒的玻璃微粒合成用燃烧器15(以下简称为“燃烧器15”)。燃烧器15经由气体供给路径17而连接至能够供给燃烧用气体和玻璃原料用气体的气体供给罐(未图示)。这里,供给至燃烧器15的燃烧用气体主要由可燃性气体和助燃性气体构成,其中作为可燃性气体可列举出氢气(H2),作为助燃性气体可列举出氧气(O2)。作为玻璃原料用气体,可列举出四氯化硅(SiCl4)或硅氧烷作为一个例子。Below the
燃烧器15为气体出风口具有多个端口的多端口(多重管)结构。燃烧器15从各端口吹出燃烧用气体和玻璃原料用气体,然后在由燃烧用气体产生的火焰中,使玻璃原料发生氧化反应或水解反应而生成玻璃微粒。The
在与燃烧器15连接的气体供给路径17中设置有气体流量控制装置16。通过该气体流量控制装置16,能够控制供给至燃烧器15的各气体的流量。A gas
另外,在反应容器11的内壁面11A具备排气口114,且排气口114连通至排气管110。在反应容器11内产生的水蒸气、惰性气体、未沉积的玻璃微粒等通过排气口114而从排气管110排出到废气处理装置。In addition, an
在反应容器11的外部,朝向由燃烧器15形成的玻璃微粒沉积体18的沉积面18A而设置投光器111,且在能够接收从投光器111发出的激光115的位置处配置受光器112。通过该投光器111和受光器112,能够对玻璃微粒沉积体18的沉积面18A上的点P1的成长速度进行测定。受光器112被配置为经由线路113而连接到悬挂装置14,并且基于来自受光器112的位置数据来变动初始棒12的上升速度。
接下来,对使用该沉积体制造装置1来制造玻璃微粒沉积体18的方法进行说明。首先,在籽晶棒13的下端安装初始棒12,并将该籽晶棒13悬挂在悬挂装置14上。然后,启动悬挂装置14,以使初始棒12的玻璃微粒沉积开始点与燃烧器15的出风口之间的距离成为所希望的距离的方式使初始棒12降低。Next, a method of manufacturing the glass
另一方面,开始向燃烧器15供给燃烧用气体(O2和H2)和玻璃原料用气体(SiCl4或硅氧烷)。根据需要也可增设气体供给罐以向燃烧器15供给氮气、氩气、氦气等惰性气体或者四氯化锗(GeCl4)、POCl3等折射率控制用原料气体等。On the other hand, supply of combustion gas (O 2 and H 2 ) and glass raw material gas (SiCl 4 or siloxane) to the
使初始棒12轴旋转,并从燃烧器15朝着初始棒12射出氧氢火焰。在该氧氢火焰中,通过玻璃原料用气体的氧化反应或水解反应以生成玻璃微粒。将所生成的玻璃微粒附着在初始棒12的外周,同时以预定速度上升初始棒12,逐渐形成玻璃微粒沉积体18并使其成长。The
在使玻璃微粒沉积体18成长的过程中,通过投光器111和受光器112,随时检测玻璃微粒沉积体18的沉积面18A上的点P1,并基于该点P1的位置信息,在悬挂装置14中对初始棒12的上升速度进行控制。In the process of growing the glass
在对所述燃烧用气体或玻璃原料用气体的流量控制时,可以对氢气、氧气、玻璃原料用气体中的任意一者的气体流量进行控制,但是,其中,从易于调整燃烧器15的火焰温度考虑,优选对氢气的流量进行控制。When controlling the flow rate of the combustion gas or the gas for glass raw material, the gas flow rate of any one of hydrogen, oxygen, and glass raw material gas can be controlled, but among them, it is easy to adjust the flame of the
进一步,也可以对多个气体(从氢气、氧气和玻璃原料用气体中选择的2种或3种)的流量同时进行控制。Further, the flow rates of a plurality of gases (two or three types selected from hydrogen, oxygen, and glass raw material gases) may be simultaneously controlled.
