CN111372343A - Distributed microwave phase control method - Google Patents
Distributed microwave phase control method Download PDFInfo
- Publication number
- CN111372343A CN111372343A CN201811598549.XA CN201811598549A CN111372343A CN 111372343 A CN111372343 A CN 111372343A CN 201811598549 A CN201811598549 A CN 201811598549A CN 111372343 A CN111372343 A CN 111372343A
- Authority
- CN
- China
- Prior art keywords
- electric field
- phase
- field distribution
- chamber
- input ports
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/66—Circuits
- H05B6/68—Circuits for monitoring or control
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
Abstract
Description
技术领域technical field
本发明涉及微波控制技术,尤其是涉及一种分布式微波相位控制方法。The invention relates to microwave control technology, in particular to a distributed microwave phase control method.
背景技术Background technique
传统微波加热技术是利用磁控管产生微波来对被加热物进行加热,然而此种加热方式的微波的电场强弱分布容易不均匀,使被加热物位于弱电场区的部分会因吸收强度较弱的电场而产生无显著加热的低受热区,而被加热物位于强电场区的部分会因吸收强度较强的电场而产生显著加热的高受热区,因此造成被加热物经过微波加热后形成加热不均匀的状况。The traditional microwave heating technology uses the magnetron to generate microwaves to heat the object to be heated. However, the electric field intensity distribution of the microwave in this heating method is easily uneven, so that the part of the object to be heated located in the weak electric field area will be affected by the higher absorption intensity. The weak electric field produces a low heating area without significant heating, and the part of the object to be heated in the strong electric field area will generate a high heating area with significant heating due to the absorption of the strong electric field, thus causing the heated object to be heated by microwaves. Uneven heating condition.
此外,为提高该被加热物于该低受热区的温度,一般可通过机械式转盘或微波搅拌器来改变该电场强弱分布,但其效果仍然有限。In addition, in order to increase the temperature of the object to be heated in the low heat-receiving area, the distribution of the electric field intensity can generally be changed by a mechanical turntable or a microwave stirrer, but the effect is still limited.
因此,如何有效进行区域性加热或者整体性的均匀加热,实为目前业界所亟待解决的课题之一。Therefore, how to effectively perform regional heating or overall uniform heating is one of the urgent issues to be solved in the current industry.
发明内容SUMMARY OF THE INVENTION
本发明提供一种分布式微波相位控制方法,可有效进行区域性加热或者整体性的均匀加热。The invention provides a distributed microwave phase control method, which can effectively perform regional heating or overall uniform heating.
本发明的分布式微波相位控制方法包括:提供内部具有一腔室的壳体,且于壳体上形成有多个连通腔室的输入端口;令多个相控功率模块通过各输入端口将微波输入至腔室中,以使腔室中的微波呈现第一电场分布;以及令各相控功率模块调整各输入端口输入至腔室的微波的相位,使得腔室中的微波因相位的变化产生与第一电场分布呈现互补的第二电场分布。The distributed microwave phase control method of the present invention includes: providing a casing with a chamber inside, and forming a plurality of input ports communicating with the chambers on the casing; allowing a plurality of phase-controlled power modules to transmit microwaves through each input port input into the cavity, so that the microwave in the cavity presents a first electric field distribution; and make each phase control power module adjust the phase of the microwave input into the cavity through each input port, so that the microwave in the cavity is generated due to the change of the phase The second electric field distribution is complementary to the first electric field distribution.
由上述可得知,本发明利用在壳体上形成分布式的输入端口阵列,再通过相控功率模块提供不同相位的微波给输入端口输入至腔室,可主动(有源)式的控制腔室内的微波于不同阶段的电场强弱分布的转换,并使得腔室内的微波于不同阶段的电场彼此呈现互补式电场分布,使腔室内的被加热物从不同阶段的互补式的电场分布中得到更加均匀的受热,进而改善传统加热器加热不均匀的现象。As can be seen from the above, the present invention utilizes a distributed input port array formed on the casing, and then provides microwaves of different phases to the input port through the phase-controlled power module for input to the chamber, and can actively (actively) control the chamber. The conversion of the electric field strength distribution of the microwaves in the chamber in different stages makes the electric fields of the microwaves in the chamber in different stages present complementary electric field distributions to each other, so that the heated object in the chamber can be obtained from the complementary electric field distributions in different stages. More uniform heating, thereby improving the uneven heating of traditional heaters.
附图说明Description of drawings
图1为应用本发明的分布式微波相位控制方法的系统示意图;Fig. 1 is the system schematic diagram of applying the distributed microwave phase control method of the present invention;
图2为本发明的分布式微波相位控制方法的示意流程图;Fig. 2 is the schematic flow chart of the distributed microwave phase control method of the present invention;
图3为本发明的输入端口于矩形的壳体上的第一实施例的透视图;3 is a perspective view of the first embodiment of the input port of the present invention on a rectangular housing;
图4为本发明图3的腔室的电场分布图;Fig. 4 is the electric field distribution diagram of the chamber of Fig. 3 of the present invention;
图5为本发明图4的腔室大小为2λ*2λ*1λ时的输入端口port1与输入端口port2之间的电场曲线图;5 is a graph of the electric field between the input port port1 and the input port port2 when the chamber size of FIG. 4 is 2λ*2λ*1λ of the present invention;
图6为本发明的相位匹配波的示意图;Fig. 6 is the schematic diagram of the phase matching wave of the present invention;
图7为本发明图4的相位匹配波于循环中的电场分布图;Fig. 7 is the electric field distribution diagram of the phase matching wave of Fig. 4 of the present invention in circulation;
图8为本发明图3所示的腔室中放置一圆心薄片的被加热物的示意图;Fig. 8 is the schematic diagram of the object to be heated with a central sheet placed in the chamber shown in Fig. 3 of the present invention;
图9为本发明图8的被加热物的温度分布图;Fig. 9 is the temperature distribution diagram of the object to be heated in Fig. 8 of the present invention;
图10为本发明的输入端口于矩形的壳体上的第二实施例的透视图;10 is a perspective view of a second embodiment of the input port of the present invention on a rectangular housing;
图11为本发明图10的被加热物的温度分布图;FIG. 11 is a temperature distribution diagram of the object to be heated in FIG. 10 of the present invention;
图12为本发明的输入端口于矩形的壳体上的第三实施例的透视图;12 is a perspective view of a third embodiment of the input port of the present invention on a rectangular housing;
图13为本发明图12的腔室的剖视电场分布图;以及13 is a cross-sectional electric field distribution diagram of the chamber of FIG. 12 of the present invention; and
图14为本发明的圆柱形的壳体的示意图。Figure 14 is a schematic view of the cylindrical housing of the present invention.
符号说明Symbol Description
1 壳体1 shell
2 相控功率模块2-Phase Power Modules
3 串行外设接口3 Serial peripheral interface
4 微处理器4 Microprocessor
5 腔室5 chambers
6 被加热物6 heated object
7 载台7 stage
8 电场分布8 Electric field distribution
51 第一电场曲线51 The first electric field curve
52 第二电场曲线52 Second electric field curve
61 驻波61 Standing wave
62 相位匹配波62 Phase-matched waves
A 节点A node
B 波峰B crest
C 波谷C trough
Port 输入端口Port input port
S1~S4 步骤。Steps S1 to S4.
具体实施方式Detailed ways
以下借由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。The embodiments of the present invention are described below by means of specific embodiments, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification.
需知,本说明书所附的附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士的了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如「第一」、「第二」及「第三」等用语,也仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当视为本发明可实施的范畴。It should be noted that the structures, proportions, sizes, etc. shown in the accompanying drawings of this specification are only used to cooperate with the contents disclosed in the specification for the understanding and reading of those who are familiar with the technology, and are not intended to limit the present invention. The limited conditions that can be implemented have no technical significance. Any modification of the structure, change of the proportional relationship or adjustment of the size should still fall within the scope of the present invention without affecting the effect and the purpose that the present invention can achieve. It is within the scope that the technical content disclosed in the present invention can cover. At the same time, terms such as "first", "second" and "third" quoted in this specification are only for the convenience of description and clarity, and are not used to limit the scope of implementation of the present invention. Changes or adjustments, without substantial changes to the technical content, should be regarded as the scope of the present invention.