需要说明的是,在本实施方式的光纤用母材的制造方法中,玻璃微粒沉积体制造工序并不限于如上所述的实施方式,可以进行适宜的变形、修改等。例如,在所述实施方式中,示出了使用一个燃烧器15的例子,但是燃烧器的数量不限定于一个,使用多个的情况也可以适用于本发明。In addition, in the manufacturing method of the base material for optical fibers of this embodiment, the manufacturing process of a glass fine particle deposition body is not limited to the above-mentioned embodiment, A suitable deformation|transformation, modification, etc. are possible. For example, in the above-mentioned embodiment, an example of using one
在以上的实施方式中,对于通过VAD法的玻璃微粒沉积体的制造进行了说明,但是在通过OVD法的玻璃微粒沉积体的制造的情况下,使初始棒12相对于燃烧器15进行相对的往返移动,并使所生成的玻璃微粒附着在初始棒12的外周,同时逐渐地使玻璃微粒沉积体18沿直径方向成长。In the above embodiment, the manufacture of the glass particle deposit body by the VAD method has been described, but in the case of the manufacture of the glass particle deposit body by the OVD method, the
(烧结工序)(Sintering process)
图2为在本实施方式的光纤用母材的制造方法中实施玻璃微粒沉积体的烧结工序的装置(以下也称为“烧结装置”或“烧结炉”)2的示意图。2 is a schematic diagram of an apparatus (hereinafter also referred to as "sintering apparatus" or "sintering furnace") 2 for performing a sintering step of a glass fine particle deposit in the method for manufacturing an optical fiber base material according to this embodiment.
图2所示的烧结炉2是为了对放入其内部的玻璃微粒沉积体18进行烧结使其透明化,从而制造光纤用母材28。烧结炉2在真空容器24内具备炉心管21、加热器22以及挡热板23。The
进一步,烧结炉2还具备排气用配管25、真空泵26、气体导入管27以及压力调整阀29。真空泵26经由排气用配管25而与真空容器24连接,以对真空容器24的内部进行排气。气体导入管27与炉心管21连接,以从气体供给源(图示省略)向炉心管21内部导入惰性气体等。压力调整阀29设置在排气用配管25的中途,以对真空容器24的内部压力进行调整。Furthermore, the
接下来,对使用该烧结炉2烧结玻璃微粒沉积体18以制造光纤用母材的方法进行说明。Next, a method for manufacturing an optical fiber base material by sintering the glass
本实施方式的光纤用母材制造方法中的烧结工序是,通过使用图2所示的烧结炉2对玻璃微粒沉积体18进行烧结,从而制造出光纤用母材28。所使用的玻璃微粒沉积体18是通过OVD法或VAD法等将玻璃微粒沉积在石英玻璃等的初始棒上而得到的。然后,将玻璃微粒沉积体18插入炉心管21的内部,例如将炉内气体设为He,且在该气氛下通过加热器22加热来制造光纤用母材28。需要说明的是,在制造中也可以添加氟(F)等,以在中途改变炉内气体。In the sintering step in the method for manufacturing an optical fiber base material according to this embodiment, the glass
首先,将玻璃微粒沉积体18支撑在烧结炉2的内部以使得其中心轴朝向上下方向(参照图2)。在这种状态下,将烧结炉2的内部抽真空,并使加热器22的温度上升至脱水温度从而进行脱水。由此,能够除去在玻璃微粒沉积体18的玻璃微粒间的间隙中积存的水分(H2O)、氯系气体、或氧气、氮气、空气等气体。脱水时间短的话可能会导致脱水不足。First, the glass fine
接着,将加热器22的温度上升至玻璃微粒的收缩温度(1400℃以上),并保持预定的时间。由此,使玻璃微粒沉积体18的整体收缩而得到透明的光纤用母材28。Next, the temperature of the
如上所述,通过烧结工序,将通过玻璃微粒沉积体制造工序获得的玻璃微粒沉积体18在烧结炉2内进行加热脱水和烧结从而制造出透明的光纤用母材28。As described above, in the sintering process, the
然而,光纤用母材有时候由于制造批次的不同因而尺寸(直径或长度)不同,有时候成为无法容纳在之后的用于拉丝工序的拉丝炉内的尺寸。However, the base material for an optical fiber may vary in size (diameter or length) depending on the production lot, and may be of a size that cannot be accommodated in a drawing furnace used in a subsequent drawing process.
作为该尺寸不同的主要原因之一,据推测为从所述玻璃微粒沉积体制造工序结束时到所述烧结工序时之间的时间(以下简称为“待机时间”)根据制造批次的不同而不同。As one of the main reasons for the size difference, it is presumed that the time between the end of the glass particle deposit manufacturing process and the sintering process (hereinafter simply referred to as "standby time") varies depending on the production lot. different.
例如,将所述待机时间长的情况与短的情况相比较,长的情况下,玻璃微粒沉积体的温度变得相对较低,而短的情况下该温度变得相对较高。For example, comparing the case where the waiting time is long and the case where it is short, the temperature of the glass fine particle deposit becomes relatively low when it is long, and becomes relatively high when it is short.