请参阅图1,其为应用本发明的分布式微波相位控制方法的系统示意图,该系统包括:壳体1,内部具有一腔室5;多个输入端口(port),其位于壳体1上且连通该腔室;多个相控功率模块2,其连接各该输入端口,以提供微波至各该输入端口,使各该输入端口将该微波输入至腔室5中;串行外设接口3,其与各该相控功率模块2连接;以及微处理器4,其与串行外设接口3连接,并通过串行外设接口3控制各个相控功率模块2所输出的微波的功率及相位。Please refer to FIG. 1 , which is a schematic diagram of a system applying the distributed microwave phase control method of the present invention. The system includes: a
请参阅图2,其为本发明的分布式微波相位控制方法的示意流程图,包括:在步骤S1中,提供内部具有一腔室5的壳体1;在步骤S2中,在壳体1上形成多个连通该腔室5的输入端口;在步骤S3中,令多个相控功率模块2提供微波至各该输入端口,以由该输入端口将该微波输入至该腔室5中,进而使该腔室5中的微波呈现第一电场分布;以及在步骤S4中,令各该相控功率模块2调整各该输入端口输入至该腔室的微波的相位,使得该腔室中的微波因相位的变化产生与该第一电场分布呈现互补的第二电场分布。Please refer to FIG. 2 , which is a schematic flow chart of the distributed microwave phase control method of the present invention, including: in step S1 , a
在一实施例中,壳体1为矩形、圆柱形或多边形,但不以此为限。In one embodiment, the
请参阅图3,其为在矩形的壳体1上设有多个输入端口(port)的第一摆设实施例的透视图,其中,在壳体1设有上下左右彼此对称的环形阵列的输入端口port1至port4。Please refer to FIG. 3 , which is a perspective view of a first arrangement embodiment in which a plurality of input ports are provided on a
在一实施例中,壳体1的腔室5的设计尺寸为:腔室5的Z轴长度为整数倍λ(微波波长),而腔室5的X及Y轴的长度为整数倍λ或该整数倍λ再加上0.5λ,但不以此为限。In one embodiment, the design size of the
请参阅图4,其为本发明于图3的壳体1执行分布式微波相位控制方法中的步骤S3与步骤S4的电场分布图,其中,1[1,0]是指port1[峰值功率大小为1瓦,微波的相位为0度],其他依此类推,另该壳体1的腔室5的尺寸依照该腔室5大小的设计的规则可分四种,第一种为1.5λ*1.5λ*1λ的倍数,第二种为2λ*2λ*1λ的倍数,第三种为2.5λ*2.5λ*1λ的倍数,第四种为3λ*3λ*1λ的倍数。Please refer to FIG. 4 , which is an electric field distribution diagram of step S3 and step S4 in the distributed microwave phase control method performed by the
由图4可知电场分布图依不同灰度色区分不同的电场强度,其中,灰度色由浅至深代表电场强度由低至高,而第一电场分布与第二电场分布互补是指第二电场分布图与第一电场分布图叠在一起时,第一电场分布图中(例如中间区域)的弱电场区重叠于第二电场分布图中(例如中间区域)的强电场区,或是第二电场分布图中(例如中间区域)的弱电场区重叠于第一电场分布图中(例如中间区域)的强电场区。It can be seen from Fig. 4 that the electric field distribution diagram distinguishes different electric field intensities according to different grayscale colors. The grayscale color from light to dark represents the electric field intensity from low to high, and the first electric field distribution and the second electric field distribution are complementary to the second electric field distribution. When the map and the first electric field distribution map are stacked together, the weak electric field region in the first electric field distribution map (for example, the middle region) overlaps the strong electric field region in the second electric field distribution map (for example, the middle region), or the second electric field The weak electric field region in the distribution map (eg, the middle region) overlaps the strong electric field region in the first electric field distribution map (eg, the middle region).
所述步骤S3令各相控功率模块2提供同相位的微波至各输入端口port1至port4,使各输入端口port1至port4将同相位的微波输入至腔室5中,进而使腔室5中的微波呈现第一电场分布,其中,第一电场分布呈驻波形式。In the step S3, each phase-controlled
在一实施例中,所述步骤S4令各相控功率模块2将相对称的输入端口所输入至腔室的微波调整成互为相反相位(如相对称的port1及port3输入互为0或180度的相反相位的微波),使得腔室中的微波因相位的变化产生与第一电场分布呈现互补的第二电场分布,其中,第二电场分布为驻波形式。In one embodiment, the step S4 enables each phase-controlled
在一实施例中,所述步骤S4令各相控功率模块2将相邻的输入端口所输入至腔室的微波调整成互为相反相位(如相邻的port1及port2输入互为0或180度的相反相位的微波),使得腔室中的微波因相位的变化产生与第一电场分布呈现互补的第二电场分布,其中,第二电场分布为驻波形式。In one embodiment, the step S4 enables each phase-controlled
在一实施例中,所述步骤S4令各相控功率模块2将沿壳体1的各方位角度的方向上的各输入端口(如port1至port4)的微波,依序调整为具有一相位差,使得腔室中的微波因相位的变化产生相位匹配波形式的第二电场分布。In one embodiment, the step S4 enables each phase-controlled
请参考图5,其为图4的腔室5大小为2λ*2λ*1λ时的输入端口port1与输入端口port2之间的电场曲线图。Please refer to FIG. 5 , which is a graph of the electric field between the input port port1 and the input port port2 when the size of the
第一电场曲线51代表输入端口port1至port4的微波的相位为同相位时,位于输入端口port1与输入端口port2之间的驻波形式的电场曲线,第二电场曲线52代表输入端口port1至port4的相邻输入端口为相反相位时,位于输入端口port1与输入端口port2之间的驻波形式的电场曲线,其中,电场曲线的节点A代表弱电场区,位于强电场区中的波峰B或波谷C为强电场区中的较高电场值,相对的,强电场区越接近节点A的电场值越小。The first
由图5可知第一电场曲线51的节点A的位置在第二电场曲线52时是位于强电场区,而第二电场曲线52的节点A的位置在第一电场曲线51时是位于强电场区,换言之,电场曲线的互补的定义即为第一电场曲线51与第二电场曲线52彼此重叠时,第一电场曲线51的节点A的位置位于第二电场曲线52的强电场区,或是第二电场曲线52的节点A的位置位于第一电场曲线51的强电场区。需理解的是,由于驻波为原地震荡,故驻波的节点位置不会随时间改变,其次,由于输入端口port为微波馈入处,因此,驻波形式的第一电场曲线51与第二电场曲线52位于输入端口port1及输入端口port2边界为最高电场值的波峰B或波谷C。此外,由图5可见,第一电场曲线51及第二电场曲线52在输入端口port1及输入端口port2之间的中间区域呈现大致上互补的分布。It can be seen from FIG. 5 that the position of the node A of the first
请参考图6,其为本发明的相位匹配波的示意图,图6中的壳体1为图3的壳体1的平面图,假设输入端口port1所提供的微波的相位为0度、输入端口port2所提供的微波的相位为90度、输入端口port3所提供的微波的相位为180度、输入端口port4所提供的微波的相位为270度,细箭头所示的驻波61形式的微波会由相位低的输入端口往相位高的输入端口传输,且输入端口port1至port4以环形阵列设置在壳体1上,因此,如细箭头所标示的驻波61形式的微波会从输入端口port1至输入端口port4产生循环,形成粗箭头所示的相位匹配波62,由于相位匹配波62会在循环的路径进行移动,因此,相位匹配波62的节点位置会随时间改变。Please refer to FIG. 6 , which is a schematic diagram of a phase-matched wave of the present invention. The