将所述待机时间长的和短的玻璃微粒沉积体均在相同条件下进行烧结时,与所述待机时间短的玻璃微粒沉积体相比,所述待机时间长的玻璃微粒沉积体在烧结后的光纤母材有外径变小、长度变长的倾向。所述待机时间长的由于玻璃微粒沉积体的温度相对较低,所以即使使用加热器22进行加热,中心部的温度也难以增加,初始棒12难以软化。因此,据认为,初始棒12的纵向上的收缩被抑制,因而外径变小,长度变长。When both the glass particle deposits with long standby time and short standby time are sintered under the same conditions, compared with the glass particle deposits with short standby time, the glass particle deposits with long standby time after sintering The optical fiber base material tends to have a smaller outer diameter and a longer length. The reason why the waiting time is long is that the temperature of the glass particle deposit is relatively low, so even if the
与此相对,本实施方式的光纤用母材的制造方法中,与所述待机时间的长度相对应来变更所述烧结工序的制造条件。On the other hand, in the method for manufacturing an optical fiber base material according to the present embodiment, the manufacturing conditions in the sintering step are changed according to the length of the waiting time.
作为与所述待机时间的长度相对应来变更所述烧结工序的制造条件的具体的方法,虽然没有特别限定,但是可以举出以下两个方式例作为优选的例子。A specific method of changing the manufacturing conditions of the sintering step according to the length of the waiting time is not particularly limited, but the following two embodiments can be given as preferable examples.
作为第一方式例,所述烧结工序具备在所述玻璃微粒沉积体不收缩的温度下对所述玻璃微粒沉积体进行加热的预热工序,且所述待机时间越长,则越延长所述预热工序的时间。As a first example, the sintering step includes a preheating step of heating the glass particle deposit at a temperature at which the glass particle deposit does not shrink, and the longer the waiting time, the longer the The time of the preheating process.
通过采用该方式,能够减少烧结时的纵向上的收缩程度的偏差,并降低烧结后的母材外径的变动量。By adopting this aspect, it is possible to reduce variation in the degree of shrinkage in the longitudinal direction during sintering, and reduce variation in the outer diameter of the base material after sintering.
在这种情况下,作为所述预热工序的温度,只要是所述玻璃微粒沉积体不收缩的温度,则没有特别的限定,但是优选为1200℃以下,更优选为1100℃以下,进一步优选为1000℃以下。所述预热工序的温度低的话,则能使预热时间变短,因而是优选的。但是,在所述温度过低因而待机时间短的情况下,则变得比所述玻璃微粒沉积体的温度还要低,因而不能减少烧结时的纵向上的收缩程度的偏差,且不能降低烧结后的母材外径的变动量。因此,所述预热工序的温度优选为700℃以上。In this case, the temperature in the preheating step is not particularly limited as long as it is a temperature at which the glass fine particle deposit does not shrink, but it is preferably 1200°C or lower, more preferably 1100°C or lower, even more preferably below 1000°C. If the temperature of the said preheating process is low, since the preheating time can be shortened, it is preferable. However, if the temperature is too low and the standby time is short, the temperature of the glass particle deposition body becomes lower than that of the glass particle deposit, so that the variation in the degree of shrinkage in the longitudinal direction during sintering cannot be reduced, and the degree of sintering cannot be reduced. The amount of change in the outer diameter of the base metal. Therefore, the temperature in the preheating step is preferably 700° C. or higher.
作为所述待机时间,虽然没有特别限定,但是尽可能短的待机时间在能够抑制预热工序中所需的加热的能量成本方面是优选的。The standby time is not particularly limited, but it is preferable to keep the standby time as short as possible in order to suppress the energy cost of heating required in the preheating step.
另外,在所述待机时间为3小时以下的情况下,所述预热工序优选为1小时以下。Moreover, when the said standby time is 3 hours or less, it is preferable that the said preheating process is 1 hour or less.
根据上述优选条件,能够有效地制造出烧结时的纵向上的收缩程度的偏差减小、且烧结后的母材外径的变动量降低了的光纤用母材。According to the above preferable conditions, it is possible to efficiently manufacture a base material for an optical fiber in which the variation in shrinkage degree in the longitudinal direction during sintering is reduced, and the variation in the outer diameter of the base material after sintering is reduced.
作为第二方式例,所述烧结工序具备对所述玻璃微粒沉积体进行逐渐升温加热到使所述玻璃微粒沉积体发生透明玻璃化的温度为止的升温工序,且所述待机时间越长,则越减小所述升温工序的升温速度。As a second example, the sintering step includes a heating step of gradually raising the temperature of the glass particle deposit to a temperature at which the glass particle deposit undergoes transparent vitrification, and the longer the waiting time, the The temperature increase rate in the temperature increase step is reduced more.