请参阅图7,其为本发明图4的相位匹配波于图3的腔室5中循环的第二电场分布图,图7中的相位匹配波的四个实施例为每隔45度呈现相位匹配波在腔室5中的循环,其中,相位匹配波在第一实施例时,相位匹配波位于输入端口port1至port4的相位分别为0、90、180及270度,相位匹配波在第二实施例时,相位匹配波位于输入端口port1至port4的相位分别为45、135、225及315度,相位匹配波在第三实施例时,相位匹配波位于输入端口port1至port4的相位分别为90、180、270及0度,相位匹配波在第四实施例时,相位匹配波位于输入端口port1至port4的相位分别为135、225、315及45度。Please refer to FIG. 7 , which is a second electric field distribution diagram of the phase-matched wave of FIG. 4 circulating in the
从图7可知相位匹配波在腔室5中循环的四个实施例的第二电场分布图与图4的第一电场分布图产生的能量大致上呈现互补。It can be seen from FIG. 7 that the second electric field profiles of the four embodiments in which the phase-matched waves circulate in the
在一实施例中,相位匹配波若欲在腔室5内有更均匀的分布,也就是说其电场分布具有最佳几何对称的特性,其输入端口的微波的相位差的设计方式为:沿腔室方位角度方向一圈有N个输入端口,若相邻输入端口之间相位差相同,则相位差约为(360/N)度或其倍数,若相位差不同,则输入端口两两相位差相加的角度和约为360度或其倍数。In one embodiment, if the phase-matched wave wants to have a more uniform distribution in the
以在图3的腔室5中设计更均匀分布的相位匹配波为例,由于图3的沿腔室5方位角度方向一圈有4个输入端口,每个输入端口之间的相位差的较佳设计为360度/4=90度,4个输入端口的微波的相位分别为0、90、180及270度,由此可知,形成图4的该相位匹配波的输入端口port1至port4之间的相位差即为较佳的设计。Taking the design of more evenly distributed phase-matching waves in the
在一实施例中,相位匹配波不限于由图3所示的上下左右彼此对称的环形阵列的输入端口port1至port4所提供,也可由非对称的环形阵列的输入端口所提供,例如于图3所示的壳体1上形成沿腔室5绕一圈有6个非对称的环形阵列的输入端口,其每个输入端口之间的相位差的较佳设计为360度/6=60度,6个输入端口的微波的相位分别为0、60、120、180、240及300度。In one embodiment, the phase-matched waves are not limited to be provided by the input ports port1 to port4 of the annular array shown in FIG. The
请参阅图8,其于图3所示的腔室5中放置一圆形薄片的被加热物6。Please refer to FIG. 8 , a circular sheet of
请同时配合参阅图9,其为本发明于图8的被加热物6进行三种加热方式的温度分布图,其中,圆形粗线代表被加热物6,且该温度分布图依不同灰度色区分不同的温度,其中,该灰度色由浅至深代表温度由低至高。Please also refer to FIG. 9 , which is a temperature distribution diagram of the object to be heated 6 in three heating modes of the present invention in FIG. 8 , wherein the thick circular line represents the object to be heated 6 , and the temperature distribution diagram is in accordance with different grayscales The color distinguishes different temperatures, where the gray color from light to dark represents the temperature from low to high.
第一种加热方式:进行步骤S3,令各相控功率模块2将各输入端口port1至port4输入至腔室5中的微波调整为同相位且功率100W,并持续300秒输入至腔室5对被加热物6进行加热。由图9中可知被加热物6被第一种加热方式持续300秒加热后的温度分布高低相差74.4度。The first heating method: go to step S3, so that each phase-controlled
第二种加热方式:进行步骤S4,令各相控功率模块2将各输入端口port1至port4输入至腔室5中的微波调整为相位匹配波且功率100W,并持续300秒输入至腔室5对被加热物6进行加热。由图9中可知被加热物6被第二种加热方式持续300秒加热后的温度分布高低相差47.4度。The second heating method: go to step S4, make each phase-controlled
第三种加热方式:进行第一种加热方式持续150秒及第二种加热方式持续150秒,由图9中可知采用第一种加热方式及第二种加热方式的配合应用对被加热物6加热后的温度分布高低相差只34.4度,由此可知,步骤S3及步骤S4的配合应用可改善单独进行步骤S3或步骤S4后的被加热物6的温度分布差异甚大的问题,换言之,在固定的加热时间内采用步骤S3及步骤S4的配合应用可大大降低被加热物6的温差。The third heating method: carry out the first heating method for 150 seconds and the second heating method for 150 seconds. It can be seen from FIG. 9 that the combination of the first heating method and the second heating method is used to heat the
请参阅图10,其为在矩形的壳体1上设有多个输入端口的第二实施例的透视图,其中,在矩形壳体1的六个面上形成彼此对称的三维阵列的输入端口port1至port6,且于腔室5中放置一球形的被加热物6。Please refer to FIG. 10 , which is a perspective view of a second embodiment in which a plurality of input ports are provided on a
请同时配合参阅图11,其为本发明于图10的被加热物6进行三组方式加热的温度分布图,其中,圆形粗线代表被加热物6,且该温度分布图依不同灰度色区分不同的温度,其中,灰度色由浅至深代表温度由低至高。Please also refer to FIG. 11 , which is a temperature distribution diagram of the object to be heated 6 in FIG. 10 in three groups of heating according to the present invention, wherein the thick circle represents the object to be heated 6 , and the temperature distribution diagram is in accordance with different grayscales The color distinguishes different temperatures, where the gray color from light to dark represents the temperature from low to high.
第一组加热方式:进行步骤S3,其中,令各相控功率模块2对各输入端口port1至port6输入至腔室5中的微波调整为同相位且功率100W,并持续300秒输入至腔室5对被加热物6进行加热。由图11中可知被加热物6被第一组加热方式持续加热300秒后的温度分布高低相差46.4度。The first group of heating methods: go to step S3, wherein, each phase-controlled
第二组加热方式:进行步骤S4,其中,先将输入端口中的至少一组对称的输入端口port5及port6接至匹配端(在一实施例中,匹配端可为阻抗,但不以此为限),以令至少一组对称的输入端口port5及port6不提供微波输入至腔室5,接着令各相控功率模块2将相邻的输入端口port1至port4输入至腔室的微波调整为彼此互为相反相位且功率100W,并持续300秒输入至腔室5对被加热物6进行加热。由图11中可知被加热物6被第二组加热方式持续加热300秒后的温度分布高低相差25.3度。The second group of heating methods: go to step S4, wherein at least one set of symmetrical input ports port5 and port6 in the input ports are first connected to the matching terminal (in one embodiment, the matching terminal may be an impedance, but it is not limit), so that at least one set of symmetrical input ports port5 and port6 do not provide microwave input to the
第三组加热方式:进行第一组加热方式持续100秒及第二组加热方式持续200秒,由图11可知采用第一组加热方式及第二组加热方式的配合应用对被加热物6加热后的温度分布高低相差仅17.2度,由此可知,步骤S3及步骤S4的配合应用可改善单独进行步骤S3或步骤S4后的被加热物6的温度分布差异甚大的问题,换言之,在固定的加热时间内采用步骤S3及步骤S4的配合应用可大大降低被加热物6的温差。The third group of heating methods: the first group of heating methods lasts for 100 seconds and the second group of heating methods lasts for 200 seconds. It can be seen from Figure 11 that the combination of the first group of heating methods and the second group of heating methods is used to heat the object to be heated 6 The difference in the temperature distribution after step S3 is only 17.2 degrees. It can be seen that the coordinated application of step S3 and step S4 can improve the problem that the temperature distribution of the