通过采用该方式,能够无损伤地制造出烧结时的纵向上的收缩程度的偏差减少、且烧结后的母材外径的变动量降低了的光纤用母材。By employing this method, it is possible to manufacture a preform for an optical fiber in which variation in shrinkage degree in the longitudinal direction during sintering is reduced and variation in the outer diameter of the preform after sintering is reduced without damage.
在对所述待机时间长、且温度低的玻璃微粒沉积体进行急剧加热的情况下,会在一个沉积体内部分地产生高温部和低温部,从而在其影响下有时候会产生裂纹。In the case of rapid heating of the low-temperature glass particle deposition body that has been left for a long time, a high-temperature portion and a low-temperature portion are partially generated in one deposition body, and cracks may sometimes be generated under the influence of the deposition body.
作为所述升温速度,依据制造方法的各种条件来进行设定,虽然没有特别的限定,但是具体地优选为1℃/分钟以上10℃/分钟以下。The temperature increase rate is set according to various conditions of the production method, and is not particularly limited, but specifically, it is preferably 1° C./minute or more and 10° C./minute or less.
根据上述优选条件,能够在无损伤的情况下更可靠地制造出烧结时的纵向上的收缩程度的偏差减少、且烧结后的母材外径的变动量降低了的光纤用母材。According to the above preferable conditions, it is possible to more reliably manufacture a base material for an optical fiber with less variation in shrinkage in the longitudinal direction during sintering and less variation in the outer diameter of the base material after sintering without damage.
对于通过本实施方式的方法得到的光纤用母材,即使所述待机时间有差异,也难以因制造批次而使尺寸产生偏差。因此,即使在用于从该光纤用母材来制造光纤的后续的拉丝工序中,其尺寸也能够容纳在拉丝炉内,因而没必要对光纤用母材进行再度烧结工序,或者切断端部等繁杂的处理。In the preform for an optical fiber obtained by the method of the present embodiment, even if there is a difference in the above-mentioned standby time, it is difficult to cause dimensional variation depending on the production lot. Therefore, even in the subsequent drawing process for producing an optical fiber from this optical fiber base material, the size can be accommodated in the drawing furnace, so it is not necessary to re-sinter the optical fiber base material, or cut off the end, etc. Complicated processing.
另外,根据本实施方式,如果缩短所述待机时间,则能够缩短预热时间,因而能够缩短所述烧结工序的所需时间,从而能够提高生产性。In addition, according to the present embodiment, shortening the waiting time can shorten the preheating time, and thus the time required for the sintering process can be shortened, thereby improving productivity.
通过本实施方式的方法得到的光纤用母材可用于公知或周知的拉丝工序来制造光纤。The optical fiber base material obtained by the method of this embodiment can be used in a known or well-known drawing process to produce an optical fiber.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018241008A JP7205216B2 (en) | 2018-12-25 | 2018-12-25 | Manufacturing method of preform for optical fiber |
JP2018-241008 | 2018-12-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111377605A CN111377605A (en) | 2020-07-07 |
CN111377605B true CN111377605B (en) | 2023-04-28 |
Family
ID=71140990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911346999.4A Active CN111377605B (en) | 2018-12-25 | 2019-12-24 | Method for manufacturing base material for optical fiber |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7205216B2 (en) |
CN (1) | CN111377605B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1135335A (en) * | 1997-07-17 | 1999-02-09 | Sumitomo Electric Ind Ltd | Manufacturing method of optical fiber preform |
CN1784360A (en) * | 2003-06-17 | 2006-06-07 | 信越化学工业株式会社 | Optical fiber base material and method for production thereof |
CN102432170A (en) * | 2010-09-01 | 2012-05-02 | 住友电气工业株式会社 | Optical fiber drawing method and drawing apparatus |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5711842A (en) * | 1980-06-26 | 1982-01-21 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of base material for optical fiber and preparing apparatus |
EP0257587B1 (en) * | 1986-08-29 | 1990-10-31 | AT&T Corp. | Methods of soot overcladding an optical preform |
JPS63206327A (en) * | 1987-02-20 | 1988-08-25 | Sumitomo Electric Ind Ltd | Method and device for making porous optical fiber base material transparent |
JPH02157135A (en) * | 1988-12-09 | 1990-06-15 | Fujikura Ltd | Production of optical fiber |
JP2917729B2 (en) * | 1993-03-03 | 1999-07-12 | 住友電気工業株式会社 | Manufacturing method of optical fiber preform |
US5656057A (en) * | 1995-05-19 | 1997-08-12 | Corning Incorporated | Method for drying and sintering an optical fiber preform |