请参阅图12,其为在矩形的壳体1上设有多个输入端口(port)的第三实施例的透视图,其中,在壳体1上形成左右彼此对称的线阵列的输入端口port1至port2,且于腔室5的中心底部附有一载台7及于载台7上的被加热物6。Please refer to FIG. 12 , which is a perspective view of a third embodiment in which a plurality of input ports (ports) are provided on a
请同时配合参阅图13,其为本发明的图12的输入端口port1至port2在调整微波的相位后,腔室的剖视电场分布图,图13所示的电场分布图依不同灰度色区分不同的电场强度,该灰度色由浅至深代表电场强度由低至高,而虚线圆圈代表位于被加热物6表面的强电场区,由图13可知位于被加热物6表面的强电场区的位置会随着输入端口port1至port2的微波的相位的调整而产生位移,因此,通过微波相位于不同阶段的调整,可使得腔室5内的微波于不同阶段的电场产生彼此呈现互补式电场分布,以使被加热物6从该不同阶段的互补式电场分布中得到更加均匀的受热,换言之,本发明的分布式微波相位控制方法也可于步骤S3中改变各输入端口的微波的相位,只要步骤S4的腔室5的电场分布图与步骤S3的腔室5的电场分布图呈现互补形式即为本发明的精神所在,再者,本发明的分布式微波相位控制方法所适用的多个输入端口于壳体1上的摆设方式也不限于上述几种,例如多个输入端口于壳体1上的摆设方式也可为非对称式的三维阵列或环形阵列,但不以此为限。Please also refer to FIG. 13 , which is a cross-sectional electric field distribution diagram of the chamber of the input ports port1 to port2 in FIG. 12 after adjusting the phase of the microwave of the present invention. The electric field distribution diagram shown in FIG. 13 is distinguished by different grayscale colors. Different electric field intensities, the gray color from light to dark represents the electric field intensity from low to high, and the dotted circle represents the strong electric field area located on the surface of the object to be heated 6, from FIG. The displacement will be generated with the adjustment of the phases of the microwaves input to ports port1 to port2. Therefore, by adjusting the phases of the microwaves at different stages, the electric fields of the microwaves in the
请参阅图14,其为本发明应用于圆柱形的壳体1的示意图,其中,圆柱形的壳体1上可分层设置多个输入端口的阵列,△Φ1至△Φ4表示为单层的各输入端口所提供的微波的相位,△θ1与△θ2代表各层之间的微波的相位差,而由输入端口提供的微波所产生的电场分布8中,S所指的圈代表强电场区而W所指的圈代表弱电场区,通过本发明的分布式微波相位控制方法即可对该强电场区与该弱电场区的分布进行切换,进而使该电场分布中的被加热物能够更加均匀受热。Please refer to FIG. 14, which is a schematic diagram of the present invention applied to a
由上述可得知,本发明利用在壳体上形成分布式的输入端口阵列,再通过相控功率模块提供不同相位的微波由输入端口输入腔室,可主动式的控制腔室内的微波于不同阶段的电场强弱分布的转换,并使得腔室内的微波于不同阶段的电场彼此呈现互补式电场分布,以使腔室内的被加热物从不同阶段的互补式电场分布中得到更加均匀的受热,进而改善传统加热器加热不均匀的现象。As can be seen from the above, the present invention utilizes a distributed input port array formed on the casing, and then provides microwaves of different phases through the phase control power module and is input into the chamber through the input port, so that the microwave in the chamber can be actively controlled to be different in different phases. The transformation of the electric field intensity distribution in different stages makes the microwave in the chamber present complementary electric field distributions in different stages of the electric field, so that the heated object in the chamber can be heated more uniformly from the complementary electric field distribution in different stages. In turn, the phenomenon of uneven heating of traditional heaters is improved.
上述实施例仅用以例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟习此项技术的人士均可在不违背本发明的精神及范畴下,对上述实施例进行修改。因此本发明的保护范围,应如权利要求书所列。The above embodiments are only used to illustrate the principles and effects of the present invention, but not to limit the present invention. Anyone skilled in the art can make modifications to the above embodiments without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be listed in the claims.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811598549.XA CN111372343A (en) | 2018-12-26 | 2018-12-26 | Distributed microwave phase control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811598549.XA CN111372343A (en) | 2018-12-26 | 2018-12-26 | Distributed microwave phase control method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111372343A true CN111372343A (en) | 2020-07-03 |
Family
ID=71209837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811598549.XA Pending CN111372343A (en) | 2018-12-26 | 2018-12-26 | Distributed microwave phase control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111372343A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56132793U (en) * | 1980-03-10 | 1981-10-08 | ||
JPH11176570A (en) * | 1997-12-02 | 1999-07-02 | Samsung Electron Co Ltd | Microwave oven |
JP2008269794A (en) * | 2007-04-16 | 2008-11-06 | Matsushita Electric Ind Co Ltd | Microwave processor |
US20120090782A1 (en) * | 2010-10-19 | 2012-04-19 | Tokyo Electron Limited | Microwave plasma source and plasma processing apparatus |
CN102511198A (en) * | 2009-12-09 | 2012-06-20 | 松下电器产业株式会社 | High frequency heating device, and high frequency heating method |
CN104272866A (en) * | 2012-03-09 | 2015-01-07 | 松下电器产业株式会社 | microwave heating device |
CN106686792A (en) * | 2015-11-05 | 2017-05-17 | 财团法人工业技术研究院 | Multi-modal microwave heating device |
CN106920729A (en) * | 2015-12-28 | 2017-07-04 | 中微半导体设备(上海)有限公司 | The plasma processing apparatus and method of a kind of uniform etching substrate |
WO2018037801A1 (en) * | 2016-08-22 | 2018-03-01 | パナソニックIpマネジメント株式会社 | High-frequency heating device |
-
2018
- 2018-12-26 CN CN201811598549.XA patent/CN111372343A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56132793U (en) * | 1980-03-10 | 1981-10-08 | ||
JPH11176570A (en) * | 1997-12-02 | 1999-07-02 | Samsung Electron Co Ltd | Microwave oven |
JP2008269794A (en) * | 2007-04-16 | 2008-11-06 | Matsushita Electric Ind Co Ltd | Microwave processor |
CN102511198A (en) * | 2009-12-09 | 2012-06-20 | 松下电器产业株式会社 | High frequency heating device, and high frequency heating method |
US20120090782A1 (en) * | 2010-10-19 | 2012-04-19 | Tokyo Electron Limited | Microwave plasma source and plasma processing apparatus |
CN104272866A (en) * | 2012-03-09 | 2015-01-07 | 松下电器产业株式会社 | microwave heating device |
CN106686792A (en) * | 2015-11-05 | 2017-05-17 | 财团法人工业技术研究院 | Multi-modal microwave heating device |
CN106920729A (en) * | 2015-12-28 | 2017-07-04 | 中微半导体设备(上海)有限公司 | The plasma processing apparatus and method of a kind of uniform etching substrate |
WO2018037801A1 (en) * | 2016-08-22 | 2018-03-01 | パナソニックIpマネジメント株式会社 | High-frequency heating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1130955C (en) | Cylindrical microwave applicator | |
US10863593B2 (en) | Electronic oven with reflective energy steering | |
CN110133759B (en) | A dynamic terahertz metalens based on VO2 | |
CN104952684B (en) | Substrate processing apparatus | |
US11617240B2 (en) | Microwave heating device and method for operating a microwave heating device | |
US3691338A (en) | Solid state microwave heating apparatus | |
CN111372343A (en) | Distributed microwave phase control method | |
TWI675609B (en) | Method for distributed microwave phase control | |
US20200214092A1 (en) | Method for distributed microwave phase control | |
CN105992401A (en) | Infrared heating device and electric heating appliance | |
US20250106956A1 (en) | Method for improving uniformity of electromagnetic field inside static microwave resonant cavity | |
CN114040532B (en) | Directional zone heating apparatus and method | |
EP3651552B1 (en) | Microwave processing device | |
CN222279303U (en) | Diffusion furnace capable of improving temperature precision | |
CN114552185B (en) | Microstrip antenna, microwave directional heating system and heating method thereof | |
CN109780585A (en) | A microwave radiation control system | |
JPS58175284A (en) | High frequency heater | |
CN113652741B (en) | Epitaxial growth device | |
CN109219180B (en) | Multi-zone cooking microwave oven | |
CN114680647A (en) | Directional heating device and cooking equipment | |
CN114597614A (en) | A variable phase shifter, a single microwave source directional heating system and a heating method thereof | |
JP2001196158A (en) | High-frequency heating device | |
JPS59194388A (en) | High frequency heater | |
KR20050021065A (en) | tray of microwave oven range | |
JPH01213982A (en) | High frequency heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200703 |
|
WD01 | Invention patent application deemed withdrawn after publication |