JP2000219532A (en) * | 1998-11-26 | 2000-08-08 | Furukawa Electric Co Ltd:The | Heat treatment of porous optical fiber preform |
JP2003286035A (en) * | 2002-03-28 | 2003-10-07 | Sumitomo Electric Ind Ltd | Manufacturing method of glass base material |
JP2005263557A (en) * | 2004-03-18 | 2005-09-29 | Shin Etsu Chem Co Ltd | Method and apparatus for sintering porous glass preform |
JP2006131453A (en) * | 2004-11-05 | 2006-05-25 | Furukawa Electric Co Ltd:The | Method for manufacturing glass preform |
JP4712359B2 (en) * | 2004-11-29 | 2011-06-29 | 古河電気工業株式会社 | Optical fiber manufacturing method |
EP1700832A1 (en) * | 2005-03-09 | 2006-09-13 | Degussa AG | A method of producing glass of optical quality |
JP2006335622A (en) * | 2005-06-06 | 2006-12-14 | Sumitomo Electric Ind Ltd | Manufacturing method of glass base material |
CN101305305A (en) * | 2005-11-08 | 2008-11-12 | 康宁股份有限公司 | Microstructured optical fiber and its manufacturing method |
JP2009007227A (en) * | 2007-06-29 | 2009-01-15 | Sumitomo Electric Ind Ltd | Method for producing transparent glass body |
JP6248517B2 (en) * | 2013-10-01 | 2017-12-20 | 住友電気工業株式会社 | Optical fiber preform manufacturing method, optical fiber preform, optical fiber, and multimode optical fiber |
-
2018
- 2018-12-25 JP JP2018241008A patent/JP7205216B2/en active Active
-
2019
- 2019-12-24 CN CN201911346999.4A patent/CN111377605B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1135335A (en) * | 1997-07-17 | 1999-02-09 | Sumitomo Electric Ind Ltd | Manufacturing method of optical fiber preform |
CN1784360A (en) * | 2003-06-17 | 2006-06-07 | 信越化学工业株式会社 | Optical fiber base material and method for production thereof |
CN102432170A (en) * | 2010-09-01 | 2012-05-02 | 住友电气工业株式会社 | Optical fiber drawing method and drawing apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN111377605A (en) | 2020-07-07 |
JP2020100537A (en) | 2020-07-02 |
JP7205216B2 (en) | 2023-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100371275C (en) | Method and apparatus for fabricating an optical fiber preform in ovd process | |
JP2001512414A (en) | Method of manufacturing tubular member for manufacturing optical fiber using plasma outer deposition | |
JP6864641B2 (en) | Sintering method of porous glass base material for optical fiber | |
EP2551248A2 (en) | Methods for manufacturing low water peak optical waveguide | |
US6827883B2 (en) | Optical fiber preform and the method of producing the same | |
CN111615499B (en) | Method for manufacturing optical fiber preform, method for manufacturing optical fiber, and optical fiber | |
JP5163416B2 (en) | Method for producing porous glass base material | |
CN111377605B (en) | Method for manufacturing base material for optical fiber | |
CN102741184B (en) | Manufacture the method for gas preform | |
WO2007054961A2 (en) | Optical fiber preform having large size soot porous body and its method of preparation | |
JP2003261336A (en) | Method for manufacturing transparent glass base material | |
US20080053155A1 (en) | Optical fiber preform having large size soot porous body and its method of preparation | |
JP5533205B2 (en) | Glass base material manufacturing method | |
JP6248517B2 (en) | Optical fiber preform manufacturing method, optical fiber preform, optical fiber, and multimode optical fiber | |
JP5678467B2 (en) | Glass base material manufacturing method | |
JP2015071517A (en) | Manufacturing method for glass base material for optical fiber | |
JP7332559B2 (en) | Manufacturing method of glass base material for optical fiber | |
JP2018177611A (en) | Method for manufacturing optical fiber porous preform, optical fiber porous preform and method for manufacturing optical fiber | |
JP4252871B2 (en) | Optical fiber preform manufacturing method | |
JP2018131338A (en) | Manufacturing method and manufacturing apparatus of optical fiber porous base material | |
JP7024489B2 (en) | Manufacturing method of base material for optical fiber | |
JP4404214B2 (en) | Manufacturing method of glass preform for optical fiber | |
JP3998228B2 (en) | Optical fiber porous base material, optical fiber glass base material, and manufacturing methods thereof | |
JP2938604B2 (en) | Method of manufacturing preform for single mode optical fiber | |
JP2022148438A (en) | Optical fiber preform manufacturing method and optical fiber preform manufacturing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |